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ABSTRACT : In this paper, we present an original method to study planar EBG based antennas. From this method, 
which unifies the frequency and angular dependencies of the EBG structure, we obtain an analytical expression of the 
directivity of the structure versus frequency. To our knowledge, these results concerning EBG structures have never 
been presented. 

I. INTRODUCTION 

Several recent works [1][2][3][4] deal with directive antennas based on EBG (Electronic Band Gap) structures. 
In these works the directivity characteristic is generally studied numerically. The purpose of this presentation is to 
establish an analytical expression and to show that the frequency and spatial behaviors of EBG structures are tightly 
interrelated. To this end we propose a new simple method for analyzing EBG-Antenna. Inspired from the antenna array 
theory [5], this method can allow, for example, to obtain the radiation pattern of an EBG-Antenna from the frequency 
curves. We will consider first a point source inside multiple Partially Reflecting Surfaces (PRS). Then we will study in 
more details the case of one PRS on each side of the point source, estimating the directivity and the performance of this 
EBG-Antenna. Finally, we will focus on a structure composed of a ground plane in the same plane of the source.   

II. GENERAL EQUATIONS 

Let us consider an ideal point source inside a periodic structure composed of 2n identical partially reflecting 
surfaces (Figure 1). In practice, the source can be a dipole as in ref. [2][3].  The source creates plane waves uniformly 
propagating in all θ directions. Let (r) and (t) be respectively the complex reflection and transmission coefficients of a 
single layer (r=|r|exp(jϕr), t=|t|exp(jϕt)).   
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Figure 1 –  Point source inside multiple (2n) Partially Reflecting Surfaces (PRS).   

 
We have calculated the transmission coefficient T2n(ψ) of the structure due to two symmetrical plane waves at a given 
angle θ  (Figure 1). We have shown [6] that the transmission coefficient T2n(ψ) can be written in a simple closed form : 

 ( ) ( ) ( )
( ) ( )ψ−ψ−

ψ−ψ
=ψ

jexpnr1

2/jexpnt
n2T  (1) 

tn and rn are evaluated by recursive equations from (r, t) [6] : 
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 ( ) ( ) ( )
( ) ( )ψ−ψ−−

ψ−ψ−=ψ
2jexp.r.1nr1

jexp.t.1nt
nt    (2)  

 ( ) ( ) ( ) ( )
( ) ( )ψ−ψ−−

ψ−ψ−+ψ−=ψ
2jexp.r.1nr1

2jexp.r.1nt
1nrnr

2

( ) tt =ψ

  (3) 

  ,           1 1 , (4)  ( ) rr =ψ

( )θ=ψ coskDand  (5) 

k is the free space wave number and D is the distance between two consecutive partially reflecting surfaces 
(Figure 1).  
It is important to note that the expression (1) unifies the frequency and incidence angle dependencies in a unique 
variable ψ=kDcos(θ). Another point is that T2n(ψ) is a periodic function of ψ with period 2π. The knowledge of one 
period (0≤ψ≤2π) is sufficient to extract the frequency curves (0≤f<∞) and/or the radiation pattern (-π/2≤θ≤π/2).  
In Figure 2, we give an example of |T2n(ψ)| for |r|=0,7.exp(j 2.35), |t|=0,71.exp(j0.78) [6] (for n=1,2, 3). To simplify the 
study, we consider that (r, t) don’t depend on frequency or on incidence angle. T2n(ψ)| contains two types of pass-bands 
: pass-bands with high picks, and pass-bands with picks limited to one. The values of |T2n(ψ)| higher than one are 
explained physically in ref. [6][7]. It does not correspond directly to antenna directivity as it was used in  [8][9]. 
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Figure 2 –  Transmission coefficient versus ψ for n=1, 2, 3 (|r|=0,7.exp(j 2.35), |t|=0,71.exp(j0.78)).  

 
Now it’s easy to pass from the ψ domain to the frequency domain (for a given angle θ) or to the angular domain (for a 
given frequency), by using the classical method of antenna array theory [5].  

III. STRUCTURE WITH ONE LAYER ON EACH SIDE OF THE SOURCE 

III. 1 Extraction of frequency curve and radiation pattern  

We consider one PRS on each side of the source (Figure 3).  For this simple structure, we will show how to 
pass from the ψ domain to the frequency or angular domains. We will also evaluate the directivity of this structure and 
calculate the frequency which gives the maximum of directivity. 
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Figure 3 –  Point source inside two partially reflecting surfaces   

 

The magnitude of the transmission coefficient ( ) ( )
( )

( )
( )( )rjexp.r1

2/jexp.t

jexp.r1

2/jexp.t
2

ϕ−ψ−−

ψ−
=

ψ−−
T ψ−

=ψ  is given in 

Figure 4. To pass from the ψ domain to the frequency domain we use the following transformation : 
( )θπ

ψ
=

cosD2

c.f , 

which we wrote for θ=0° 
D2

c.f
π

ψ
= . c is the speed of light.  The resonance frequency 

D2

c.r
0ff

π

ϕ
==  correspond to 

ψ=ϕr. |T2| is plotted versus the frequency f in the second abscissa of Figure 4. 

To pass from the ψ domain to the angular domain we use 






 ψ
±=

kD
arccosθ . For f=f0, 














ϕ

ψ
±=θ

r
arccos .We use a 

graphical method [5] as it is shown in Figure 4. Note that the well known “visible region” in the array theory starts from 
the 0 frequency and finishes at the frequency considered. 
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Figure 4 – |T2|, transformations  from the ψ domain to the frequency domain (at θ=0°) and to the angular domain (at f=f0) 

It’s interesting to note that the lower and upper envelops of the transmission coefficient |T2| are given by [6] :  
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Note that |T2|max should not be considered as the gain enhancement of the structure as it is proposed in ref. [8][9]. We 
will see later how to calculate the directivity and then the true performance of the structure.  
Figure 5 gives |T2(θ)| for a frequency higher than f0 : in this case the maximum is not at θ=0° and multiple lobes appear. 
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Figure 5 – |T2(ψ))| and |T2(θ)| at f=f1>f0.. 

III. 2 Beam width versus frequency 
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Figure 6 – Quality factor at 1/x. 

 



 

 We call Q the quality factor of |T2| which is obtained calculating the inverse of the bandwidth at –3dB of |T2| 
multiplied by f0.  
Let us also call Qx the quality factor of T2 obtained for a bandwidth corresponding to |T2|2=|T2|max

2/x (then Q2=Q) 
(Figure 6). In the Appendix, Q is calculated in function of r and Qx is calculated in function of Q. 

0.4
0.6
0.8
1 
1.2
1.4
1.6
1.8
2 
2.2
2.4

0 π/2 π 3π/2 2π

|T2(ψ)|  

ϕr ψ 

1/Q2x 

1/Qx 








 θ∆
2

cos dB3 ( )θcos1 0

Visible  
region 

(a) 

0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

2.2
2.4

0 π/2 π 3π/2 2π

|T2(ψ)|  

ϕr ψ 

1/Q 








 θ∆
2

cos dB3 ( )θcos10

Visible 
region  1/Qx 

f’ 

ψ’ ψ’’

(b) 

Figure 7 – Link between quality factor and beam width (a) for a frequency smaller than  f0 (b) for a frequency greater 
than f0 and smaller than f’. 

 
Now we will use the results presented in the Appendix to estimate the beam width ∆θ3dB versus frequency.   
For a frequency smaller than f0 (see Figure 7a) we have to resolve this following equation : 
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Considering that ∆θ3dB is small we can write : 
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Then (using (22)): 
Q

1x1x22ff,dB3 0
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≈≤θ∆  (9) 

For a frequency greater than f0 but smaller than f’ (see Figure 7b), this is written : 
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Then : 
Q

11x2'fff,dB3 0
+−

≈≤≤θ∆  (11) 

Note that we obtain easily the beam width at f0 in function of Q, by putting x=1 in (11), we find
Q

2
f,dB3 0

≈θ∆  

which is in accordance with the result in ref. [3][10].  We call this relation, the relation of performance of the structure. 

 



This study gives a more complete result than [3][10], as all frequencies are considered.  Figure 8a gives the beam width 
∆θ3dB versus the frequency ((9) and (11)) from 0 to f’ and Figure 8b gives π/∆θ3dB which we consider as an elegant 
evaluation of the directivity D0 at θ=0° of the structure.  
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Figure 8 – (a) ∆θ3dB and (b) π/∆θ3dB versus  frequency. 

 
Note that the minimum of ∆θ3dB and so the maximum of directivity is not obtained at f0 but at a frequency slightly 
smaller than f0. To obtain this frequency we calculate the value of x which gives the maximum of the following function 
: 1x1x2)x(g −−−=  (see equation (9)). 

after derivation :  
( )( )1x1x2

1x21x2)x('g
−−

−−−
=  ;   g’(x)=0 ⇔  x=1,5 

The minimum beam width is then :    
Q

2
min,dB3 ≈θ∆  (12) 

We obtain the corresponding frequency by resolving   
Q2

1

Q
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minQ
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2 =≈
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Finally, 












−≈θ∆

Q22

110fminf  (13) 

IV. STRUCTURES WITH A GROUND PLANE 

Let us consider now that a ground plane is placed in the same plane as the point source (in a manner that there 
is no radiation in the left side of the source) and there is only n PRS layers placed at a distance D/2 from the source. The 
PRS layers are spaced from each other by a distance D. We call Tn,gp the transmission coefficient of the structure, whose 
expression becomes [6] : 

 ( ) ( ) ( )
( ) ( )( )π+ψ−ψ−

ψ−ψ
=ψ

jexpnr1

2/jexpnt
gp,nT  (14) 

Note that ( )ψnt  and  are periodic with period π (see equations (2) and (3)). Therefore  : ( )ψnr

 



 ( ) ( )
( ) ( )( )

( )
( ) ( )( )

( )π+ψ=
π+ψ−π+ψ−

π+ψ
=

π+ψ−ψ−

ψ
=ψ n2T

jexpnr1
nt

jexpnr1
nt

gp,nT  (15) 

We deduce that the |Tn,gp(ψ)| curve can be obtained from the |T2n(ψ)| one by π shifting it to the right as we can see in 
Figure 9. This is equivalent to add π to the phase of the reflection coefficient ϕr. Note that in our example ϕr is positive. 
We can imagine that for ϕr negative the first |Tn,gp(ψ)| pick  will be higher than one.  
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Figure 9 – Transmission coefficients |Tn,pm|, for n= 1,2 et 3,in one period [0,2π]. 

V. CONCLUSION 

We have presented a new and effective method to analyze 1-D Electromagnetic Band Gap based antennas. 
Considering Partially Reflecting Surfaces having characteristics independent of frequency and angle, we have estimate 
the directivity versus frequency and the frequency of maximum directivity for the simple structure composed of one 
layer on each side of the source. We have shown that EBG structures composed of a ground plane can be analyzed 
using the study of structures composed of multiple layers on each side of the source.  
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APPENDIX 
 
To calculate Q we resolve the following equation : 
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which gives us ψ’ and ψ’’ the values of ψ corresponding to the half power (see Figure 7b) : 
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and then 
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This can be approximated for high value of |r| by 
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By the same way, we can evaluate Qx, resolving the following equation : 
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We find 

( ) ( )

r

r

2r1
1x

2

11arccos

2
xQ

1

ϕ













 −
−−

=  (21) 

For high value of |r|, we can write : 
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