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Abstract. This paper presents the Anisotropic selection scheme flotaeGen-
etic Algorithms (cGA). This new scheme allows to enhanceeiity and to
control the selective pressure which are two importanteisso Genetic Algori-
thms, especially when trying to solve difficult optimizatiproblems. Varying
the anisotropic degree of selection allows swapping frorellular to an island
model of parallel genetic algorithm. Measures of perforoesrand diversity have
been performed on one well-known problem: the Quadratioghssent Problem
which is known to be difficult to optimize. Experiences shdvatt tuning the
anisotropic degree, we can find the accurate trade-off lEtwe&A and island
models to optimize performances of parallel evolutiondgpathms. This trade-
off can be interpreted as the suitable degree of migratioongnsubpopulations
in a parallel Genetic Algorithm.

Introduction

In the context of cellular genetic algorithm (cGA), this paproposes the Anisotropic
selection as a new selection scheme which accurately altoagjust the selective pres-
sure and to control the exploration/exploitation ratioisTiew class of evolutionary al-
gorithms is supervised in a continuous way by an unique r@arpetery in the range
[-1..1]. The work described in this paper is an attempt tovjgl®a unified model of par-
allel genetic algorithms (pGA) from fine grain massivelyadil GA (cGA) to coarse
grain parallel model (island GA). As extreme cases, thezétar cGA that assumes one
individual resides at each cell, and at the opposite, a pGéravtistinct subpopulations
execute a standard GA; between them we find models of pGA whigration allows to
exchange to some extend genetic information between sultgt@ms. Thus the search
dynamics of our family of pGA can vary from a diffusion to a magon process. To
illustrate our approach we used one well-known problem:Qluadratic Assignment
Problem (QAP). We study the performances of our class ofllehevolutionary algo-
rithms on this problem and we show that there is a thresholddametety according
to the average performances. Section 1 gives a descriptithre@GA and the island
models. Section 2 introduces the anisotropic parallel @eridgorithms (apGA) and
the anisotropic selection scheme. Section 3 is a presentafithe test problem: the
QAP, and gives the performances of the apGA on the QAP. Fireaitudy on popula-
tion genotypic diversity is made in section 4.



1 Background

This section introduces the concepts of Cellular and Iskndels of parallel genetic
algorithms.

1.1 Cellular Genetic Algorithms

The Cellular Genetic Algorithms are a subclass of Evolutamy Algorithms in which
the population is generally embedded on a two dimensiongiltal grid. In this kind of
algorithms, exploration and population diversity are erdeal thanks to the existence
of small overlapped neighborhood} [9]. An individual of thepulation is placed on
each cell of the grid and represents a solution of the proldesolve. An evolution-
nary process runs simultaneously on each cell of the grldctseg parents from the
neighborhood of the cells and applying operators for redgoatlon, mutations and re-
placement for further generations. Such a kind of algor#hisnespecially well suited
for complex problems[[S]. One of the interests of cGA is tanstibwn the convergence
of the population among a single individual. Complex protdenften have many local
optima, so if the best individual spreads too fast in the petjn it will improve the
chances to reach a local optimum of the search space. Slaeing the convergence
speed can be done by slowing down the selective pressure gofiulation.

1.2 Island Model of pGA

Cellular genetic algorithms and Island Model genetic dtbars are two kinds of Par-
allel genetic algorithms. The first one idiae grainmassively parallel implementation
that assumes one individual resides at each cell. The sermndising distinct subpop-
ulations, is acoarse grainparallel model; Each subpopulation executes as a standard
genetic algorithm, and occasionally the subpopulationglvexchange a few strings:
migrationallows subpopulations to share genetical mateﬂal [4]. Wimpologies can

be defined to connect the islands. In the basic island modgtation can occur be-
tween any subpopulations, whereas ingtepping stonenodel islands are disposed on

a ring and migration is restricted to neighboring islands.

2 Anisotropic Parallel Genetic Algorithms

This section presents tlamisotropic parallel Genetic Algorithmsvhich is a family of
parallel genetic algorithms based on cellular GA in whiclsatropic selection is used.

2.1 Definition

The Anisotropic selection is a selection method in whichnibaghbors of a cell may
have different probabilities to be selected. The Von Neumraighborhood of a cefl’

is defined as the sphere of radiusentered at’ in manhattan distance. The Anisotropic
selection assigns different probabilities to be seleatetti¢ cells of the Von Neumann
neighborhood according to their position. The probabtiitichoose the center cell



remains fixed a%. Let us callp, s the probability of choosing the cells Norttv{ or
South ) andp.,, the probability of choosing the cells Eadt) or West (V). Let
a € [—1;1] be the control parameter that will determine the probaédit,, s andpc., .
This parameter will be called tranisotropic degreeThe probabilitie®,,s andp.,, can
be described as:

(1-pe) (

Pns = D) 1+ Oé)
(1 pC)
ew — 1-
P 5 ( )
Thus, whenoe = —1 we havep., = 1 — p. andp,s = 0. Whena = 0, we have

Pns = Pew @and whemy = 1, we havep,,s = 1 — p. andp,,, = 0.
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Fig. 1. Von Neumann neighborhood with probabilities to choose emighbor

Figurel shows a Von Neumann Neighborhood with the probabilitiegtect each
cell as a function of.

The Anisotropic Selection operator works as follows. Farhegell it selects: indi-
viduals in its neighborhoodi(e [1;5]). Thek individuals participate to a tournament
and the winner replaces the old individual if it has a bettaeis or with probability.5
if the fithesses are equal. When= 0, the anisotropic selection is equivalent to a stan-
dard tournament selection and when= 1 or « = —1 the anisotropy is maximal and
we have an uni-dimensional neighborhood with three neighbnly. In the following,
considering the grid symmetry we will considerc [0; 1] only: whene is in the range
[-1;0] making a rotation 0f0° of the grid is equivalent to consideringin the range
[0;1]. When the anisotropic degree is null, there is no anigy in selection method,
the apGA corresponds to the standard cellular GA. When tisetapic degree is max-
imal, selection is computed between individuals in the saalemn only, the apGA is
then an island model where each subpopulation is a coluntmeafiiid structured as a
ring of cells with no interactions between subpopulatidben the anisotropic degree
is set between low and maximum value, according to seleaionmber of individuals
can be copied from one subpopulation (i.e. column) to thacadjt columns. Thus the
anisotropic degree allows to define a family of parallel Génfra cellular model to an
island model.



In standard island model, the migration rate is defined asuhgber of individuals
which are swap between subpopulations and migration iateis the frequency of mi-
gration. In apGA, the migration process is structured bygtié. Only one parameter
(the anisotropic degree) is needed to tune the migratioleypdihere is a difference
between migration in a standard island model and migrati@niapGA. In an apGA it
can only happen (when the anisotropic degree allows it) detwearest neighbors in
adjacent columns. Migration in that latter case is diffasis it happens in the standard
cGA model, except that the direction is controllable. Infitiwing sections, we study
the influence of this parameter on selection pressure, iegioces and population di-
versity.

2.2 Takeover times and apGAs

The selective pressure is related to the population diyensicellular genetic algo-
rithms. One would like to slow down the selective pressureminying to solve multi-
modal problems in order to prevent the algorithm from cogireg too fast upon a local
optimum. On the opposite side, when there is no danger ofergimg upon a local opti-
mum, one would like to increase the selective pressure iardodbbtain a good solution
as fast as possible. A common analytical approach to me#seigelective pressure is
the computation of the takeover tin‘ﬂ [@[10]. It is the numbg&generations needed
for the best individual to conquer the whole grid when the/@attive operator is the se-
lection [B]. FigurgR shows the influence of the anisotrogigrete on the takeover time.
This figure represents the average takeover times obsenve@)o runs on a32 x 32
grid for different anisotropic degrees. It shows that tHeceve pressure is decreasing
while increasing anisotropy. These results confirm thatthisotropic selection gives
to the algorithm the ability to control accurately the sélexpressure. They are fairly
consistent with our expectation that selection intensitgrdases when the anisotropic
degree increases. However, the correlation between takeowd anisotropy is not lin-
ear; it fast increases after the value= 0.9.

3 Test problem

This section presents tests on one well-known instanceeofQhiadratic Assignment
Problem which is known to be difficult to optimize. Our aim @sgtudy the dynamics
of the apGA for different tunings, and not to obtain betterf@enances than other
optimization techniques. Still, the apGA is implicitelyropared to a cellular genetic
algorithm when the anisotropic degree is nuall£ 0).

3.1 The Quadratic Assignment Problem

We experimented the family of apGAs on a Quadratic Assigrinfeablem (QAP):
Nug30. Our purpose here is not to obtain better results wihect to other optimization
methods, but rather to observe the behavior of apGAs. Eslhedie go in the search
of a threshold for the anisotropic degree.
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Fig. 2. Average of the takeover time as a function of the anisotrdpgreex.

The QAP is an important problem in theory and practice as.Wellas introduced
by Koopmans and Beckmann in 1957 and is a model for many p&iq:tioblems|]]6].
The QAP can be described as the problem of assigning a setilitida to a set of loca-
tions with given distances between the locations and giwevsfbetween the facilities.
The goal is to place the facilities on locations in such a virsay the sum of the products
between flows and distances is minimal.
Givenn facilities andn locations, twon x n matricesD = [d;;] andF' = [fi;] where
d;; is the distance between locationand; and fy,; the flow between facilities andl,
the objective function is:

¢ = Z Z dp(iyp(j) fi
i g

where p(i) gives the location of facility: in the current permutationp.
Nugent, Vollman and Ruml proposed a set of problem instaofcééferent sizes noted
for their difficulty |E]. The instances they proposed are \wndo have multiple local
optima, so they are difficult for a genetic algorithm. We axpent our algorithm on
the 30 variables instance called Nug30.

3.2 Setup

We use a population of 400 individuals placed on a squarg(0ict 20). Each individ-
ual represents a permutation{df, 2, ..., 30}. We need a special crossover that preserves
the permutations:

— Select two individualg, andp- as genitors.
— Choose a random positian
— Findj andk so thatp; (i) = p2(j) andp2 (i) = p1(k).



— exchange positionsand; from p; and positiong andk from ps.
— repeatn/3 times this procedure whereis the length of an individual.

This crossover is an extended version of the UPMX crossawgrgsed in |I|7]. The
mutation operator consist in randomly selecting two posgifrom the individual and
exchanging those positions. The crossover rate is 1 and werdgation per individual.
We perform 500 runs for each anisotropic degree. Each rys stiber 1500 generations.

3.3 Experimental results
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Fig. 3. Average costs as a function affor the QAP.

Figure@ shows the average performance of the algorithmrttsvaon the QAP:
for each value ofv we average the best solution of each run. The purpose hermint
imize the fitness function values. The performances are iggowith o and then fall
down asu is getting closer to its limit value. The best average pentonce is achieved
for o = 0.86. This threshold probably corresponds to a good explor&gtigaioitation
trade-off: the algorithm favors propagation of good salns$ in the vertical direction
with few interactions on the left or the right sides. Thiskif dynamics is well adapted
to this multi-modal problem as we can reach local optima athealumns of the grid
and then migrate them horizontally to find new solutions. Wuest average perfor-
mance is observed far = 0 when the apGA is a cellular GAx = 0.86 corresponds
to the optimal trade-off between cellular and island mod@ghis problem, with the
best migration rate between subpopulations. In our molkeltigration rate is not the
number of individuals which are swap between subpopulatibuat the probability for
the selection operator to choose two individuals from ssearolumns: two individuals
from separate subpopulations would then share informafifencan tell that there is an



optimal migration rate that is induced by the value of thesambpic degreex. Per-
formances would probably improve if the migration rate dad stay static during the
search process. As iE|[1], we can define some criteria toasklfst the anisotropic de-
gree along generations.

4 Diversity in apGAs

To understand better why we observe influence of the aniotparameter on perform-
ances, we felt it is important to measure genetic diversityirdy runs. We studied
changes in diversity during runs according to the whole,ghid rows and the columns.

This section presents measures on population diversity ap&A for the QAP. We
conducted experiences on the average population diverds#grved along generations
on 100 independent runs for each anisotropic degree. We made rihgasures on the
population diversity. First, we computed the global pofiatadiversitygD:

gD = ﬂrﬁc ZZ $T1617$T262)

1,72 C1,C2

whered(x1, z2) is the distance between individuats andz,. The distance used is
inspired from the Hamming distance: It is the number of lmee that differs between
two individuals divided by their length.

Then, we made measures on diversity inside subpopulatiensoal diversity) and
diversity between subpopulations (horizontal diversifyje vertical (resp. horizontal)
diversity is the sum of the average distance between aWiithaials in the same column
(resp. row) divided by the number of columns (resp. rows):

ﬁ?‘ 02 E § :r’l“clv:rTCg

T c1,c2

D= e

c T1,T2

wherefr andjc are the number of rows and columns in the grid.

FigureEl(a) shows the average global diversity observeden®)o0 first genera-
tions during100 runs on the QAP. The curves from bottom to top correspond-o in
creasing values af from zero to nearly one. Experiments measuring genetiasiiye
show that small migration ratev(close to one) causes islands to dominate others and
retain global diversity without being able to exchange sohs to produce better re-
sults. At the opposite, for the cellular model, @ss closed to zero, global diversity
falls near to zero afte800 generations causing premature convergence and negatively
affects performances (see figLﬂe 3). Analysis on the QAP ghewecessity of main-
taining diversity to produce new results and the necessityave enough information
exchanges between columns.

Figure Hl(b) represents the vertical diversity against thdzbntal diversity. The
contour lines plotted every00 generations give some information on the speed of de-
crease of diversity. The more the migration rate decreasesy(increases), the more
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Fig. 4. Global population diversity against generation, with @asinga from bottom
to top (a) and vertical diversity against horizontal divigrsvith increasingx from left
to right (b).

the diversity is maintained on each row and subpopulationserge in each column.
The vertical and horizontal diversities are decreasing e same speed for the cellu-
lar model ¢« = 0) and lower number of interactions between subpopulatiefssithe
algorithm to maintain diversity on the rows whatis high.

Figure|} shows snapshots of the population diversity dusimgysingle run at diffe-
rent generations. The snapshots are taken from left to aggénerations, 200, 500,
1000 and2000. The parametes takes values if0,0.5,0.7,0.86,0.98} from top to
bottom. Each snapshot shows the genotypic diversity in gightborhoods of all cells
on the grid. Color black means maximum diversity and coloitevmeans that there
is no more diversity in the cell’s neighborhood. Those shafshelp to understand
the influence of the anisotropic selection on the genotypierdity. First, we can see
that the anisotropic degree influences the dynamic of prajxagof good individuals
on the grid. This propagation is the cause of the loss of digein the population. In
the standard cellular modek (= 0), good individuals propagate roughly circularly. If
we slightly privilege the vertical directiora(= 0.5) the circles become elliptical. As
« increases, the dynamic changes and good individuals pat@aglumn by column.
For extreme values of the anisotropic degreelpse tol) the migration rate is so low
that good individuals are stuck in the subpopulations ardstiaring of genetic infor-
mation with other subpopulations is seldom observed. Ih¢hse, the selective pres-
sure is too low and it negatively affects performances. Thossover operator doesn’t
have any effect in the white zones, since they represerst wéth no more diversity in
their neighborhoods. For the standard cellular case dotiens between cells may have
some effects on performances only at the frontier betweenithles. It represents a lit-
tle proportion of cells on the grid after a thousand genenati Fora. = 0.86, we can
see vertical lines of diversity, which means that good irttligls appear in each subpop-
ulations. For example, when we see two adjacent columnseamblo grey it means that



Fig. 5. Local diversity in the population along generations (leftight) for increasing
« (top to bottom)

those columns have been colonized by two different indizisluAt generatior2000, a
good individual has colonized the left of the grid but hd stin share information with
individuals in the grey zones. This means that the migratate between subpopula-
tions is strong enough to guarantee the propagation of thetiganformation through
the whole grid. This study showed that the dynamic of the agapion of individuals on
the grid is strongly related to the anisotropic degree. Gageen, it would be interesting
to see what kind of dynamic appears if we define a local catierauto-adapt during

a run. This parallel model of GA allows to tune separatelydahisotropic degree for
each cell on the grid and measures during the search proameseetp to adjust locally
the selective pressure.



Conclusion and Perspectives

This paper presents a unified model of parallel Genetic Algms where granularity
can be continuously tuned from fine grain to coarse grainllehraodel. This family
is based on the new concept of anisotropic selection. Wesedlthe dynamics of this
class of pGAs on the well-known QAP problem. We have showhttieanisotropic
degree plays a major role with regard to the average fitheswlfderformances of the
apGA increases witlx until a threshold valued = 0.86). After this threshold, the
migration rate between subpopulations in columns may beiteall to generate good
solutions. A study on local diversity shows the interactibbetween cells for different
tunings of the apGA. The dynamic of propagation of individuavhich is strongly
related to the genotypic diversity in the population, is elegent from the anisotropic
degree of the apGA. Propagation of good individuals is dorgrtcles for low values
of o and turns to vertical lines for high values af Diversity is maintained in the
population when the anisotropic degree is high, but wheeathes values close to
the extreme case the few interactions between columnsiperiaé performances of
the algorithm. These experimental results lead us to stggesljust dynamically the
migration ratio during a run: by tuning the control parametgeit would be possible
to make the algorithm to self-adjust the migration levepaleding on global or local
measures. While theorical and experimental studies ondstzodels are difficult due to
their complexity, the apGA model could be used as a simpladkaork for calculations
on parallel GA. Naturally it would be worth seeing how prapes described in this
paper extend for even more complex problems.
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