
HAL Id: hal-00164633
https://hal.science/hal-00164633

Preprint submitted on 22 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Logarithmic corrections and universal amplitude ratios
in the 4-state Potts model

Bertrand Berche, Paolo Butera, Lev Shchur

To cite this version:
Bertrand Berche, Paolo Butera, Lev Shchur. Logarithmic corrections and universal amplitude ratios
in the 4-state Potts model. 2007. �hal-00164633�

https://hal.science/hal-00164633
https://hal.archives-ouvertes.fr


ha
l-

00
16

46
33

, v
er

si
on

 1
 -

 2
2 

Ju
l 2

00
7

Logarithmi orretions and universalamplitude ratios in the 4-state Potts modelB. Berhe1 , P. Butera2, L.N. Shhur31 Laboratoire de Physique des Mat�eriaux, Universit�e Henri Poinar�e, Nany I,BP 239, F-54506 Vand�uvre les Nany Cedex, Franeberhe�lpm.u-nany.fr2 Istituto Nazionale di Fisia Nuleare, Universit�a Milano-Bioa, Piazza delleSienze 3, 20126, Milano, Italiapaolo.butera�mib.infn.it3 Landau Institute for Theoretial Physis, Russian Aademy of Sienes,Chernogolovka 142432, Russialev�landau.a.ruSummary. Monte Carlo and series expansion data for the energy, spei� heat,magnetisation and suseptibility of the 4-state Potts model in the viinity of theritial point are analysed. The role of logarithmi orretions is disussed. Esti-mates of universal ratios A+=A�, �+=�L, �T =�L and R+ are given.July 23, 20071 IntrodutionThe study of ritial phenomena and phase transitions is a traditional subjetof statistial physis whih has known its \modern age", sine powerful ap-proahes have been developed (renormalization group, onformal invariane,sophistiated simulation algorithms, . . . ). Simpli�ed models attrated a lotof attention. This is essentially due to a spetaular property of ontinuousphase transitions at their ritial point, sale invariane, whih leads to anextreme robustness of some quantities, like the ritial exponents whih arethus referred to as universal quantities. Only very general properties (spaeor spin dimension, symmetry, range of interation, . . . ) determine the uni-versality lass. This makes the theory of ritial phenomena a very eÆientand preditive tool: As soon as one knows the general harateristis of aphysial system from general symmetry arguments, it is possible in prinipleto predit exatly the \shape" of the singularities whih are developed at theritial point. The term \exat" is here understood rigorously, for examplea two-dimensional system with the symmetries of an Ising model, should itbe a magnet, an alloy or anything else, will exhibit a diverging suseptibility� � jT � Tj�7=4 (see a sketh in Fig. 1) with the preise value 7=4 for theexponent.On a theoretial ground, the major two-dimensional problems (Isingmodel and its generalizations like the Potts model and the perolation model,
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τ > 0τ < 0 0Fig. 1. Typial behaviour of the suseptibility at a seond order phase transition.The quantities  = 0 and �+=�� are universal.XY model, Heisenberg model and so on) are essentially solved at least fortheir ritial singularities (when a seond-order phase transition is indeedpresent), but ritial exponents are not the only universal quantities at aritial point. The universal harater of appropriate ombinations of rit-ial amplitudes [1℄ is also an important predition of saling theory but insome ases these ombinations remain unompletely determined and subjetto ontroversies.The Potts model [2, 3℄, as one of the paradigmati models exhibitingontinuous phase transitions is a good frame to onsider the question ofuniversal ombinations of amplitudes. The universality lass of the Pottsmodel at its ritial point is parametrized by the number of states q. Thetwo-dimensional Potts model with three and four states an be experimen-tally realized as strongly hemisorbed atomi adsorbates on metalli sur-faes at sub-monolayer onentrations [4℄. Although ritial exponents ouldbe measured quite aurately for adsorbed sub-monolayers, on�rming thatthese systems atually belong to the three-state [5℄ or to the four-state Pottsmodel lasses [6℄, it is unlikely that the low temperature LEED results anbe pushed [7℄ to determine also the ritial amplitudes. Therefore, the nu-merial analysis of these models is the only available tool to hek analytipreditions.The ritial amplitudes and ritial exponents desribe the behaviour ofthe magnetization m, the suseptibility �, the spei� heat C and the orre-lation length � for a spin system in zero external �eld4 in the viinity of theritial point4 In this paper we only deal with the physial properties in zero magneti �eld.



Logarithmi orretions in the 4-state Potts model 3M (� ) � B�(�� )� ; � < 0; (1)�(� ) � ��j� j�; (2)�T (� ) � �T (�� )� ; � < 0; (3)C(� ) � A�� j� j��; (4)�(� ) � ��0 j� j��: (5)Here � is the redued temperature � = (T � T)=T and the labels � refer tothe high-temperature and low-temperature sides of the ritial temperatureT. For the Potts models with q > 2 a transverse suseptibility �T an bede�ned in the low-temperature phase5.Critial exponents are known exatly for 2D Potts model [8{11℄ throughthe relation x� = (1� �)=� to the thermal saling dimensionx� = 1 + y2� y (6)and the relation x� = �=� to the magneti saling dimensionx� = 1� y24(2� y) ; (7)where the parameter y is related to the number of states q of the Pottsvariable by the expression os �y2 = 12pq (8)The entral harge of the orresponding onformal �eld theory is also simplyexpressed [9℄ in terms of y  = 1� 3y22� y : (9)Analytial estimates of ritial amplitude ratios for the q-state Potts mod-els with q = 1, 2, 3, and 4 were reently obtained by Del�no and Cardy [12℄.They used the two-dimensional sattering �eld theory of Chim and Zamolod-hikov [13℄ and estimated the entral harge  = 0:985 for 4-state Potts model,for whih the exatly known value is  = 1. Reporting these approximate val-ues in (9), one an alulate the saling dimensions from (6)-(7) and get thevalues x� = 0:13016 and x� = 0:577, to be ompared respetively to the exatvalues 1=8 and 1=2. The disrepany is around 4 and 15 per ent, emphasiz-ing the diÆulty of the q = 4 ase (to give an idea, in the ase of the 3-statePotts model, a similar analysis leads to a very good agreement with less thanone perent deviation).The universal suseptibility amplitude ratios �+=�L and �T=�L were alsoalulated in [12℄ and [14℄. The �gures obtained are the following,5 In the following we will use equally the notations �L or �� for the longitudinalsuseptibility amplitude in the low temperature phase.



4 B. Berhe et al.q = 3 : �+=�L = 13:848; �T=�L = 0:327; (10)q = 4 : �+=�L = 4:013; �T=�L = 0:129: (11)These results have been on�rmed numerially in the ase q = 3 by severalgroups, �+=�L � 10 and �T=�L � 0:333(7) in Ref. [14℄ (Monte Carlo (MC)simulations),�+=�L = 14�1 in Ref. [15℄ (MC and series expansion (SE) data)and quite reently, these results were on�rmed and substantially improved,�+=�L = 13:83(9), �T=�L = 0:325(2), by Enting and Guttmann [16℄ whoanalysed new longer series expansions.The 4-state Potts model was also studied through MC simulations inRef. [14℄, but the authors onsidered that their data were not onlusive. An-other MC ontribution is reported by Caselle, et al [17℄, �+=�L = 3:14(70),and Enting and Guttmann [16℄ also analysed SE data for the 4-state Pottsmodel and found �+=�L = 3:5(4), �T=�L = 0:11(4) in relatively good agree-ment with the preditions of [12℄ and [14℄. The situation thus seems to belear, although the use of the logarithmi orretions in the �tting proedureof MC data was questioned, e.g. in [16℄: [Caselle et al℄ estimates depend rit-ially on the assumed form of the sub-dominant terms, and on the furtherassumption that the other sub-dominant terms, whih inlude powers of loga-rithms, powers of logarithms of logarithms et, an all be negleted. We doubtthat this is true.Let us reall that the existene of logarithmi orretions to saling inthe 4-state Potts model was pointed out in the pioneering works of Cardy,Nauenberg and Salapino [18, 19℄, where a set of non-linear RG equationswere proposed. Their disussion was later extended by Salas and Sokal [20℄.Generially, the logarithmi orretions appear as orretions to saling.We mentioned above that in the viinity of a ritial point, a suseptibilityfor example diverges like �(� ) � ��j� j�. This is true, but this singularbehaviour an be superimposed to a regular signal (e.g. D0+D1j� j+ : : :), andthe leading singular behaviour itself needs to be orreted when we onsiderthe physial quantity away from the transition temperature. The expressionfor �(� ) then takes a form whih an beome \terri�":�(� ) = D0 +D1j� j+ : : : regular bakground+ � j� j�(1+ leading singularity+a(1)j� j� + a(2)j� j2� + : : : leading orretions+a0(1)j� j�0 + a0(2)j� j2�0 + : : : next orretions+b(1)j� j+ b(2)j� j2 + : : :) analyti orretions�(� ln j� j)? � �1 + / ln(� ln j�j)� ln j�j �� : : : logarithmi orretionsTogether with the amplitude and exponent assoiated to the leading singu-larity, � and , appear orretions to saling due to the presene of irrelevantsaling �elds (a(n) and �, a0(n) and �0, . . . ), analyti orretions due to non-linearities of the relevant saling �elds (b(n)), or multipliative logarithmi



Logarithmi orretions in the 4-state Potts model 5orretions (/ and ?, . . . ). These logarithmi oeÆients may have di�erentorigins (see e.g. in Ref. [1℄ and referenes therein). They an be due to theupper ritial dimension, to poles in the expansion of regular and singularamplitudes, or to the presene of marginal saling �elds. The 4-state Pottsmodel belongs to this latter ategory.Some of the quantities indiated above are universal. This is the ase ofthe exponents as well as of many ombinations of oeÆients. In the presentpaper we are interested in the amplitude of the leading singular term, but itspreise determination an be a�eted by the form of the orretions. We shallbe onerned with the following universal ombinations of ritial amplitudesA+A� ; �+�L ; �T�L ; R+C = A+�+B2� : (12)We present, for the 4-state Potts model, more aurate Monte Carlo datasupplemented by a reanalysis of the extended series made available by Entingand Guttmann [16℄ and we address the following question: Is it possible todevise some proedure in whih the role of these logarithmi orretions isproperly taken into aount?2 Amplitudes and universal ombinationsThe saling hypothesis states that the singular part of the free energy densityan be written in terms of the deviation from the ritial point, � = (T�T)=Tand h = H �H, fsing(�; h) = b�DF�(�� by� �; �hbyhh) (13)where F�(x; y) is a universal funtion (atually there is one universal funtionfor eah side � > 0 or � < 0 of the ritial point) and �� and �h are \metrifators" whih ontain all the non universal aspets of the ritial behaviour.D is the spae dimension. Let us stress that the funtions F� are universal inthe sense that some details of the model are irrelevant (e.g. the oordinationnumber of the lattie (so long as it remains �nite), the presene of next nearestneighbour interations, et) but they depend on the boundary onditions orthe shape of the system. The metri fators on the other hand depend onthese details, and the universal ombinations are obtained when the metrifators are eliminated from some ombinations.The onnetion with saling relations an be shown with an exam-ple. From Eq. (13), we also dedue similar homogeneous expressions forthe magnetization, M (�; h) = b�D+yh�hM�(x; y) and the suseptibility,�(�; h) = b�D+2yh�2hX�(x; y). The hoie b = (�� j� j)�1=y� and h = 0 leads(for example below the transition temperature) for the following ombinationof quantities



6 B. Berhe et al.�C(�; 0)�(�; 0)m2(�; 0) j� j2 � (�� j� j)2���2���C�(1; 0)X�(1; 0)M2�(1; 0) � R: (14)The prefator takes the value 1 thanks to the well known saling rela-tion between ritial exponents � + 2� +  = 2. Thus it follows that theabove ombination is a universal number. From the de�nition of magnetiza-tion, spei� heat and suseptibility amplitudes in zero magneti �eld, e.g.M (�; 0) = j� jD�yhy� �hM�(1; 0) � B�j� j� by virtue of Eq. (1), this universalnumber is in fat a ombination of amplitudes, R � A���=B2�. We havesimilar universal ombinations above the ritial temperature or assoiatedto other saling relations.3 RG approah for the Potts model and logarithmiorretions at q = 4Let us remind that the q-state Potts model is an extension of the usual lattieIsing model in whih the site variables si (abusively alled spins) an haveq di�erent values, si = 0; 1; : : : q � 1 but the nearest neighbour interationenergy �JÆsi;sj only takes two possible values, e.g. �J and 0 dependingwhether the neighbouring spins are in the same state or not. The Hamiltonianof the model reads as H = �JXhiji Æsisj : (15)At the early times of real-spae renormalization, the appliation to the purePotts model led to some diÆulties: the impossibility to a�et a partiularvalue for the spin of a ell after deimation due to a too large number ofstates (see Fig. 2).
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Logarithmi orretions in the 4-state Potts model 7to study an annealed disordered model. The RG equations satis�ed by themodel, written in terms of the relevant thermal and magneti �elds � and h,with orresponding RG eigenvalues y� and yh, and the marginal dilution �eld , are given by d�d ln b = y� � , dhd ln b = yhh, d d ln b = q � q,where b is the lengthresaling fator and l = ln b. When q > q, the dilution �eld  is relevant(and the phase transition is of �rst order), while in the regime q < q,  is irrelevant and the system exhibits a seond-order phase transition. Thease q = q is marginal. This piture is qualitatively orret, and in fat theritial value of the number of states whih disriminates between the tworegimes is q = 4. In the q diretion, q = 4 appears as the end of a line of�xed points where logarithmi orretions are expeted. At q = 4, the RGequations were extended by Cardy, Nauenberg and Salapino (CNS) [18, 19℄and then by Salas and Sokal (SS) [20℄. As a result of the oupling betweenthe dilution �eld  , and � and h, they were led to non-linear equations,d�d ln b = (y� + y�  )�; (16)dhd ln b = (yh + yh  )h; (17)d d ln b = g( ): (18)The funtion g( ) may be Taylor expanded, g( ) = y 2 2(1 + y 3y 2  + : : :).Aounting for marginality of the dilution �eld, there is no linear term atq = 4. Comparing to the available results (for example the expression of thelatent heat for q � q by Baxter [21℄ or the den Nijs and Pearson's onjeturesfor the RG eigenvalues for q � q [10,11℄), the parameters were found to takethe values y� = 3=(4�), yh = 1=(16�), y 2 = 1=� and y 3 = �1=(2�2),while the relevant saling dimensions are y� = ��1 = 3=2 and yh = 15=8.The �xed point is at � = h = 0. Starting from initial onditions � , h,the relevant �elds grow exponentially with l up to some � = O(1), h = O(1)outside the ritial region. Notie also that the marginal �eld  remains oforder of its initial value,  � O( 0). In zero magneti �eld, under a hange oflength sale, the singular part of the free energy density transforms aordingto f( 0; � ) = e�Dlf( ; 1): (19)Solving Eqs. (16-18) leads tol = � 1y� ln � + y� y� y 2 ln� 0 G( 0;  )� ; (20)(for brevity we will denote � = 1=y� = 23 , � = y� y�y 2 = 12). Note that G( 0;  )would take the value 1 in Ref. [19℄ and the value y 2+y 3 y 2+y 3 0 in Ref. [20℄. Wean thus dedue the following behaviour for the free energy density in zeromagneti �eld in terms of the thermal and dilution �elds,



8 B. Berhe et al.f(�;  0) = �D� �   0 y 2 + y 3 0y 2 + y 3 �D� f(1;  ): (21)A similar expression would be obtained if the magneti �eld h were alsoinluded. The other thermodynami properties follow from derivatives withrespet to the saling �elds. The quantity between parentheses is the onlyone where the log terms are hidden in the 4-state Potts model, and thus wemay infer that not only the leading log terms, but all the log terms hidden inthe dependene on the marginal dilution �eld disappear in the onvenientlyde�ned e�etive ratios6. Now we proeed by iterations of Eq. (20), and even-tually we get for the full orretion to saling variable the heavy expression 0 G( 0;  ) = onst � (� ln j� j)| {z }CNS �1 + 34 ln(� ln j� j)� ln j� j ��1� 34 ln(� ln j� j)� ln j� j ��1| {z }1+ 32 ln(� ln j�j)� ln j�j in SS��1 + 34 1(� ln j� j)�� �1 + onst� ln j� j + O� 1� ln j� j2��| {z }F (� ln j�j) (22)where CNS and SS refer to the results previously obtained in the litera-ture [18{20℄ and F (� ln j� j) is the only fator where non universality entersthrough the dilution �eld  0. This allows to write down the behaviour of themagnetization for exampleM (� ) = B�j� j1=12(� ln j� j)�1=8 ��1 + 34 ln(� ln j� j)� ln j� j ��1� 34 ln(� ln j� j)� ln j� j ��1�1 + 34 1� ln j� j�F (� ln j� j)#�1=8 :(23)4 Numerial tehniquesIn the Monte Carlo simulations we use the Wol� algorithm [22℄ for studyingsquare latties of linear size L (between L = 20 and L = 200) with peri-odi boundary onditions. Starting from an ordered state, we let the systemequilibrate in 105 steps measured by the number of ipped Wol� lusters.The averages are omputed over 106|107 steps. The random numbers areprodued by an exlusive-XOR ombination of two shift-register generatorswith the taps (9689,471) and (4423,1393), whih are known [23℄ to be safefor the Wol� algorithm.The order parameter of a mirostate M(t) is evaluated during the simula-tions as6 i.e. e�etive ratios whih eventually tend towards universal limits when j� j ! 0



Logarithmi orretions in the 4-state Potts model 9M = qNm=N � 1q � 1 ; (24)where Nm is the number of sites i with si = m at the time t of the simulationand m 2 [0; 1; :::; (q�1)℄ is the spin value of the majority of the sites. N = L2is the total number of spins. The thermal average is denoted M = hMi. Thus,the longitudinal suseptibility in the low-temperature phase is measured bythe utuation of the majority of the spins�L = �(hN2mi � hNmi2) (25)and the transverse suseptibility is de�ned in the low-temperature phase asthe utuations of the minority of the spins�T = �(q � 1) X�6=m(hN2�i � hN�i2); (26)while in the high-temperature phase �+ is given by the utuations in all qstates, �+ = �q q�1X�=0(hN2�i � hN�i2); (27)where N� is the number of sites with the spin in the state �. The internalenergy density of a mirostate is alulated asE = � 1N Xhiji Æsisj (28)its ensemble average denoted as E = hEi and the spei� heat per spinmeasures the energy utuations,C = ��2 �E�� = �2 �hE2i � hEi2� : (29)Our MC study of the ritial amplitudes is supplemented by an anal-ysis of the high-temperature (HT) and low-temperature (LT) expansionsfor q = 4 reently alulated through remarkably high orders by Enting,Guttmann and oworkers [16, 24℄. In terms of these series, we an omputethe e�etive ritial amplitudes for the suseptibilities and the magnetiza-tion and extrapolate them by the urrent resummation tehniques, namelysimple Pad�e approximants (PA) and di�erential approximants (DA) properlybiased with the exatly known ritial temperatures and ritial exponents.The LT expansions, expressed in terms of the variable z = exp(��), extendthrough z59 for the longitudinal suseptibility and through z47 in the ase ofthe transverse suseptibility. The magnetization and energy expansions ex-tend through z43. The HT expansion is omputed in terms of the variablev = (1� z)=(1 + (q � 1)z). The suseptibility expansion has been omputedup to v24 and the energy expansion up to v43.



10 B. Berhe et al.5 Analysis of the magnetization behaviourFor the sake of simpli�ation of the notations, we group all the terms on-taining logs in Eq. (22) into a single funtion H(� ln j� j) = E(� ln j� j) �F (� ln j� j) whereE(� ln j� j) = �(� ln j� j)�1 + 34 ln(� ln j� j)� ln j� j ���1� 34 ln(� ln j� j)� ln j� j ��1�1 + 34 1� ln j� j�# : (30)The funtion E ontains all leading logarithms with universal oeÆients, itis known exatly while the funtion F needs to be �tted. We thus obtaina losed expression for the dominant logarithmi orretions whih is moresuitable than previously proposed forms to desribe an observable (Obs.) inthe temperature range aessible in a numerial study:Obs:(� ) ' Ampl:� j� j� �H℄(� ln j� j)� (1 + Corr: terms); (31)Corr: terms = aj� j2=3 + b�j� j+ : : : ; (32)where � and ℄ are exponents whih depend on the observable onsidered, andtake the values 1=12 and �1=8 respetively in the ase of the magnetization.Here we stress that the inlusion of a orretion in j� j2=3 seems to be neessaryaording to previous work of Joye on the Baxter-Wu model [25, 26℄ (of4-state Potts model universality lass), where the magnetization is shownto obey an expression of the form M (� ) = B�j� j1=12(1 + onst � j� j2=3 +onst0 � j� j4=3). The exponent 2=3 omes out from the onformal salingdimensions of Dotsenko and Fateev [9℄, and its presene is needed in order toaount for the numerial results (see also Ref. [27℄). Caselle et al. [17℄ alsoonsidered j� j2=3 term to �t the magnetization. Here we also allow inlusionof a linear orretion in b�j� j to aount for possible non linearities of therelevant saling �elds [1℄. The next term in j� j4=3 will be forgotten.In Fig. 3 we plot e�etive magnetization amplitudes Beff (� ) vs j� j2=3.From the available data for the magnetization, we de�ne the following quan-tities, BCNS (� ) = M (� )j� j�1=12(� ln j� j)1=8; (33)BSS (� ) = M (� )j� j�1=12(� ln j� j)1=8�1� 316 ln(� ln j� j)� ln j� j ��1 ; (34)BE (� ) = M (� )j� j�1=12E1=8(� ln j� j); (35)whih are expeted to behave aording to the orretions to salingB�(1 + aj� j2=3+ b�j� j+ : : :) (36)
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Fig. 3. E�etive amplitudes (from MC data) as dedued from di�erent assumptionsfor the logarithmi orretions. Symbols orrespond to MC data, dashed and dotted-dashed lines are �ts as explained in the text.The numerial results are shown in Fig. 3. From bottom to top the varioussymbols indiate the e�etive amplitudes with "no-log" at all, then withthe CNS and the SS orretions and �nally the e�etive amplitude wherethe known universal logarithmi terms have been inluded. The dashed linesorrespond to a rough determination of the orretions to saling inludingonly the terms in aj� j2=3 in the limit j� j ! 0, and the dot-dashed linesinlude also the terms in bj� j. From this plot, we dedue that none of thethree e�etive amplitudes in Eqs. (33-35) an be orretly �tted by Eq. (36),sine the oeÆients of the orretion terms (e.g. the oeÆient a whih isestimated diretly by the slope at small j� j values) strongly depend on therange of �t. This undesirable dependene of the oeÆients on the width ofthe temperature window is shown in the �rst six lines of table 1.In order to improve the quality of the �ts, one has to take into a-ount the orretion funtion F (� ln j� j) and to extrat an e�etive funtionFeff (� ln j� j) whih mimis the real one in the onvenient temperature range.This is done by �tting Beff (� ) to a more ompliated expression,B�(1 + aj� j2=3+ b�j� j+ : : :)� �1 + C1� ln j� j + C2 ln(� ln j� j)(� ln j� j)2 �1=8 ; (37)whih means that we inlude the orretions to saling and the non universalfuntion funtion F (� ln j� j) taking the approximate expressionFeff (� ln j� j) ' �1 + C1� ln j� j + C2 ln(� ln j� j)(� ln j� j)2 ��1 : (38)



12 B. Berhe et al.Table 1. Fits of the e�etive amplitude of the magnetization.Beff(�) j� j2=3-window B� a bBCNS(�) [0; 0:15℄ 1:07 �0:98 0:94[0; 0:45℄ 1:05 �0:66 0:29BSS(�) [0; 0:15℄ 1:11 �0:77 0:56[0; 0:45℄ 1:10 �0:45 �0:06BE(�) [0; 0:15℄ 1:14 �0:47 0:16[0; 0:45℄ 1:13 �0:25 �0:27BEF (�) [0; 0:15℄ 1:16 �0:20 0:02[0; 0:45℄ 1:16 �0:18 �0:02While a and b are oeÆients of orretions to saling due to irrelevant opera-tors, C1 and C2 are e�etive oeÆients of logarithmi terms whih, in a giventemperature range, mimi a slowly onvergent series of logarithmi terms de-pending on a non universal dilution �eld. Therefore, we expet that di�erent�ts made in di�erent temperature windows will produe di�erent values ofC1 and C2 while a and b (and of ourse also the magnetization amplitudeB�) should be relatively less inuened by the window range. The hoie ofvalues for C1 and C2 is thus partially arbitrary and the values quoted shouldbe spei�ed together with the temperature window where they are appropri-ate. In the following, we obtain C1 ' �0:76 and C2 ' �0:52 in the windowj� j2=3 2 [0; 0:35℄, whih yields an amplitude B� ' 1:157. The resulting a andb oeÆients now appear very stable. This is heked in Fig. 4 where thequantity BEF (� ) =M (� )j� j�1=12[E(� ln j� j)F (� ln j� j)℄1=8 (39)is reported toghether with the previous urves and �tted as indiated intable 1. As an independent test, we add the SE data whih are superimposedto the MC data at small values of j� j only for this latter assumption ofe�etive amplitude.Eventually, our approah on�rms expression Eq. (23) for the magnetiza-tion, with the funtion F (� ln j� j) given in Eq. (38) and the parameters C1and C2 given above for the appropriate temperature window. Nevertheless,we have to stress that the di�erent e�etive amplitudes should all reah thesame amplitude B� in the limit j� j ! 0, sine BCNS (� ) is in fat an approx-imation of BSS(� ), whih is an approximation of BE (� ), whih eventuallyapproximates BEF (� ). An attempt of illustration of this behaviour is shownin Fig. 5 where dotted lines (whih are only guides for the eyes) all onvergetowards the unique value B� ' 1:157. Here we stress that we have deletedthe points of SE data whih are too lose to the ritial point, sine the seriesare no longer reliable beause the urrent extrapolation proedures are inpriniple unable to approximate the ompliated struture of the singularityinvolving log orretions.
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14 B. Berhe et al.ture sale and thus the remaining freedom for the other physial quantities inEq. (31) is only through the leading amplitude and the oeÆients of j� j2=3and j� j-terms in the orretions plus possibly the bakground terms. It is stilla ompliated task to perform this analysis, but the urrent results for theuniversal ombinations mentioned in the introdution appear in the followingtable.Table 2. Rough estimate of the universal ombinations of the ritial amplitudesin the 4-state Potts model.A+=A� �+=�L �T =�L R+C soure1:a 4:013 0:129 0:0204 [12,14℄3:14(70) 0:021(5) [17℄3:5(4) 0:11(4) [16℄1:00(1) 6:7(4) 0:161(3) 0:0307(2) herea exat result from dualityOur work is "one more" ontribution to the study of this problem andbrings some answers, but also raises new questions. Indeed, our results dis-agree with previous estimates, but we annot laim for sure that our estimatesare more reliable than those of other authors. What is extremely lear is thatthe groups who studied numerially universal ombinations of amplitudes inthe 4�state Potts model all notied the extreme diÆulty to take into aountproperly the logarithmi terms. We believe that our protool is self-onsistentin the sense that our riterion is to obtain a relative stability of the orre-tion to saling oeÆients. The results that we report here, although a roughestimate whih alls for deeper analysis, reah a reasonable on�dene level.If this is indeed the ase, one should identify the reason of the disrepanyfrom the theoretial preditions of Cardy and Del�no. In the onlusion, andin a footnote of one of their papers, Del�no et al [14℄ (p.533) explain thattheir results are sensitive to the relative normalization of the order and dis-order operator form fators whih ould be the origin of some troubles forthe ratios �+=�L and RC . This possible explanation seems nevertheless tobe ruled out (as mentioned by Enting and Guttmann already) by the verygood agreement between the theoretial preditions and all numerial studies(both MC and SE) in the ase of the 3-state Potts model. Eventually let usmention that the two-kink approximation used by Cardy and Del�no is exatfor q = 2 (Ising model) and quite good for q = 3, but probably questionablelose to the marginal ase q ! 4. As a onlusion, we are afraid that thiswork opens more questions than it bring answers.
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