
HAL Id: hal-00164621
https://hal.science/hal-00164621v1

Submitted on 22 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Guaranteed Proofs Using Interval Arithmetic
Marc Daumas, Guillaume Melquiond, César Muñoz

To cite this version:
Marc Daumas, Guillaume Melquiond, César Muñoz. Guaranteed Proofs Using Interval Arithmetic.
17th IEEE Symposium on Computer Arithmetic, 2005, Cape Cod, Massachusetts, United States.
pp.188-195, �10.1109/ARITH.2005.25�. �hal-00164621�

https://hal.science/hal-00164621v1
https://hal.archives-ouvertes.fr

Guaranteed Proofs Using Interval Arithmetic

Marc Daumas, Guillaume Melquiond, and César Muñoz∗

Abstract

This paper presents a set of tools for mechanical rea-
soning of numerical bounds using interval arithmetic. The
tools implement two techniques for reducing decorrelation:
interval splitting and Taylor’s series expansions. Although
the tools are designed for the proof assistant system PVS,
expertise on PVS is not required. The ultimate goal of the
tools is to provide guaranteed proofs of numerical proper-
ties with a minimal human-theorem prover interaction.

1 Introduction

Deadly and disastrous failures [4, 7, 12] confirm the
shared belief that the traditional peer-review process is not
sufficient to guarantee correctness of published proofs and
software [11]. Despite this belief, mechanical theorem
provers and proof assistants are not widely used in the ap-
plied mathematics community. Part of the problem is the
lack of user friendly interfaces that results on steep learn-
ing curves. This paper presents a set of tools for mechani-
cal reasoning of numerical bounds using interval arithmetic.
The goal is to provide guaranteed formal proofs of numeri-
cal properties with a minimum effort.

Interval arithmetic has been used for decades as a stan-
dard tool for numerical analysis on engineering applica-
tions [8,15]. In interval arithmetic, operations are evaluated
on range of numbers rather than on real numbers. Formally,
an interval x = [a, b] is the set of real numbers between a
and b, i.e.,

[a, b] = {x | a ≤ x ≤ b}.
∗M. Daumas (Marc.Daumas@ens-lyon.fr) and G. Melquiond

(Guillaume.Melquiond@ens-lyon.fr) are with the LIP Com-
puter Science Laboratory, UMR 5668 CNRS–ENS Lyon–INRIA, France.
César Muñoz (munoz@nianet.org) is with the National Institute of
Aerospace, 144 Research Drive, Hampton, VA, USA. This work was par-
tially supported by the National Aeronautics and Space Administration un-
der NASA Cooperative Agreement NCC-1-02043, by the French National
Center for Scientific Research under CNRS PICS grant 2533, and by the
Department of the Development and the Department of the Industrial Re-
lations (DirDRI) of the INRIA.

The bounds a and b are called the lower bound and upper
bound of x, respectively. In this paper, we are interested in
rational interval arithmetic, i.e., the bounds a and b are as-
sumed to be rational numbers. In the following, we use the
first letters of the alphabet a, b, . . . to denote rational num-
bers, and the last letters of the alphabet . . . x, y, z to denote
arbitrary real variables. We use boldface for interval vari-
ables. Furthermore, if x is an interval variable, x denotes
its lower bound and x denotes its upper bound. By abuse
of notation, and when it is clear from the context, a rational
number a is identified with the interval [a, a].

The four basic operations in interval arithmetic are de-
fined such that they satisfy the inclusion property:

x ⊗ y = {x ⊗ y | x ∈ x, y ∈ y},

where ⊗ = {+,−,×,÷}.1 This property is fundamental to
interval arithmetic. It guarantees that the evaluation of an
expression using interval arithmetic is a correct approxima-
tion of the exact real value.

Interval arithmetic is sub-distributive, i.e., x× (y+z) ⊆
x×y+x×z. In the general case, the inclusion is strict. This
may have surprising effects, for instance x−x is, in general,
different from the interval 0, e.g., [0, 1] − [0, 1] = [−1, 1].
This effect is also called decorrelation and it is due to the
fact that interval identity is lost in interval arithmetic.

Consider the function f(x) = x × (1 − x). A simple
analysis reveals that f reaches its maximum at x = 1

2 with
f(1

2) = 1
4 . If x ∈ [0, 1], the minimums are reached at the

bounds with f(0) = f(1) = 0. Hence,

∀x ∈ [0, 1] : x × (1 − x) ∈
[
0,

1
4

]
.

On the other hand, the interval expression x × (1 − x),
where x = [0, 1], evaluates to [0, 1]. The inclusion property
guarantees that [0, 1] is a correct approximation of f(x), for
x ∈ x. However, as this example shows, it may not be the
best one:

[
0,

1
4

]
� [0, 1].

1In the case of division, it is assumed that 0 �∈ y.

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

There are a few techniques to reduce the effect of decor-
relation. They usually require arithmetic manipulations of
the interval expressions and a fine analysis of the interval
variables. For example, an expert will probably note that
f(x) is equivalent to 1

4−
(
x − 1

2

)2
, and that the correspond-

ing interval expression 1
4 − (

x − 1
2

)2
does not suffer from

decorrelation. The proof that a particular numerical expres-
sion satisfies some given bounds is not necessarily difficult,
but it can be cumbersome, tedious, and, definitively, error
prone.

This paper presents a set of tools that support mechani-
cal proof checking of numerical bounds using interval arith-
metic. The tools implement two techniques to reduce decor-
relation. The first technique is based on interval splitting.
The second technique is based on Taylor’s series expan-
sions. The tools are designed for the verification system
PVS,2 which is developed by SRI International [16]. How-
ever, minimal PVS expertise is required to use our tools as
most of the technical burden of proving properties in a proof
assistant system is hidden from the user. A C++ library
generates proof obligations and proof scripts, in the form of
PVS files, for a given numerical problem. The files are pro-
cessed by PVS in batch mode and a summary of the status
of the proofs is printed. User interaction with the theorem
prover is minimized. This approach is usually referred as
invisible formal methods [21].

The rest of this paper is organized as follows. Section 2
presents an overview of the PVS interval arithmetic library.
The usage of the library is illustrated with the toy exam-
ple x × (1 − x) ∈ [0, 1] for x ∈ [0, 1]. This example is
reused in Section 3 to show how the precision can be im-
proved by a simple interval splitting technique. Section 4
motivates a Taylor’s series expansion technique with an ex-
ample taken from a critical aeronautical application. That
technique guarantees that an implemented polynomial ap-
proximation is close to about one unit in the last place (ulp)
of the exact transcendental function. The relative error is
exactly bounded by 1.36 × 10−6. Section 5 presents the
C++ library that generates the proof obligations and proof
scripts of the examples in sections 3 and 4.

2 A PVS Library for Interval Arithmetic

The Prototype Verification System (PVS) [16] is a me-
chanical proof checker that provides a strongly typed spec-
ification language and a theorem prover for higher-order
logic. PVS developments are organized in theories. A the-
ory is a collection of mathematical and logical objects such
as function definitions, variable declarations, axioms, and
lemmas.

2PVS is available from http://pvs.csl.sri.com.

The library Interval is a set of PVS theories defining ra-
tional interval arithmetic. The library provides a set of proof
strategies that automate interval reasoning, specially with
respect to decorrelation effects.

Listing 1 shows a few definitions from the PVS theory
Interval. Dots are used to simplify the presentation and
hide some technical parts. Comments start with the symbol
% and extend to the end of the line. The theory defines the
type Interval and mathematical variables x,y of type
real (real numbers), X,Y of type Interval, and n of
type nat (natural numbers).

Intervals are stored as pairs of real numbers [|x,y|].
For instance, the PVS object [|0,1|] represents the inter-
val [0, 1]. If X is a PVS interval, lb(X) is the lower bound
and ub(X) is the upper bound of X. The propositions x ∈ x
and x ⊆ y are written x ## X and X << Y, respectively.
Furthermore, the proposition X > x states that all values
in X are strictly greater than x; similarly for X ≥ x, X <
x, and X ≤ x.

The four basic interval operations are defined as in [9]:

x + y = [x + y,x + y],
x − y = [x − y,x − y],
x × y = [min{xy,xy,xy,xy},

max{xy,xy,xy,xy}],

x ÷ y = x ×
[

1
y

,
1
y

]
, if yy > 0.

We also define negative, absolute value, square, and power
functions as follows:

−x = [−x,−x],
|x| = [min{|x|, |x|},max{|x|, |x|}], if xx ≥ 0.

|x| = [0,max{|x|, |x|}], if xx < 0.

xn =

[1] if n = 0,
[xn,xn] if x ≥ 0 or

odd?(n),
[xn,xn] if x ≤ 0 and

even?(n),
[0,max{xn,xn}] otherwise.

Interval union x ∪ y, written in PVS X U Y, is defined as
the smallest rational interval that contains both x and y.

All these operations are defined such that they satisfy
the inclusion property. Indeed, the lemmas shown in List-
ing 2 are, among many others, provided by the library and
formally verified. Free variables are implicitly quantified
universally. As we will see, these properties are the basis of
the automated support for interval reasoning.

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

PVS Listing 1 Basic definitions

% interval.pvs
Interval : THEORY
BEGIN

Interval : TYPE = ...

x,y : VAR real
X,Y : VAR Interval
n : VAR nat

+(X,Y): Interval = [|lb(X)+lb(Y),
ub(X)+ub(Y)|]

-(X,Y): Interval = [|lb(X)-ub(Y),
ub(X)-lb(Y)|]

-(X) : Interval = [|-ub(X),
-lb(X))|]

*(X,Y): Interval = ...
/(X,Y): Interval = X * [|1/ub(Y),

1/lb(Y)|]
Abs(X): Interval = ...
Sq(X) : Interval = ...
ˆ(X,n): Interval = ...

U(X,Y) : Interval = [|min(lb(X),lb(Y)),
max(ub(X),ub(Y))|]

...

PVS Listing 2 Inclusion properties (I)

...

Add_sharp : LEMMA
x ## X AND y ## Y =⇒ x+y ## X+Y

Sub_sharp : LEMMA
x ## X AND y ## Y =⇒ x-y ## X-Y

Neg_sharp : LEMMA
x ## X =⇒ -x ## -X

Mult_sharp : LEMMA
x ## X AND y ## Y =⇒ x*y ## X*Y

Zeroless?(X): bool = X > 0 OR X < 0

Div_sharp : LEMMA
Zeroless?(Y) AND
x ## X AND y ## Y =⇒ x/y ## X/Y

Abs_sharp : LEMMA
x ## X =⇒ abs(x) ## abs(X)

Sq_sharp : LEMMA
x ## X =⇒ sq(x) ## sq(X)

Pow_sharp : LEMMA
x ## X =⇒ xˆn ## Xˆn

END Interval

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

The square root and the trigonometric functions are im-
plemented by approximation series. A PVS library of ap-
proximations was originally developed by one of the au-
thors for the verification of an algorithm for aircraft con-
flict detection [14]. It was completed and extended with
logarithm, exponential and arc tangent functions by David
Lester. The approximation library is part of the NASA Lan-
gley PVS libraries3.

The basic idea is to provide for each real function f :
R → R, parametric algebraic functions f : (R, N) → R

and f : (R, N) → R, such that for all x, n

f(x, n) ≤ f(x) ≤ f(x, n), (1)

f(x, n) ≤ f(x, n + 1), (2)

f(x, n + 1) ≤ f(x, n), (3)

lim
n→∞ f(x, n) = f(x) = lim

n→∞ f(x, n). (4)

Formula (1) states that f and f are, respectively, lower and
upper bounds of f , and formulas (2), (3), and (4) state that
these bounds can be improved, as much as needed, by in-
creasing the approximation parameter n. Furthermore, we
require that f and f are closed for rational numbers.

For each f , the corresponding parametric interval func-
tion f is defined as follows:

f(x, n) = [f(x, n), f(x, n)], if f is increasing,

f(x, n) = [f(x, n), f(x, n)], if f is decreasing.

If f is neither increasing nor decreasing, as in the case of
trigonometric functions, f is defined by case analysis on
subintervals that are increasing or decreasing. The param-
eter n sets the accuracy of the approximations. In a real
numerical problem, this parameter is set in advance by an
external program that explores in an efficient way a vast
number of values before deciding for the best one. This is
one of the functionalities of the C++ library presented in
Section 5.

The definitions of the square root and trigonometric in-
terval operations satisfy the inclusion properties in List-
ing 3. Appropriate preconditions such as X ≥ 0 and
Tan?(X) guarantee that the operations sqrt and tan are
well-defined.

Three basic strategies are provided by Interval: sharp,
instint, and joint.

3Available from http://shemesh.larc.nasa.gov/fm/ftp/
larc/PVS-library/pvslib.html.

PVS Listing 3 Inclusion properties (II)

Sqrt_sharp : LEMMA
X ≥ 0 AND
x ## X =⇒ sqrt(x) ## Sqrt(X,n)

Sin_sharp : LEMMA
x ## X =⇒ sin(x) ## Sin(X,n)

Cos_sharp : LEMMA
x ## X =⇒ cos(x) ## Cos(X,n)

Tan_sharp : LEMMA
Tan?(X) AND
x ## X =⇒ tan(x) ## Tan(X,n)

Let e(x1, . . . , xn) be a real expression with variables
x1, . . . , xn, and e(x1, . . . ,xn) be the interval expression
corresponding to e (for a pre-determined approximation pa-
rameter), where xi ∈ xi, for 1 ≤ i ≤ n.

• The proof rule sharp automatically discharges goals
of the form

x1 ∈ x1, . . . , xn ∈ xn

e(x1, . . . , xn) ∈ e(x1, . . . ,xn)
,

using the inclusion lemmas in Listing 2 and Listing 3.

• Let y be a rational interval. The proof rule instint
automatically discharges goals of the form

x1 ∈ x1, . . . , xn ∈ xn

e(x1, . . . , xn) ∈ y
,

by showing that e(x1, . . . , xn) ∈ e(x1, . . . ,xn) us-
ing sharp, and then evaluating the numerical interval
expression

e(x1, . . . ,xn) ⊆ y.

• The proof rule joint automatically discharges goals
of the form

x1 ∈ x1, . . . , xn ∈ xn

e(x1, . . . , xn) ∈ y
,

by showing that

x1 ∈ x1, . . . , xi ∈ xi
′, . . . , xn ∈ xn

e(x1, . . . , xn) ∈ y
,

and

x1 ∈ x1, . . . , xi ∈ xi
′′, . . . xn ∈ xn

e(x1, . . . , xn) ∈ y
,

provided that (1) xi = xi
′ ∪ xi

′′ and (2) xi
′ and xi

′′

overlap. Appropriate parameters tell the strategy how
to select xi, xi

′, and xi
′′.

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

The file fair.pvs, in Listing 4, includes the lemma
fair approx that states

∀x ∈ [0, 1] : x × (1 − x) ∈ [0, 1].

PVS Listing 4 Toy example

% fair.pvs
fair : THEORY
BEGIN

fair_approx : LEMMA
FORALL (x:real):

x ## [|0,1|] IMPLIES
x*(1-x) ## [|0,1|]

%|- fair_approx : PROOF (instint) QED

END fair

The PVS theorem prover is generally used in interactive
mode. However, batch proving is supported in PVS by the
package ProofLite.4 Proof scripts are written as comments
using the special comment symbol %|-. In this case, the
interval proof strategy instint is associated to the lemma
fair approx. The file fair.pvs is proof checked in
batch mode with the command proveit:

$ proveit -package Interval fair.pvs

After a few seconds, the following message is displayed:

Theory totals:
1 formulas, 1 attempted, 1 succeeded

3 Sharper Bounds by Interval Splitting

Lemma fair approx of Section 2.4 is very inaccurate
as it bounds x × (1 − x), with x ∈ [0, 1], by [0, 1] instead
of

[
0, 1

4

]
. This is due to decorrelation on x. In many cases,

the easiest way to reduce decorrelation is to divide the input
interval in many subintervals and to evaluate the expression
on these subintervals separately.

For example, the interval [0, 1] could be evenly divided
into 16 intervals

[
i
16 , i+1

16

]
. Each arithmetic evaluation is a

subset of
[
0, 9

32

]
that is a little larger than the optimal

[
0, 1

4

]
.

The C++ library presented in Section 5 finds the same
degree of accuracy with only 8 intervals:[

0,
1
4

]
,

[
1
4
,
3
8

]
,

[
6
16

,
7
16

]
,

[
7
16

,
8
16

]
,

4Available from http://research.nianet.org/˜munoz/
ProofLite.

[
8
16

,
9
16

]
,

[
9
16

,
10
16

]
,

[
5
8
,
3
4

]
,

[
3
4
, 1

]
.

Indeed, the PVS file toy.pvs in Listing 5 is automatically
generated from the original problem and some extra param-
eters. In this case, 16 lemmas are necessary to guarantee
the required accuracy

[
0, 9

32

]
. Lemmas ToyI0 and ToyI1

prove the case of the subintervals
[
0, 1

4

]
and

[
1
4 , 3

8

]
, re-

spectively, using the proof rule instint. Lemma ToyC1
proves the case of the subinterval

[
0, 3

8

]
by using the proof

rule joint. The strategy shows that
[
0, 3

8

]
=

[
0, 1

4

] ∪[
1
4 , 3

8

]
, and then applies lemmas ToyI0 and ToyI1. The

final lemma ToyC7 proves the result on the whole interval
[0, 1].

PVS Listing 5 Toy example (revisited)

% toy.pvs
toy : THEORY
BEGIN

x :VAR real

ToyI0 : LEMMA
x ## [|0,4/16|] IMPLIES
x * (1 - x) ## [|0,9/32|]

%|- ToyI0 : PROOF (instint) QED

ToyI1 : LEMMA
x ## [|4/16,6/16|] IMPLIES
x * (1 - x) ## [|0,9/32|]

%|- ToyI1 : PROOF (instint) QED

ToyC1 : LEMMA
x ## [|0,6/16|] IMPLIES
x * (1 - x) ## [|0,9/32|]

%|- ToyC1 : PROOF
%|- (joint "ToyI0" "ToyI1")
%|- QED

...

ToyC7 : LEMMA
x ## [|0,16/16|] IMPLIES
x * (1 - x) ## [|0,9/32|]

%|- ToyC7 : PROOF
%|- (joint "ToyC6" "ToyI7")
%|- QED

END toy

Proof checking the file toy.pvs in batch mode reports:

$ proveit -package Interval toy.pvs
Theory totals:
16 formulas, 16 attempted, 16 succeeded

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

4 Taylor’s Series Expansions

Taylor’s Theorem yields the following rule on interval
arithmetic. Let x, a ∈ x and x0, . . . ,xn be a list of inter-
vals,

di f
dxi (a) ∈ xi, for 0 ≤ i < n, and

∀y ∈ x : dn f
dxn (y) ∈ xn

f(x) ∈ Σn
i=0(xi × (x − a)i)/i!

This rule is implemented by the strategy taylor in the
library Interval. In this section, we show how this rule may
be used to reduce decorrelation in a real example.

The function

r(φ) =
a

1 + (1 − f)2 tan2 φ
,

where a and f are constants defined by WGS84,5 appears
in the implementation of aircraft navigation algorithms. In-
deed, r(φ) is used to translate aircraft geodesic coordinates,
as calculated by global positioning systems, to Cartesian co-
ordinates used, for example, by geometric conflict detection
and resolution algorithms [3].

For efficiency reasons, one may want to approximate the
function r(φ) by polynomial

r̂(φ) =
4439091

4
+ (φ2

m − φ2)×
(

9023647
4

+ (φ2
m − φ2)×

(
13868737

64
+ (φ2

m − φ2)×
(

13233647
2048

+ (φ2
m − φ2)×

(−1898597
16384

+ (φ2
m − φ2)×

−6661427
131072

))))
,

where φm = 715/512 � 80π/180 and φ ∈ [0, φm], as the
latitude is assumed to be between 0 and 80o.

The coefficients of the polynomial approximation and
φ2

m are stored exactly using IEEE single precision. Thus,
the objective is to show that e(φ)

r(φ) , where

e(φ) = r(φ) − r̂(φ),

is bounded by 1.36 × 10−6, i.e., about an ulp of the exact
value.

Let r(Φ), r̂(Φ), and e(Φ) be the interval expressions cor-
responding to r(φ), r̂(φ), and e(φ), respectively, and Φ be
an interval such that φ ∈ Φ ⊆ [0, 715

512]. Decorrelation on
e(Φ) yields that for any interval Φ, e(Φ) is wider than the

5Available from http://www.wgs84.com.

sum of the width of intervals r(Φ) and r̂(Φ). Therefore, the
splitting technique presented in the previous section would
require more than φm/ulp subintervals to verify that e(Φ)
is no wider than one ulp. No proof assistant can guarantee
such a large number of lemmas in a reasonable time.

To reduce decorrelation, we use Taylor’s series expan-
sion with x = φ, n = 1, a equal to the midpoint of Φ,
x = Φ, x0 = e([a]), and x1 = e′(Φ), where e′ is the in-
terval function corresponding to the first derivative of e. We
get

e(φ) ∈ e(a) + (Φ − a)e′(Φ), (5)

as both (1) e(a) ∈ e([a]) and (2) ∀y ∈ Φ : e′(y) ∈ e′(Φ)
trivially hold. Decorrelation on Formula (5) is reduced to
first order with respect to the original e(Φ).

Further reduction of decorrelation could be obtained by
increasing the order of the Taylor series expansion, e.g., the
second order expansion yields

e(φ) ∈ e(a) + (Φ − a)e′(a) +
(Φ − a)2

2
e′′(Φ).

However, note that r̂(φ) is a least square approximation of
r(φ) on Chebyshev’s polynomials [18] and r(φ) is a rela-
tively smooth function. Therefore, the first order expansion,
along with interval splitting, is sufficient in this case to show
the required accuracy.

Listing 6 illustrates the PVS definitions used in this ex-
ample. As a convention in PVS, real functions are written in
lowercase, and interval functions are written in uppercase.
In particular, r, hat r, and e correspond to r, r̂, and e, re-
spectively, whereas R, hat R, and E correspond to r, r̂, and
e, respectively. PVS is a strongly typed language where ev-
ery function has to be well-defined. The user-defined type
Phi rules out values phi where r(phi) is undefined. In
contrast to real operations, interval operations are defined
everywhere. The empty interval acts as an exceptional value
in cases where the real function is undefined.

Contrary to the approach described in [19], we do not
have to generate a new Taylor approximation for each sub-
range. By using an interval-based Taylor expansion, the
same expression can be reused for all the subranges. We
do not suffer from the Taylor coefficients being irrational
numbers, they are simply given by interval expressions in-
volving rational functions. Relying on rational interval
arithmetic leads to conceptually simpler proofs: one single
global Taylor expansion has to be validated, and the proofs
for all the subranges simply consist in an interval instantia-
tion of this expansion.

5 A C++ Library for Real Applications

The splitting technique presented in Section 3 is imple-
mented by an external library written in C++. Given a nu-

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

PVS Listing 6 Functions R, r̂, and E in PVS

a : real = 6378137
f : real = 1000000000/298257223563
umf2 : real = sq(1 - f)
sqmax : real = 511225/262144

Phi : TYPE = {x: real |
x ## [|0,715/512|]}

r(phi:Phi) : real =
a / sqrt(1 + umf2 * sq(tan(phi)))

R(PHI:Interval) : Interval =
a / Sqrt(1 + umf2 * Sq(Tan(PHI,4)),7)

hat_r(phi:Phi) : real =
(4439091/4) + (sqmax - sq(phi)) * (
(9023647/4) + (sqmax - sq(phi)) * (
(13868737/64) + (sqmax - sq(phi)) * (
(13233647/2048) + (sqmax - sq(phi)) * (
(-1898597/16384) + (sqmax - sq(phi)) *
(-6661427/131072)))))

hat_R(PHI:Interval) : Interval =
(4439091/4) + (sqmax - Sq(PHI)) * (
(9023647/4) + (sqmax - Sq(PHI)) * (
(13868737/64) + (sqmax - Sq(PHI)) * (
(13233647/2048) + (sqmax - Sq(PHI)) * (
(-1898597/16384) + (sqmax - Sq(PHI)) *
(-6661427/131072)))))

e(phi:Phi) : real =
r(phi) - hat_r(phi)

E(PHI:Interval) : Interval =
R(PHI) - hat_R(PHI)

merical problem, the library finds an appropriate subinterval
division and generates proof obligations, in the form of lem-
mas, and proof guarantees, in the form of proof scripts, that
yield a required accuracy. Lemmas and proofs are grouped
in files such that they can be processed in parallel by PVS.
The library also sets, as needed, the approximation parame-
ters of the square root and trigonometric functions.

An external library has several advantages over a PVS
proof strategy encoding interval splitting:

• The generation code does not need to understand the
arcane of PVS internal structures.

• Porting this work to another proof assistant is possible
as soon as a comparable interval library is available
and batch proving is supported on the alternate proof
assistant.

• A C++ library can efficiently explore many possibili-

ties and generate the lemmas for a local optimal solu-
tion.

• Publicly available C++ libraries, such as Boost [1] and
GMP’s multiple precision rational arithmetic [5], can
be used.

Although the C++ library checks that the reported inter-
vals are sufficiently accurate compared to the one that are
produced using exact rational arithmetic, the C++ library
does not formally guarantee the result. The library provides
an efficient mechanism to finely tune the input needed by
PVS. The actual proof guarantee is provided only by the
proof checker.

The utility qmake from Sun Grid Engine [20] was used
to automatically target clusters of computers. The cluster
used in this example consists of 48 processors 2.60 GHz
Intel Xeon. A machine with 116 processors (1.80 GHz
AMD Opteron) will soon be available. As this work is mas-
sively parallel, it will scale with no problem. The context
file maintained by PVS is located on the local hard-drive of
each node to enhance performances.

The splitting technique applied to Formula (5) starts with
100,000 subintervals to guarantee that the relative error is
bounded by 1.36×10−6. The trigonometric functions must
be approximated to the 4th term and the square root to the
7th term. In total 9,935 intervals were considered. For each
interval, 3 lemmas and their respective proof scripts were
automatically generated by the C++ library. As expected,
the final lemma in this development reads:

PHI : Interval = [|0,715/512|]

RI : LEMMA
FORALL (phi:real) :
phi ## PHI =⇒
e(phi) / r(phi) ##

[|-136/1000000000,136/1000000000|]

6 Conclusion and Perspective

The examples presented in Sections 3 and 4 could have
been handled in HOL-light6 using one of the tools presented
in [6]. According to Sturm’s theorem [10, p. 434] that de-
velopment is more efficient on these specific examples but it
is limited to problems that can ultimately be approximated
by polynomial functions. On the other hand, the techniques
presented here can seamlessly guarantee rational approx-
imations or even arbitrary programed approximations as
long as they are piecewise continuously differentiable (for
the developments of Section 4).

6Available from http://www.cl.cam.ac.uk/users/jrh/
hol-light.

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

In summary, the tools allow users to state and formally
verify numerical properties in PVS with a minimal interac-
tion with the theorem prover. No PVS expertise is required
in most cases.

Research is conducted to study the feasibility of enhanc-
ing the prototypes with some of the following features:

• Floating point arithmetic rather than rational arith-
metic as developed in [2].

• Use of high speed multiple precision techniques.

• Implementation of latest developments on Taylor’s
models [13], and mix Taylor’s models and floating
point arithmetic [17].

The tools are currently being used to check numerical prop-
erties of aircraft navigation algorithms developed at the Na-
tional Institute of Aerospace (NIA).7

Acknowledgment

Proofs of Sections 4 and 5 were checked on high perfor-
mance clusters set up and maintained by the Reso research
project of the LIP computer science laboratory.

References

[1] H. Brönnimann, G. Melquiond, and S. Pion. The Boost in-
terval arithmetic library. In Real Numbers and Computers,
pages 65–80, Lyon, France, 2003.

[2] M. Daumas and G. Melquiond. Generating formally certi-
fied bounds on values and round-off errors. In Real Numbers
and Computers, Dagstuhl, Germany, 2004.

[3] G. Dowek, A. Geser, and C. Muñoz. Tactical conflict de-
tection and resolution in a 3-D airspace. In Proceedings of
the 4th USA/Europe Air Traffic Management R&DSeminar,
ATM 2001, Santa Fe, New Mexico, 2001. A long version ap-
pears as report NASA/CR-2001-210853 ICASE Report No.
2001-7.

[4] D. Gage and J. McCormick. We did nothing wrong. Base-
line, 1(28):32–58, 2004.

[5] T. Granlund. The GNU multiple precision arithmetic library,
2004. Version 4.1.3.

[6] J. Harrison. Floating point verification in HOL light: the
exponential function. Technical Report 428, University of
Cambridge Computer Laboratory, 1997.

[7] Information Management and Technology Division. Patriot
missile defense: software problem led to system failure at
Dhahran, Saudi Arabia. Report B-247094, United States
General Accounting Office, 1992.

[8] L. Jaulin, M. Kieffer, O. Didri, and E. Walter. Applied inter-
val analysis. Springer, 2001.

7The PVS library Interval described in this paper is available from
http://research.nianet.org/˜munoz/Interval.

[9] R. B. Kearfott. Interval computations: Introduction, uses,
and resources. Euromath Bulletin, 2(1):95–112, 1996.

[10] D. E. Knuth. The Art of Computer Programming: Seminu-
merical Algorithms. Addison-Wesley, 1997. Third edition.

[11] L. Lamport. How to write a proof. American Mathematical
Monthly, 102(7):600–608, 1993.

[12] J. Lions et al. Ariane 5 flight 501 failure report by the
inquiry board. Technical report, European Space Agency,
Paris, France, 1996.

[13] K. Makino and M. Berz. Taylor models and other validated
functional inclusion methods. International Journal of Pure
and Applied Mathematics, 4(4):379–456, 2003.

[14] C. Muñoz, V. Carreño, G. Dowek, and R. Butler. Formal ver-
ification of conflict detection algorithms. International Jour-
nal on Software Tools for Technology Transfer, 4(3):371–
380, 2003.

[15] A. Neumaier. Interval methods for systems of equations.
Cambridge University Press, 1990.

[16] S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype
Verification System. In D. Kapur, editor, 11th International
Conference on Automated Deduction (CADE), volume 607
of Lecture Notes in Artificial Intelligence, pages 748–752,
Saratoga, NY, June 1992. Springer-Verlag.

[17] N. Revol, K. Makino, and M. Berz. Taylor models and
floating-point arithmetic: proof that arithmetic operations
are validated in COSY. Journal of Logic and Algebraic Pro-
gramming, 2005. To appear.

[18] T. Rivlin. Chebychev polynomials. John Wiley & Sons,
1990.

[19] J. Sawada. Formal verification of divide and square root
algorithms using series calculation. In 3rd International
Workshop on the ACL2 Theorem Prover and its Applica-
tions, pages 31–49. University of Grenoble, 2002.

[20] Sun Microsystems. Sun Grid Engine — Administration and
User’s guide, 2002. Version 5.3.

[21] A. Tiwari, N. Shankar, and J. Rushby. Invisible formal meth-
ods for embedded control systems. Proceedings of the IEEE,
91(1):29–39, Jan. 2003.

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

