Stef Graillat
email: stef.graillat@lip6.fr

Accurate Floating Point Product and Exponentiation

Keywords: accurate product, exponentiation, finite precision, floating point arithmetic, faithful rounding, error-free transformations AMS Subject Classifications: 65-04, 65G20, 65G50

Several different techniques and softwares intend to improve the accuracy of results computed in a fixed finite precision. Here we focus on a method to improve the accuracy of the product of floating point numbers. We show that the computed result is as accurate as if computed in twice the working precision. The algorithm is simple since it only requires addition, subtraction and multiplication of floating point numbers in the same working precision as the given data. Such an algorithm can be useful for example to compute the determinant of a triangular matrix and to evaluate a polynomial when represented by the root product form. It can also be used to compute the power of a floating point number.

Introduction

In this paper, we present fast and accurate algorithms to compute the product of floating point numbers. Our aim is to increase the accuracy at a fixed precision. We show that the results have the same error estimates as if computed in twice the working precision and then rounded to working precision. Then we address the problem on how to compute a faithfully rounded result, that is to say one of the two adjacent floating point numbers of the exact result.

This paper was motived by papers [START_REF] Ogita | Accurate sum and dot product[END_REF][START_REF] Rump | Accurate floating-point summation[END_REF][START_REF] Graillat | Compensated Horner scheme. Research Report 04[END_REF][START_REF] Langlois | How to ensure a faithful polynomial evaluation with the compensated horner algorithm[END_REF] and [START_REF] Kornerup | Computing integer powers in floating-point arithmetic[END_REF] where similar approaches are used to compute summation, dot product, polynomial evaluation and power.

The applications of our algorithms are multiple. One of the examples frequently used in Sterbenz's book [START_REF] Sterbenz | Floating-point computation[END_REF] is the computation of the product of some floating point numbers. Our algorithms can be used to compute the determinant of a triangle matrix

T =      t 11 t 12 • • • t 1n t 22 t 2n t nn      .
Indeed, the determinant of T is

det(T) = n i=1 t ii .
Another application is for evaluating a polynomial when represented by the root product form p(x) = a n n i=1 (x -x i). We can also apply our algorithms to compute the power of a floating point number.

The rest of the paper is organized as follows. In Section 2, we recall notations and auxiliary results that will be needed in the sequel. We present the floating point arithmetic and the so-called error-free transformations. In Section 3, we present a classic algorithm to compute the product of floating point numbers. We give an error estimate as well as a validated error bound. We also present a new compensated algorithm together with an error estimate and a validated error bound. We show that under mild assumptions, our algorithm gives a faithfully rounded result. In Section 4, we apply our algorithm to compute the power of a floating point number. We propose two different algorithms: one with our compensated algorithm, the other one with the use of a double-double library.

2 Notation and auxiliary results

Floating point arithmetic

Throughout the paper, we assume to work with a floating point arithmetic adhering to IEEE 754 floating point standard in rounding to nearest [START_REF]IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard[END_REF]. We assume that no overflow nor underflow occurs. The set of floating point numbers is denoted by F, the relative rounding error by eps. For IEEE 754 double precision, we have eps = 2 -53 and for single precision eps = 2 -24 .

We denote by fl(•) the result of a floating point computation, where all operations inside parentheses are done in floating point working precision. Floating point operations in IEEE 754 satisfy [START_REF] Nicholas | Accuracy and stability of numerical algorithms[END_REF] fl(a

• b) = (a • b)(1 + ε 1) = (a • b)/(1 + ε 2) for • = {+, -, •, /} and |ε ν | ≤ eps. This implies that |a • b -fl(a • b)| ≤ eps|a • b| and |a • b -fl(a • b)| ≤ eps| fl(a • b)| for • = {+, -, •, /} (2.1)

Error-free transformations

One can notice that a•b ∈ R and fl(a•b) ∈ F but in general we do not have a•b ∈ F. It is known that for the basic operations +, -, •, the approximation error of a floating point operation is still a floating point number (see for example [START_REF] Dekker | A floating-point technique for extending the available precision[END_REF]):

x = fl(a ± b) ⇒ a ± b = x + y with y ∈ F, x = fl(a • b) ⇒ a • b = x + y with y ∈ F. (2.2)
These are error-free transformations of the pair (a, b) into the pair (x, y). Fortunately, the quantities x and y in (2.2) can be computed exactly in floating point arithmetic. For the algorithms, we use Matlab-like notations. For addition, we can use the following algorithm by Knuth [START_REF] Knuth | The Art of Computer Programming[END_REF]Thm B. p.236]. Another algorithm to compute an error-free transformation is the following algorithm from Dekker [START_REF] Dekker | A floating-point technique for extending the available precision[END_REF]. The drawback of this algorithm is that we have x + y = a + b provided that |a| ≥ |b|. Generally, on modern computers, a comparison followed by a branching and 3 operations costs more than 6 operations. As a consequence, TwoSum is generally more efficient than FastTwoSum. For the error-free transformation of a product, we first need to split the input argument into two parts. Let p be given by eps = 2 -p and define s = ⌈p/2⌉. For example, if the working precision is IEEE 754 double precision, then p = 53 and s = 27. The following algorithm by Dekker [START_REF] Dekker | A floating-point technique for extending the available precision[END_REF] splits a floating point number a ∈ F into two parts x and y such that a = x + y and x and y nonoverlapping with |y| ≤ |x|. With this function, an algorithm from Veltkamp (see [START_REF] Dekker | A floating-point technique for extending the available precision[END_REF]) enables to compute an error-free transformation for the product of two floating point numbers. This algorithm returns two floating point numbers x and y such that

a • b = x + y with x = fl(a • b).
Algorithm 2.4 (Veltkamp [START_REF] Dekker | A floating-point technique for extending the available precision[END_REF]). Error-free transformation of the product of two floating point numbers function

[x, y] = TwoProduct(a, b) x = fl(a • b) [a 1 , a 2] = Split(a) [b 1 , b 2] = Split(b) y = fl(a 2 • b 2 -(((x -a 1 • b 1) -a 2 • b 1) -a 1 • b 2))
The following theorem summarizes the properties of algorithms TwoSum and TwoProduct. (2.4)

The algorithm TwoProduct requires 17 flops.

The TwoProduct algorithm can be re-written in a very simple way if a Fused-Multiplyand-Add (FMA) operator is available on the targeted architecture [START_REF] Nievergelt | Scalar fused multiply-add instructions produce floating-point matrix arithmetic provably accurate to the penultimate digit[END_REF]. Some computers have a Fused-Multiply-and-Add (FMA) operation that enables a floating point multiplication followed by an addition to be performed as a single floating point operation. The Intel IA-64 architecture, implemented in the Intel Itanium processor, has an FMA instruction as well as the IBM RS/6000 and the PowerPC before it. On the Itanium processor, the FMA instruction enables a multiplication and an addition to be performed in the same number of cycles than one multiplication or one addition. As a result, it seems to be advantageous for speed as well as for accuracy.

Theoretically, this means that for a, b, c ∈ F, the result of FMA(a, b, c) is the nearest floating point number of a

• b + c ∈ R. The FMA satisfies FMA(a, b, c) = (a • b + c)(1 + ε 1) = (a • b + c)/(1 + ε 2) with |ε ν | ≤ eps.
Thanks to the FMA, the TwoProduct algorithm can be re-written as follows which costs only 2 flops.

Algorithm 2.5 (Ogita, Rump and Oishi [START_REF] Ogita | Accurate sum and dot product[END_REF]). Error-free transformation of the product of two floating point numbers using an FMA.

function [x, y] = TwoProductFMA(a, b) x = a • b y = FMA(a, b, -x)
3 Accurate floating point product

In this section, we present a new accurate algorithm to compute the product of floating point numbers. In Subsection 3.1, we recall the classic method and we give a theoretical error bound as well as a validated computable error bound. In Subsection 3.2, we present our new algorithm based on a compensated scheme together with a theoretical error bound. In Subsection 3.3, we give sufficient conditions on the number of floating point numbers so as to get a faithfully rounded result. Finally, in Subsection 3.4, we give a validated computable error bound for our new algorithm.

Classic method

The classic method for evaluating a product of n numbers a = (a 1 , a 2 , . . . , a n)

p = n i=1 a i
is the following algorithm.

Algorithm 3.1. Product evaluation

function res = Prod(a) p 1 = a 1 for i = 2 : n p i = fl(p i-1 • a i) end res = p n
This algorithm requires n -1 flops. Let us now analyse its accuracy. We will use standard notations and standard results for the following error estimations (see [START_REF] Nicholas | Accuracy and stability of numerical algorithms[END_REF]). The quantities γ n are defined as usual [START_REF] Nicholas | Accuracy and stability of numerical algorithms[END_REF] by

γ n := neps 1 -neps for n ∈ N.
When using γ n , we implicitly assume that neps ≤ 1. A forward error bound is

|a 1 a 2 • • • a n -res| = |a 1 a 2 • • • a n -fl(a 1 a 2 • • • a n)| ≤ γ n-1 |a 1 a 2 • • • a n |. (3.5)
Indeed, by induction,

res = fl(a 1 a 2 • • • a n) = a 1 a 2 • • • a n (1 + ε 2)(1 + ε 3) • • • (1 + ε n), (3.6
)

with ε i ≤ eps for i = 2 : n. It follows from Lemma 3.1 of [8, p.63] that (1 + ε 2)(1 + ε 3) • • • (1 + ε n) = 1 + θ n where |θ n-1 | ≤ γ n-1 .
A convenient device for keeping track of power of 1 + ε term is describe in [8, p.68]. The relative error counter k denotes the product

k = k i=1 (1 + ε i), |ε i | ≤ eps.
A useful rule for the counter is j k = j + k . Using this notation, Equation (3.6) can be written res = fl(a

1 a 2 • • • a n) = a 1 a 2 • • • a n n -1 .
It is shown in [START_REF] Ogita | Verified solution of linear systems without directed rounding[END_REF] that for a ∈ F, we have

(1 + eps) n ≤ 1 (1 -eps) n ≤ 1 1 -neps , |a| 1 -neps ≤ fl |a| 1 -(n + 1)eps . (3.7)
From Equation (3.6), it follows that

|a 1 a 2 • • • a n -res| ≤ (1 + eps) n-1 γ n-1 |res|.
If meps ≤ 1 for m ∈ N, fl(meps) = meps and fl(1 -meps) = 1 -meps. Therefore,

γ m ≤ (1 + eps) fl(γ m). (3.8)
Hence,

|a 1 a 2 • • • a n -res| ≤ (1 + eps) n fl(γ n-1)|res| ≤ (1 + eps) n+1 fl(γ n-1 |res|),
and so

|a 1 a 2 • • • a n -res| ≤ fl γ n-1 |res| 1 -(n + 2)eps .
The previous inequality gives us a validated error bound that can be computed in pure floating point arithmetic in rounding to nearest.

Compensated method

We present hereafter a compensated scheme to evaluate the product of floating point numbers, i.e. the error of individual multiplication is somehow corrected. The technique used here is based on the paper [START_REF] Ogita | Accurate sum and dot product[END_REF]. Algorithm 3.2. Product evaluation with a compensated scheme function res = CompProd(a)

p 1 = a 1 e 1 = 0 for i = 2 : n [p i , π i] = TwoProduct(p i-1 , a i) e i = fl(e i-1 a i + π i) end res = fl(p n + e n)
This algorithm requires 19n -18 flops if we use TwoProduct. It only requires 4n -3 flops if we use TwoProductFMA instead of TwoProduct (if, of course, an FMA is available). Algorithm 3.3. Product evaluation with a compensated scheme with TwoProductFMA

function res = CompProdFMA1(a) p 1 = a 1 e 1 = 0 for i = 2 : n [p i , π i] = TwoProductFMA(p i-1 , a i) e i = fl(e i-1 a i + π i) end res = fl(p n + e n)
It finally costs 3n -2 flops if we also use e i = FMA(e i-1 , a i , π i) instead of e i = fl(e i-1 a i + π i).

Algorithm 3.4. Product evaluation with a compensated scheme with TwoProductFMA and FMA

function res = CompProdFMA2(a) p 1 = a 1 e 1 = 0 for i = 2 : n [p i , π i] = TwoProductFMA(p i-1 , a i) e i = FMA(e i-1 , a i , π i) end res = fl(p n + e n)
We will provide an error analysis only for Algorithm CompProd. The error analysis for CompProdFMA1 is the same as CompProd since they share the sames operations. For the error analysis of CompProdFMA2, little changes must be done to take into account the operation e i = FMA(e i-1 , a i , π i). This changes nearly nothing so it is straightforward to modify the analysis to deal with it.

For error analysis, we note that

p n = fl(a 1 a 2 • • • a n) and e n = fl n i=2 π i a i+1 • • • a n .
We also have

p = a 1 a 2 . . . a n = fl(a 1 a 2 . . . a n) + n i=2 π i a i+1 • • • a n = p n + e, (3.9)
where e = n i=2 π i a i+1 • • • a n . Before proving the main theorem, we will need two technical lemmas. The next lemma makes it possible to obtain a bound on the individual error of the multiplication namely π i in function of the inital data a i . Lemma 3.1. Suppose floating point numbers π i ∈ F, 2 ≤ i ≤ n are computed by the following algorithm

p 1 = a 1 for i = 2 : n [p i , π i] = TwoProduct(p i-1 , a i) end Then, |π i | ≤ eps(1 + γ i-1)|a 1 • • • a i | for i = 2 : n.
Proof. From Equation (2.1), it follows that

|π i | ≤ eps|p i |.
Moreover, p i = fl(a 1 • • • a i) so that from (3.5),

|p i | ≤ (1 + γ i-1)|a 1 • • • a i |.
Hence,

|π i | ≤ eps(1 + γ i-1)|a 1 • • • a i |.
The following lemma enables us to bound the rounding errors during the computation of the error during the full product. Lemma 3.2. Suppose floating point numbers e i ∈ F, 1 ≤ i ≤ n are computed by the following algorithm

e 1 = 0 for i = 2 : n [p i , π i] = TwoProduct(p i-1 , a i) e i = fl(e i-1 a i + π i) end Then, |e n - n i=2 π i a i+1 • • • a n | ≤ γ n-1 γ 2n |a 1 a 2 • • • a n |.
Proof. First, one notices that e n = fl(n i=2 (π i a i+1 • • • a n)). We will use the error counters described above. For n floating point numbers x i , it is easy to see that [8, chap.4] fl(

x 1 + x 2 + • • • + x n) = x 1 n -1 + x 2 n -1 + x 3 n -2 + • • • + x n 1 .

This implies that

e n = fl(n i=2 (π i a i+1 • • • a n)) = fl(π 2 a 3 • • • a n) n -2 + fl(π 3 a 4 • • • a n) n -2 + • • • + fl(π n) 1 .
Furthermore, we have shown before that fl(a

1 a 2 • • • a n) = a 1 a 2 • • • a n n -1 . Consequently, e n = π 2 a 3 • • • a n n -2 n -1 + π 3 a 4 • • • a n n -3 n -1 + • • • + π n 1 . A straightforward computation yields |e n - n i=2 π i a i+1 • • • a n | ≤ γ 2n-3 n i=2 |π i a i+1 • • • a n |. From Lemma 3.1, we have |π i | ≤ eps(1 + γ i-1)|a 1 • • • a i | and hence |e n - n i=2 π i a i+1 • • • a n | ≤ (n -1)eps(1 + γ n-1)γ 2n-3 |a 1 a 2 • • • a n |.
Since eps(1 + γ n-1) = γ n-1 /(n -1) and γ 2n-3 ≤ γ 2n , we obtain the desired result.

One may notice that the computation of e n is similar to the Horner scheme. One could have directly applied a result on the error of the Horner scheme [8, Eq.(5.3),p.95].

We can finally state the main theorem.

Theorem 3.3. Suppose Algorithm 3.2 is applied to floating point number a i ∈ F, 1 ≤ i ≤ n, and set p = n i=1 a i . Then, |res -p| ≤ eps|p| + γ n γ 2n |p|.

Proof. The fact that res = fl(p n + e n) implies that res

= (1 + ε)(p n + e n) with ε ≤ eps. So it follows |res -p| = | fl(p n + e n) -p| = |(1 + ε)(p n + e n -p) + εp| = |(1 + ε)(p n + n i=2 π i a i+1 • • • a n -p) + (1 + ε)(e n - n i=2 π i a i+1 • • • a n) + εp| = |(1 + ε)(e n - n i=2 π i a i+1 • • • a n) + εp| by (3.9) ≤ eps|p| + (1 + eps)|e n - n i=2 π i a i+1 • • • a n | ≤ eps|p| + (1 + eps)γ n-1 γ 2n |a 1 a 2 • • • a n |. Since (1 + eps)γ n-1 ≤ γ n , it follows that |res -p| ≤ eps|p| + γ n γ 2n |p|.
It may be interesting to study the condition number of the product evaluation. Ones defines

cond(a) = lim ε→0 sup |(a 1 + ∆a 1)(a 2 + ∆a 2) • • • (a n + ∆a n) -a 1 a 2 • • • a n | ε|a 1 a 2 • • • a n | : |∆a i | ≤ ε|a i | .
A standard computation yields cond(a) = n.

Faithful rounding

We define the floating point predecessor and successor of a real number r satisfying min{f : f ∈ R} < r < max{f : f ∈ F} by pred(r) := max{f ∈ F : f < r} and succ(r) := min{f ∈ F : r < f }.

Definition 3.1. A floating point number f ∈ F is called a faithful rounding of a real number r ∈ R if pred(f) < r < succ(f).
We denote this by f ∈ (r). For r ∈ F, this implies that f = r.

A faithful rounding is then one of the two adjacent floating point numbers of the exact result.

that is γ n γ 2n < 1 -eps 2 + eps eps. Since γ n γ 2n ≤ 2(neps) 2 /(1 -2neps) 2 , a sufficient condition is 2 (neps) 2 (1 -2neps) 2 < 1 -eps 2 + eps eps which is equivalent to neps 1 -2neps < (1 -eps)eps 2(2 + eps)
and then to

n < √ 1 -eps √ 2 √ 2 + eps + 2 (1 -eps)eps eps -1/2 .
We have just shown that if n < αeps -1/2 where α ≈ 1/2 then the result is faithfully rounded. More precisely, in double precision where eps = 2 -53 , if n < 2 25 ≈ 5 • 10 7 , we get a faithfully rounded result.

Validated error bound

We present here how to compute a valid error bound in pure floating point arithmetic in rounding to nearest. It holds that

|res -p| = | fl(p n + e n) -p| = | fl(p n + e n) -(p n + e n) + (p n + e n) -p| ≤ eps|res| + |p n + e n -p| ≤ eps|res| + |e n -e|. Since |e n -e| ≤ γ n-1 γ 2n |p| and |p| ≤ (1 + eps) n-1 fl(|a 1 a 2 • • • a n |) we obtain |res -p| ≤ eps|res| + γ n-1 γ 2n |p| ≤ eps|res| + γ n-1 γ 2n (1 + eps) n-1 fl(|a 1 a 2 • • • a n |).
Using (3.7) and (3.8), we get

|res -p| ≤ fl(eps|res|) + (1 + eps) n fl(γ n) fl(γ 2n) fl(|a 1 a 2 • • • a n |) ≤ fl(eps|res|) + (1 + eps) n+2 fl(γ n γ 2n |a 1 a 2 • • • a n |) ≤ fl(eps|res|) + fl γ n γ 2n |a 1 a 2 • • • a n | 1 -(n + 3)eps ≤ (1 + eps) fl eps|res| + γ n γ 2n |a 1 a 2 • • • a n | 1 -(n + 3)eps ≤ fl eps|res| + γ n γ 2n |a 1 a 2 • • • a n | 1 -(n + 3)eps / (1 -2eps) .
We can summarize this as follows.

Lemma 3.7. Suppose Algorithm 3.2 is applied to floating point numbers a i ∈ F, 1 ≤ i ≤ n and set p = n i=1 a i . Then, the absolute forward error affecting the product is bounded according to

|res -p| ≤ fl eps|res| + γ n γ 2n |a 1 a 2 • • • a n | 1 -(n + 3)eps / (1 -2eps) .

Validated error bound and faithful rounding

In the previous subsection, we have shown that

|e n -e| ≤ fl γ n γ 2n |a 1 a 2 • • • a n | 1 -(n + 3)eps . (3
γ n γ 2n |a 1 a 2 • • • a n | 1 -(n + 3)eps < fl(eps|res|)
then we got a faitfully rounded result. This makes it possible to check a posteriori if the result is faithfully rounded.

Exponentiation

In this section, we study two exponentiation algorithms (for computing x n with x ∈ F and n ∈ N). The first one is linear (in O(n)) whereas the second one is logarithmic (in O(log n)).

A linear algorithm

The natural method to compute x n is to apply algorithm CompProd for a i ∈ F with a i = x for 1 ≤ i ≤ n. This leads to the following algorithm. All that has been done concerning CompProd is still valid with CompLinPower. For example, if n < 2 25 then the result is faithfully rounded.

This algorithm is similar to the one of [START_REF] Kornerup | Computing integer powers in floating-point arithmetic[END_REF]. It is also the same as the Compensated Horner scheme [START_REF] Graillat | Compensated Horner scheme. Research Report 04[END_REF] applied to the polynomial p(x) = x n . Results concerning faithful polynomial evaluation can be found in [START_REF] Langlois | How to ensure a faithful polynomial evaluation with the compensated horner algorithm[END_REF].

A double-double library

Compensated methods are a possible way to improve the accuracy. Another possibility is to increase the working precision. For this purpose, some multiprecision libraries have been developed. One can divide those libraries into three categories.

• Arbitrary precision library using a multiple-digit format where a number is expressed as a sequence of digits coupled with a single exponent. Examples of this format are Bailey's MPFUN [START_REF] Bailey | A Fortran 90-based multiprecision system[END_REF], Brent's MP [START_REF] Brent | A Fortran multiple-precision arithmetic package[END_REF] or MPFR [START_REF]MPFR, the Multiprecision Precision Floating Point Reliable library[END_REF].

• Arbitrary precision library using a multiple-component format where a number is expressed as unevaluated sums of ordinary floating point words. Examples of this format are Priest [START_REF] Douglas | On Properties of Floating Point Arithmetics: Numerical Stability and the Cost of Accurate Computations[END_REF] and Shewchuk [START_REF] Richard | Adaptive precision floating-point arithmetic and fast robust geometric predicates[END_REF].

• Extended fixed precision library using the multiple-component format but with a limited number of components. Examples of this format are Bailey's double-double [START_REF] Bailey | A Fortran-90 double-double library[END_REF] (doubledouble numbers are represented as an unevaluated sum of a leading double and a trailing double) and quad-double [START_REF] Hida | Algorithms for quad-double precision floating point arithmetic[END_REF] (quad-double numbers are represented as an unevaluated sum of four IEEE doubles).

In the sequel, we present two algorithms to compute product of two double-double or a double times a double-double. Those algorithms are taken from [START_REF] Quirin | Basic building blocks for a triple-double intermediate format[END_REF].

Algorithm 4.2. Multiplication of two double-double numbers function

[r h , r l] = prod dd dd(a h , a l , b h , b l) [t 1 , t 2] = TwoProduct(a h , b h) t 3 = fl(((a h • b l) + (a l • b h)) + t 2) [r h , r l] = TwoProduct(t
] = prod dd d(a, b h , b l) [t 1 , t 2] = TwoProduct(a, b h) t 3 = fl((a • b l) + t 2) [r h , r l] = TwoProduct(t 1 , t 3)
Theorem 4.1 (Lauter [13, thm. 4.7]). Let be a h + a l and b h + b l the double-double arguments of Algorithm 4.2. Then the returned values r h and r l satisfy

r h + r l = ((a h + a l) • (b h + b l))(1 + ε)
where ε is bounded as follows : |ε| ≤ 16eps 2 . Furthermore, we have |r l | ≤ eps|r h |.

Results for Algorithm 4.3 are very similar with a = a h and a l = 0.

A logarithmic algorithm

A logarithmic algorithm was introduced in [START_REF] Kornerup | Computing integer powers in floating-point arithmetic[END_REF] using the classic right-to-left binary exponentiation algorithm and the double-double library. Hereafter, we propose a variant of this algorithm with the left-to-right binary exponentiation algorithm together with the double-double library. Contrary to the right-to-left binary exponentiation algorithm which needs two multiplications of two double-double numbers, the left-to-right binary exponentiation algorithm only needs a multiplication of two double-double numbers and a multiplication of a double number by a double-double numbers. Moreover, the multiplication of a double-double by a double-double is actually a square so that it can be a little bit optimized.

h + l = x n (1 + ε) with (1 -16eps 2) n-1 ≤ 1 + ε ≤ (1 + 16eps 2) n-1 .
Proof. The proof is very similar to the one of [START_REF] Kornerup | Computing integer powers in floating-point arithmetic[END_REF]Thm 4]. It comes from the fact that by induction one can show that the approximation of x k is of the form

x k (1 + ε k) with (1 - 16eps 2) k-1 ≤ 1 + ε k ≤ (1 + 16eps 2) k-1 .
Let us denote ϕ = eps(1eps) and

γ n = 16neps 2 1 -16neps 2 .
It follows that 1 + ε ≤ (1 + 16eps 2) n-1 ≤ 1 + γ n [8, p.63]. Since h + l = x n (1 + ε) then it holds x n = h + l -εx n . Furthermore, it also holds res = fl(h + l). From Lemma 3.5, if we prove that 2ε|x n | < eps|res| then res is a faithful rounding of x n . From the definition of res, it follows that (1eps)|h + l| ≤ |res| and so (1eps)(1 + ε)|x n | ≤ |res|. A sufficient condition to ensure a faithful rounding is then 2ε|x n | < eps(1eps)(1 + ε)|x n | and so 2ε < eps(1eps)(1 + ε), which is equivalent to ε < ϕ 2 -ϕ .

Since ε ≤ γ n , a sufficient condition is

γ n < ϕ 2 -ϕ ,
which is equivalent to

n < ϕ 16eps 2 =
(1eps)eps -1 16 .

For example, in double precision where eps = 2 -53 , if n < 2 49 ≈ 5 • 10 14 , then we get a faithfully rounded result.

Conclusion

In this paper, we provided an accurate algorithm for computing product of floating point numbers. We gave some sufficient conditions to obtain a faithfully rounded result as well as validated error bounds. We applied this algorithm to compute exponentiation of floating point numbers. We improved this algorithm by using a double-double library.

Algorithm 2 . 1 (

 21 Knuth [10]). Error-free transformation of the sum of two floating point numbers function [x, y] = TwoSum(a, b) x = fl(a + b) z = fl(x -a) y = fl((a -(x -z)) + (b -z))

Algorithm 2 . 2 (

 22 Dekker [5]). Error-free transformation of the sum of two floating point numbers. function [x, y] = FastTwoSum(a, b) x = fl(a + b) y = fl((a -x) + b)

Algorithm 2 . 3 (

 23 Dekker [5]). Error-free split of a floating point number into two parts function [x, y] = Split(a, b) factor = fl(2 s + 1) c = fl(factor • a) x = fl(c -(c -a)) y = fl(a -x)

Theorem 2 . 1 (. 3)

 213 Ogita, Rump and Oishi [15]). Let a, b ∈ F and let x, y ∈ F such that [x, y] = TwoSum(a, b) (Algorithm 2.1). Then, a + b = x + y, x = fl(a + b), |y| ≤ eps|x|, |y| ≤ eps|a + b|. (2The algorithm TwoSum requires 6 flops. Let a, b ∈ F and let x, y ∈ F such that [x, y] = TwoProduct(a, b) (Algorithm 2.4). Then, a • b = x + y, x = fl(a • b), |y| ≤ eps|x|, |y| ≤ eps|a • b|.

Corollary 3 . 4 .

 34 Suppose Algorithm 3.2 is applied to floating point number a i ∈ F, 1 ≤ i ≤ n, and set p = n i=1 a i . Then, |res -p| |p| ≤ eps + γ n γ 2n n cond(a).

Lemma 3 . 5 (

 35 Rump, Ogita and Oishi [18, lem. 2.5]). Let r, δ ∈ R and r := fl(r). Suppose that 2|δ| < eps| r|. Then r ∈ (r + δ), that means r is a faithful rounding of r + δ.Let res be the result of CompProd. Then we have p = p n + e and res = fl(p n + e n) with e = n i=2 π i a i+1 • • • a n . It follows that p = (p n + e n) + (e -e n). This leads to the following lemma which gives a criterion to ensure that the result of CompProd is faithfully rounded. Lemma 3.6. With the previous notations, if 2|e-e n | < eps|res| then res is a faithful rounding of p. Since we have |e -e n | ≤ γ n γ 2n |p| and (1eps)|p| -γ n γ 2n |p| ≤ |res|, a sufficient condition to ensure a faithful rounding is 2γ n γ 2n |p| < eps((1eps)|p| -γ n γ 2n |p|)

Algorithm 4 . 1 .

 41 Power evaluation with a compensated schemefunction res = CompLinPower(x, n) p 1 = x e 1 = 0 for i = 2 : n [p i , π i] = TwoProduct(p i-1 , x) e i = fl(e i-1 x + π i) end res = fl(p n + e n)

Algorithm 4 . 4 .

 44 Power evaluation with a compensated schemefunction res = CompLogPower(x, n) % n = (n t n t-1 • • • n 1 n 0) 2 [h, l] = [1, 0] for i = t : -1 : 0 [h, l] = prod dd dd(h, l, h, l) if n i = 1 [h, l] = prod dd d(x, h, l) end end res = fl(h + l)Theorem 4.2. The two values h and l returned by Algorithm 4.4 satisfy

 .10) Lemma 3.6 tells us that if 2|e -e n | < eps|res| then res is a faithful rounding of p (where res is the result of CompProd).

	As a consequence, if
	fl 2