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Abstract

Several different techniques and softwares intend to improve the accuracy of results
computed in a fixed finite precision. Here we focus on a method to improve the accuracy of
the product of floating point numbers. We show that the computed result is as accurate as
if computed in twice the working precision. The algorithm is simple since it only requires
addition, subtraction and multiplication of floating point numbers in the same working
precision as the given data. Such an algorithm can be useful for example to compute the
determinant of a triangular matrix and to evaluate a polynomial when represented by the
root product form. It can also be used to compute the power of a floating point number.

Key words: accurate product, exponentiation, finite precision, floating point arithmetic,
faithful rounding, error-free transformations

AMS Subject Classifications: 65-04, 65G20, 65G50

1 Introduction

In this paper, we present fast and accurate algorithms to compute the product of floating point
numbers. Our aim is to increase the accuracy at a fixed precision. We show that the results
have the same error estimates as if computed in twice the working precision and then rounded
to working precision. Then we address the problem on how to compute a faithfully rounded
result, that is to say one of the two adjacent floating point numbers of the exact result.

This paper was motived by papers [15, 18, 6, 12] and [11] where similar approaches are used
to compute summation, dot product, polynomial evaluation and power.

The applications of our algorithms are multiple. One of the examples frequently used in
Sterbenz’s book [20] is the computation of the product of some floating point numbers. Our
algorithms can be used to compute the determinant of a triangle matrix

T =




t11 t12 · · · t1n

t22 t2n

. . .
...

tnn


 .

Indeed, the determinant of T is

det(T ) =

n∏

i=1

tii.
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Another application is for evaluating a polynomial when represented by the root product form
p(x) = an

∏n
i=1

(x − xi). We can also apply our algorithms to compute the power of a floating
point number.

The rest of the paper is organized as follows. In Section 2, we recall notations and auxiliary
results that will be needed in the sequel. We present the floating point arithmetic and the
so-called error-free transformations. In Section 3, we present a classic algorithm to compute
the product of floating point numbers. We give an error estimate as well as a validated error
bound. We also present a new compensated algorithm together with an error estimate and a
validated error bound. We show that under mild assumptions, our algorithm gives a faithfully
rounded result. In Section 4, we apply our algorithm to compute the power of a floating point
number. We propose two different algorithms: one with our compensated algorithm, the other
one with the use of a double-double library.

2 Notation and auxiliary results

2.1 Floating point arithmetic

Throughout the paper, we assume to work with a floating point arithmetic adhering to IEEE 754
floating point standard in rounding to nearest [9]. We assume that no overflow nor underflow
occurs. The set of floating point numbers is denoted by F, the relative rounding error by eps.
For IEEE 754 double precision, we have eps = 2−53 and for single precision eps = 2−24.

We denote by fl(·) the result of a floating point computation, where all operations inside
parentheses are done in floating point working precision. Floating point operations in IEEE 754
satisfy [8]

fl(a ◦ b) = (a ◦ b)(1 + ε1) = (a ◦ b)/(1 + ε2) for ◦ = {+,−, ·, /} and |εν | ≤ eps.

This implies that

|a ◦ b − fl(a ◦ b)| ≤ eps|a ◦ b| and |a ◦ b − fl(a ◦ b)| ≤ eps|fl(a ◦ b)| for ◦ = {+,−, ·, /} (2.1)

2.2 Error-free transformations

One can notice that a◦b ∈ R and fl(a◦b) ∈ F but in general we do not have a◦b ∈ F. It is known
that for the basic operations +,−, ·, the approximation error of a floating point operation is
still a floating point number (see for example [5]):

x = fl(a ± b) ⇒ a ± b = x + y with y ∈ F,
x = fl(a · b) ⇒ a · b = x + y with y ∈ F.

(2.2)

These are error-free transformations of the pair (a, b) into the pair (x, y).
Fortunately, the quantities x and y in (2.2) can be computed exactly in floating point

arithmetic. For the algorithms, we use Matlab-like notations. For addition, we can use the
following algorithm by Knuth [10, Thm B. p.236].

Algorithm 2.1 (Knuth [10]). Error-free transformation of the sum of two floating point
numbers

function [x, y] = TwoSum(a, b)
x = fl(a + b)
z = fl(x − a)
y = fl((a − (x − z)) + (b − z))
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Another algorithm to compute an error-free transformation is the following algorithm from
Dekker [5]. The drawback of this algorithm is that we have x+y = a+b provided that |a| ≥ |b|.
Generally, on modern computers, a comparison followed by a branching and 3 operations costs
more than 6 operations. As a consequence, TwoSum is generally more efficient than FastTwoSum.

Algorithm 2.2 (Dekker [5]). Error-free transformation of the sum of two floating point
numbers.

function [x, y] = FastTwoSum(a, b)
x = fl(a + b)
y = fl((a − x) + b)

For the error-free transformation of a product, we first need to split the input argument
into two parts. Let p be given by eps = 2−p and define s = ⌈p/2⌉. For example, if the working
precision is IEEE 754 double precision, then p = 53 and s = 27. The following algorithm by
Dekker [5] splits a floating point number a ∈ F into two parts x and y such that

a = x + y and x and y nonoverlapping with |y| ≤ |x|.

Algorithm 2.3 (Dekker [5]). Error-free split of a floating point number into two parts

function [x, y] = Split(a, b)
factor = fl(2s + 1)
c = fl(factor · a)
x = fl(c − (c − a))
y = fl(a − x)

With this function, an algorithm from Veltkamp (see [5]) enables to compute an error-free
transformation for the product of two floating point numbers. This algorithm returns two
floating point numbers x and y such that

a · b = x + y with x = fl(a · b).

Algorithm 2.4 (Veltkamp [5]). Error-free transformation of the product of two floating point
numbers

function [x, y] = TwoProduct(a, b)
x = fl(a · b)
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = fl(a2 · b2 − (((x − a1 · b1) − a2 · b1) − a1 · b2))

The following theorem summarizes the properties of algorithms TwoSum and TwoProduct.

Theorem 2.1 (Ogita, Rump and Oishi [15]). Let a, b ∈ F and let x, y ∈ F such that
[x, y] = TwoSum(a, b) (Algorithm 2.1). Then,

a + b = x + y, x = fl(a + b), |y| ≤ eps|x|, |y| ≤ eps|a + b|. (2.3)

The algorithm TwoSum requires 6 flops.
Let a, b ∈ F and let x, y ∈ F such that [x, y] = TwoProduct(a, b) (Algorithm 2.4). Then,

a · b = x + y, x = fl(a · b), |y| ≤ eps|x|, |y| ≤ eps|a · b|. (2.4)

The algorithm TwoProduct requires 17 flops.
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The TwoProduct algorithm can be re-written in a very simple way if a Fused-Multiply-
and-Add (FMA) operator is available on the targeted architecture [14]. Some computers have a
Fused-Multiply-and-Add (FMA) operation that enables a floating point multiplication followed by
an addition to be performed as a single floating point operation. The Intel IA-64 architecture,
implemented in the Intel Itanium processor, has an FMA instruction as well as the IBM RS/6000
and the PowerPC before it. On the Itanium processor, the FMA instruction enables a multipli-
cation and an addition to be performed in the same number of cycles than one multiplication
or one addition. As a result, it seems to be advantageous for speed as well as for accuracy.

Theoretically, this means that for a, b, c ∈ F, the result of FMA(a, b, c) is the nearest floating
point number of a · b + c ∈ R. The FMA satisfies

FMA(a, b, c) = (a · b + c)(1 + ε1) = (a · b + c)/(1 + ε2) with |εν | ≤ eps.

Thanks to the FMA, the TwoProduct algorithm can be re-written as follows which costs only 2
flops.

Algorithm 2.5 (Ogita, Rump and Oishi [15]). Error-free transformation of the product
of two floating point numbers using an FMA.

function [x, y] = TwoProductFMA(a, b)
x = a · b
y = FMA(a, b,−x)

3 Accurate floating point product

In this section, we present a new accurate algorithm to compute the product of floating point
numbers. In Subsection 3.1, we recall the classic method and we give a theoretical error bound
as well as a validated computable error bound. In Subsection 3.2, we present our new algorithm
based on a compensated scheme together with a theoretical error bound. In Subsection 3.3,
we give sufficient conditions on the number of floating point numbers so as to get a faithfully
rounded result. Finally, in Subsection 3.4, we give a validated computable error bound for our
new algorithm.

3.1 Classic method

The classic method for evaluating a product of n numbers a = (a1, a2, . . . , an)

p =
n∏

i=1

ai

is the following algorithm.

Algorithm 3.1. Product evaluation

function res = Prod(a)
p1 = a1

for i = 2 : n
pi = fl(pi−1 · ai)

end
res = pn

4



This algorithm requires n − 1 flops. Let us now analyse its accuracy.
We will use standard notations and standard results for the following error estimations

(see [8]). The quantities γn are defined as usual [8] by

γn :=
neps

1 − neps
for n ∈ N.

When using γn, we implicitly assume that neps ≤ 1. A forward error bound is

|a1a2 · · · an − res| = |a1a2 · · · an − fl(a1a2 · · · an)| ≤ γn−1|a1a2 · · · an|. (3.5)

Indeed, by induction,

res = fl(a1a2 · · · an) = a1a2 · · · an(1 + ε2)(1 + ε3) · · · (1 + εn), (3.6)

with εi ≤ eps for i = 2 : n. It follows from Lemma 3.1 of [8, p.63] that (1 + ε2)(1 + ε3) · · · (1 +
εn) = 1 + θn where |θn−1| ≤ γn−1.

A convenient device for keeping track of power of 1 + ε term is describe in [8, p.68]. The
relative error counter 〈k〉 denotes the product

〈k〉 =
k∏

i=1

(1 + εi), |εi| ≤ eps.

A useful rule for the counter is 〈j〉〈k〉 = 〈j + k〉. Using this notation, Equation (3.6) can be
written res = fl(a1a2 · · · an) = a1a2 · · · an〈n − 1〉.

It is shown in [16] that for a ∈ F, we have

(1 + eps)n ≤ 1

(1 − eps)n
≤ 1

1 − neps
,

|a|
1 − neps

≤ fl

( |a|
1 − (n + 1)eps

)
. (3.7)

From Equation (3.6), it follows that

|a1a2 · · · an − res| ≤ (1 + eps)n−1γn−1|res|.

If meps ≤ 1 for m ∈ N, fl(meps) = meps and fl(1 − meps) = 1 − meps. Therefore,

γm ≤ (1 + eps) fl(γm). (3.8)

Hence,

|a1a2 · · · an − res| ≤ (1 + eps)n fl(γn−1)|res|
≤ (1 + eps)n+1 fl(γn−1|res|),

and so

|a1a2 · · · an − res| ≤ fl

(
γn−1|res|

1 − (n + 2)eps

)
.

The previous inequality gives us a validated error bound that can be computed in pure
floating point arithmetic in rounding to nearest.
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3.2 Compensated method

We present hereafter a compensated scheme to evaluate the product of floating point numbers,
i.e. the error of individual multiplication is somehow corrected. The technique used here is
based on the paper [15].

Algorithm 3.2. Product evaluation with a compensated scheme

function res = CompProd(a)
p1 = a1

e1 = 0
for i = 2 : n

[pi, πi] = TwoProduct(pi−1, ai)
ei = fl(ei−1ai + πi)

end
res = fl(pn + en)

This algorithm requires 19n − 18 flops if we use TwoProduct. It only requires 4n − 3 flops
if we use TwoProductFMA instead of TwoProduct (if, of course, an FMA is available).

Algorithm 3.3. Product evaluation with a compensated scheme with TwoProductFMA

function res = CompProdFMA1(a)
p1 = a1

e1 = 0
for i = 2 : n

[pi, πi] = TwoProductFMA(pi−1, ai)
ei = fl(ei−1ai + πi)

end
res = fl(pn + en)

It finally costs 3n− 2 flops if we also use ei = FMA(ei−1, ai, πi) instead of ei = fl(ei−1ai + πi).

Algorithm 3.4. Product evaluation with a compensated scheme with TwoProductFMA and FMA

function res = CompProdFMA2(a)
p1 = a1

e1 = 0
for i = 2 : n

[pi, πi] = TwoProductFMA(pi−1, ai)
ei = FMA(ei−1, ai, πi)

end
res = fl(pn + en)

We will provide an error analysis only for Algorithm CompProd. The error analysis for
CompProdFMA1 is the same as CompProd since they share the sames operations. For the error
analysis of CompProdFMA2, little changes must be done to take into account the operation
ei = FMA(ei−1, ai, πi). This changes nearly nothing so it is straightforward to modify the analysis
to deal with it.

For error analysis, we note that

pn = fl(a1a2 · · · an) and en = fl

(
n∑

i=2

πiai+1 · · · an

)
.

6



We also have

p = a1a2 . . . an = fl(a1a2 . . . an) +

n∑

i=2

πiai+1 · · · an = pn + e, (3.9)

where e =
∑n

i=2
πiai+1 · · · an.

Before proving the main theorem, we will need two technical lemmas. The next lemma
makes it possible to obtain a bound on the individual error of the multiplication namely πi in
function of the inital data ai.

Lemma 3.1. Suppose floating point numbers πi ∈ F, 2 ≤ i ≤ n are computed by the following
algorithm

p1 = a1

for i = 2 : n
[pi, πi] = TwoProduct(pi−1, ai)

end

Then,
|πi| ≤ eps(1 + γi−1)|a1 · · · ai| for i = 2 : n.

Proof. From Equation (2.1), it follows that

|πi| ≤ eps|pi|.

Moreover, pi = fl(a1 · · · ai) so that from (3.5),

|pi| ≤ (1 + γi−1)|a1 · · · ai|.

Hence, |πi| ≤ eps(1 + γi−1)|a1 · · · ai|.

The following lemma enables us to bound the rounding errors during the computation of
the error during the full product.

Lemma 3.2. Suppose floating point numbers ei ∈ F, 1 ≤ i ≤ n are computed by the following
algorithm

e1 = 0
for i = 2 : n

[pi, πi] = TwoProduct(pi−1, ai)
ei = fl(ei−1ai + πi)

end

Then,

|en −
n∑

i=2

πiai+1 · · · an| ≤ γn−1γ2n|a1a2 · · · an|.

Proof. First, one notices that en = fl(
∑n

i=2
(πiai+1 · · · an)). We will use the error counters

described above. For n floating point numbers xi, it is easy to see that [8, chap.4]

fl(x1 + x2 + · · · + xn) = x1〈n − 1〉 + x2〈n − 1〉 + x3〈n − 2〉 + · · · + xn〈1〉.

This implies that

en = fl(
n∑

i=2

(πiai+1 · · · an)) = fl(π2a3 · · · an)〈n − 2〉 + fl(π3a4 · · · an)〈n − 2〉 + · · · + fl(πn)〈1〉.
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Furthermore, we have shown before that fl(a1a2 · · · an) = a1a2 · · · an〈n − 1〉. Consequently,

en = π2a3 · · · an〈n − 2〉〈n − 1〉 + π3a4 · · · an〈n − 3〉〈n − 1〉 + · · · + πn〈1〉.

A straightforward computation yields

|en −
n∑

i=2

πiai+1 · · · an| ≤ γ2n−3

n∑

i=2

|πiai+1 · · · an|.

From Lemma 3.1, we have |πi| ≤ eps(1 + γi−1)|a1 · · · ai| and hence

|en −
n∑

i=2

πiai+1 · · · an| ≤ (n − 1)eps(1 + γn−1)γ2n−3|a1a2 · · · an|.

Since eps(1 + γn−1) = γn−1/(n − 1) and γ2n−3 ≤ γ2n, we obtain the desired result.

One may notice that the computation of en is similar to the Horner scheme. One could have
directly applied a result on the error of the Horner scheme [8, Eq.(5.3),p.95].

We can finally state the main theorem.

Theorem 3.3. Suppose Algorithm 3.2 is applied to floating point number ai ∈ F, 1 ≤ i ≤ n,
and set p =

∏n
i=1

ai. Then,
|res− p| ≤ eps|p| + γnγ2n|p|.

Proof. The fact that res = fl(pn + en) implies that res = (1 + ε)(pn + en) with ε ≤ eps. So it
follows

|res− p| = |fl(pn + en) − p| = |(1 + ε)(pn + en − p) + εp|

= |(1 + ε)(pn +
n∑

i=2

πiai+1 · · · an − p) + (1 + ε)(en −
n∑

i=2

πiai+1 · · · an) + εp|

= |(1 + ε)(en −
n∑

i=2

πiai+1 · · · an) + εp| by (3.9)

≤ eps|p| + (1 + eps)|en −
n∑

i=2

πiai+1 · · · an|

≤ eps|p| + (1 + eps)γn−1γ2n|a1a2 · · · an|.

Since (1 + eps)γn−1 ≤ γn, it follows that |res− p| ≤ eps|p| + γnγ2n|p|.

It may be interesting to study the condition number of the product evaluation. Ones defines

cond(a) = lim
ε→0

sup

{ |(a1 + ∆a1)(a2 + ∆a2) · · · (an + ∆an) − a1a2 · · · an|
ε|a1a2 · · · an|

: |∆ai| ≤ ε|ai|
}

.

A standard computation yields
cond(a) = n.

Corollary 3.4. Suppose Algorithm 3.2 is applied to floating point number ai ∈ F, 1 ≤ i ≤ n,
and set p =

∏n
i=1

ai. Then,

|res− p|
|p| ≤ eps +

γnγ2n

n
cond(a).
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3.3 Faithful rounding

We define the floating point predecessor and successor of a real number r satisfying min{f :
f ∈ R} < r < max{f : f ∈ F} by

pred(r) := max{f ∈ F : f < r} and succ(r) := min{f ∈ F : r < f}.

Definition 3.1. A floating point number f ∈ F is called a faithful rounding of a real number
r ∈ R if

pred(f) < r < succ(f).

We denote this by f ∈ �(r). For r ∈ F, this implies that f = r.

A faithful rounding is then one of the two adjacent floating point numbers of the exact
result.

Lemma 3.5 (Rump, Ogita and Oishi [18, lem. 2.5]). Let r, δ ∈ R and r̃ := fl(r). Suppose
that 2|δ| < eps|r̃|. Then r̃ ∈ �(r + δ), that means r̃ is a faithful rounding of r + δ.

Let res be the result of CompProd. Then we have p = pn + e and res = fl(pn + en) with
e =

∑n
i=2

πiai+1 · · · an. It follows that p = (pn + en) + (e − en). This leads to the following
lemma which gives a criterion to ensure that the result of CompProd is faithfully rounded.

Lemma 3.6. With the previous notations, if 2|e−en| < eps|res| then res is a faithful rounding
of p.

Since we have |e − en| ≤ γnγ2n|p| and (1 − eps)|p| − γnγ2n|p| ≤ |res|, a sufficient condition
to ensure a faithful rounding is

2γnγ2n|p| < eps((1 − eps)|p| − γnγ2n|p|)

that is

γnγ2n <
1 − eps

2 + eps
eps.

Since γnγ2n ≤ 2(neps)2/(1 − 2neps)2, a sufficient condition is

2
(neps)2

(1 − 2neps)2
<

1 − eps

2 + eps
eps

which is equivalent to

neps

1 − 2neps
<

√
(1 − eps)eps

2(2 + eps)

and then to

n <

√
1 − eps√

2
√

2 + eps + 2
√

(1 − eps)eps
eps−1/2.

We have just shown that if n < αeps−1/2 where α ≈ 1/2 then the result is faithfully rounded.
More precisely, in double precision where eps = 2−53, if n < 225 ≈ 5 · 107, we get a faithfully
rounded result.
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3.4 Validated error bound

We present here how to compute a valid error bound in pure floating point arithmetic in rounding
to nearest. It holds that

|res− p| = |fl(pn + en) − p| = |fl(pn + en) − (pn + en) + (pn + en) − p|
≤ eps|res| + |pn + en − p|
≤ eps|res| + |en − e|.

Since |en − e| ≤ γn−1γ2n|p| and |p| ≤ (1 + eps)n−1 fl(|a1a2 · · · an|) we obtain

|res− p| ≤ eps|res| + γn−1γ2n|p|
≤ eps|res| + γn−1γ2n(1 + eps)n−1 fl(|a1a2 · · · an|).

Using (3.7) and (3.8), we get

|res− p| ≤ fl(eps|res|) + (1 + eps)n fl(γn) fl(γ2n) fl(|a1a2 · · · an|)
≤ fl(eps|res|) + (1 + eps)n+2 fl(γnγ2n|a1a2 · · · an|)

≤ fl(eps|res|) + fl

(
γnγ2n|a1a2 · · · an|
1 − (n + 3)eps

)

≤ (1 + eps) fl

(
eps|res| + γnγ2n|a1a2 · · · an|

1 − (n + 3)eps

)

≤ fl

((
eps|res| + γnγ2n|a1a2 · · · an|

1 − (n + 3)eps

)
/ (1 − 2eps)

)
.

We can summarize this as follows.

Lemma 3.7. Suppose Algorithm 3.2 is applied to floating point numbers ai ∈ F, 1 ≤ i ≤ n and
set p =

∏n
i=1

ai. Then, the absolute forward error affecting the product is bounded according to

|res− p| ≤ fl

((
eps|res| + γnγ2n|a1a2 · · · an|

1 − (n + 3)eps

)
/ (1 − 2eps)

)
.

3.5 Validated error bound and faithful rounding

In the previous subsection, we have shown that

|en − e| ≤ fl

(
γnγ2n|a1a2 · · · an|
1 − (n + 3)eps

)
. (3.10)

Lemma 3.6 tells us that if 2|e − en| < eps|res| then res is a faithful rounding of p (where res

is the result of CompProd).
As a consequence, if

fl

(
2
γnγ2n|a1a2 · · · an|
1 − (n + 3)eps

)
< fl(eps|res|)

then we got a faitfully rounded result. This makes it possible to check a posteriori if the result
is faithfully rounded.

4 Exponentiation

In this section, we study two exponentiation algorithms (for computing xn with x ∈ F and
n ∈ N). The first one is linear (in O(n)) whereas the second one is logarithmic (in O(log n)).
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4.1 A linear algorithm

The natural method to compute xn is to apply algorithm CompProd for ai ∈ F with ai = x for
1 ≤ i ≤ n. This leads to the following algorithm.

Algorithm 4.1. Power evaluation with a compensated scheme

function res = CompLinPower(x, n)
p1 = x
e1 = 0
for i = 2 : n

[pi, πi] = TwoProduct(pi−1, x)
ei = fl(ei−1x + πi)

end
res = fl(pn + en)

All that has been done concerning CompProd is still valid with CompLinPower. For example,
if n < 225 then the result is faithfully rounded.

This algorithm is similar to the one of [11]. It is also the same as the Compensated Horner
scheme [6] applied to the polynomial p(x) = xn. Results concerning faithful polynomial evalu-
ation can be found in [12].

4.2 A double-double library

Compensated methods are a possible way to improve the accuracy. Another possibility is
to increase the working precision. For this purpose, some multiprecision libraries have been
developed. One can divide those libraries into three categories.

• Arbitrary precision library using a multiple-digit format where a number is expressed as
a sequence of digits coupled with a single exponent. Examples of this format are Bailey’s
MPFUN [2], Brent’s MP [4] or MPFR [1].

• Arbitrary precision library using a multiple-component format where a number is ex-
pressed as unevaluated sums of ordinary floating point words. Examples of this format
are Priest [17] and Shewchuk [19].

• Extended fixed precision library using the multiple-component format but with a limited
number of components. Examples of this format are Bailey’s double-double [3] (double-
double numbers are represented as an unevaluated sum of a leading double and a trailing
double) and quad-double [7] (quad-double numbers are represented as an unevaluated sum
of four IEEE doubles).

In the sequel, we present two algorithms to compute product of two double-double or a
double times a double-double. Those algorithms are taken from [13].

Algorithm 4.2. Multiplication of two double-double numbers

function [rh, rl] = prod dd dd(ah, al, bh, bl)
[t1, t2] = TwoProduct(ah, bh)
t3 = fl(((ah · bl) + (al · bh)) + t2)
[rh, rl] = TwoProduct(t1, t3)

Algorithm 4.3. Multiplication of double-double number by a double number
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function [rh, rl] = prod dd d(a, bh, bl)
[t1, t2] = TwoProduct(a, bh)
t3 = fl((a · bl) + t2)
[rh, rl] = TwoProduct(t1, t3)

Theorem 4.1 (Lauter [13, thm. 4.7]). Let be ah +al and bh +bl the double-double arguments
of Algorithm 4.2. Then the returned values rh and rl satisfy

rh + rl = ((ah + al) · (bh + bl))(1 + ε)

where ε is bounded as follows : |ε| ≤ 16eps2. Furthermore, we have |rl| ≤ eps|rh|.

Results for Algorithm 4.3 are very similar with a = ah and al = 0.

4.3 A logarithmic algorithm

A logarithmic algorithm was introduced in [11] using the classic right-to-left binary exponentia-
tion algorithm and the double-double library. Hereafter, we propose a variant of this algorithm
with the left-to-right binary exponentiation algorithm together with the double-double library.
Contrary to the right-to-left binary exponentiation algorithm which needs two multiplications
of two double-double numbers, the left-to-right binary exponentiation algorithm only needs a
multiplication of two double-double numbers and a multiplication of a double number by a
double-double numbers. Moreover, the multiplication of a double-double by a double-double is
actually a square so that it can be a little bit optimized.

Algorithm 4.4. Power evaluation with a compensated scheme

function res = CompLogPower(x, n) % n = (ntnt−1 · · ·n1n0)2
[h, l] = [1, 0]
for i = t : −1 : 0

[h, l] = prod dd dd(h, l, h, l)
if ni = 1

[h, l] = prod dd d(x, h, l)
end

end
res = fl(h + l)

Theorem 4.2. The two values h and l returned by Algorithm 4.4 satisfy

h + l = xn(1 + ε)

with
(1 − 16eps2)n−1 ≤ 1 + ε ≤ (1 + 16eps2)n−1.

Proof. The proof is very similar to the one of [11, Thm 4]. It comes from the fact that by
induction one can show that the approximation of xk is of the form xk(1 + εk) with (1 −
16eps2)k−1 ≤ 1 + εk ≤ (1 + 16eps2)k−1.

Let us denote ϕ = eps(1 − eps) and

γn =
16neps2

1 − 16neps2
.
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It follows that 1 + ε ≤ (1 + 16eps2)n−1 ≤ 1 + γn [8, p.63]. Since h + l = xn(1 + ε) then it holds
xn = h + l− εxn. Furthermore, it also holds res = fl(h + l). From Lemma 3.5, if we prove that
2ε|xn| < eps|res| then res is a faithful rounding of xn. From the definition of res, it follows
that (1−eps)|h+ l| ≤ |res| and so (1−eps)(1+ε)|xn| ≤ |res|. A sufficient condition to ensure
a faithful rounding is then

2ε|xn| < eps(1 − eps)(1 + ε)|xn| and so 2ε < eps(1 − eps)(1 + ε),

which is equivalent to

ε <
ϕ

2 − ϕ
.

Since ε ≤ γn, a sufficient condition is

γn <
ϕ

2 − ϕ
,

which is equivalent to

n <
ϕ

16eps2
=

(1 − eps)eps−1

16
.

For example, in double precision where eps = 2−53, if n < 249 ≈ 5 · 1014, then we get a
faithfully rounded result.

5 Conclusion

In this paper, we provided an accurate algorithm for computing product of floating point num-
bers. We gave some sufficient conditions to obtain a faithfully rounded result as well as validated
error bounds. We applied this algorithm to compute exponentiation of floating point numbers.
We improved this algorithm by using a double-double library.
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