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Abstract

We propose in this paper an original method of camera motion classification based
on Transferable Belief Model (TBM). It consists in locating in a video the motions
of translation and zoom, and the absence of camera motion (i.e static camera).
The classification process is based on a rule-based system that is divided into three
stages. From a parametric motion model, the first stage consists in combining data
to obtain frame-level belief masses on camera motions. To ensure the temporal
coherence of motions, a filtering of belief masses according to TBM is achieved.
The second stage carries out a separation between static and dynamic frames. In
the third stage, a temporal integration allows the motion to be studied on a set of
frames and to preserve only those with significant magnitude and duration. Then,
a more detailed description of each motion is given. Experimental results obtained
show the effectiveness of the method.
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1 INTRODUCTION

Recently, the volume of videos has increased spectacularly with the growth of
storage devices and progress of diffusion processes. Consequently this prolifer-
ation of video sequences has led to the emergence of new applications such as
video summary, classification or browsing in a video base. It has hence become
necessary to index video content efficiently to facilitate access to information.
Generally, video description relies on the extraction of low-level features such
as color, texture or motion to which it is difficult to give a meaning. This
description is thus a difficult task which has been studied in many research
works.

Among the different features, camera motion is an important index to take
into account for video content analysis. From camera motion, much semantic
information can be deduced such as the activity in a scene. For example,
an action movie contains many scenes with strong camera motions to give
rhythm. Furthermore, the way of filming a scene can also direct the gaze. A
zoom in will focus the attention on a precise zone of the scene. The knowledge
of camera motion can also be exploited to separate moving objects from the
background and can be used in the algorithms of segmentation. In this way,
this index is an interesting tool to extract the semantic context of the scene.

Using camera motion classification, sport scenes could be labelled such as vari-
ous cricket shots [1], types of American football moves [2] and basketball video
sequences [3]. In the same way, by analyzing the statistics of camera motions,
Takagi et al. [4] show that camera motion is a sufficient signature to differ-
entiate sports activities and classify them. Camera motion can also be used
in many applications such as shot segmentation [5,6], video summary [7,8] as
well as in models of visual attention [9]. Moreover, requests for video mate-
rial from archives have become so great that in 2005 a new task was inserted
into the TREC Video [10] experiments concerning camera motion classifica-
tion, considering the main objective of TREC Video is to promote progress in
content-based retrieval from digital video.

Generally, the dominant motion is assumed to come from camera motion. A
parametric model is often used to represent this, and the parameters are esti-
mated either in compressed domain [11,3,12] or in uncompressed domain [7,6,8].
Other methods obtain camera motions by directly analyzing the MPEG mo-
tion vectors [13–16]. However, most approaches associate a camera motion
type from parameters extracted locally (either between two successive frames
or from predicted pictures in MPEG) by using a learning algorithm [13,16] , a
strategy of thresholding [11,14] or a template-matching algorithm [15]. A stage
of filtering is sometimes added to obtain consistent motions [14]. However, few
methods quantify identified motions. For example, a zoom is detected but the
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enlargement is not defined, which can be a disadvantage for some applications.

As an alternative to the various approaches presented above, we propose an
original method of camera motion classification based on Transferable Belief
Model (TBM). This theory is adapted to process imprecise data, to combine
various sources of information and to manage the conflict between the sources.
The objective of our classification is to label a video in a robust way follow-
ing the three main camera motion classes which are: translation (pan and/or
tilt), zoom and static camera. The translation corresponds either to a rota-
tional motion of the camera about the vertical and/or horizontal axis, or to
the tracking of the camera along the vertical and/or horizontal axis. The zoom
leads to the enlargement or the reduction of part of the image. Lastly, static
camera is a scene obtained with fixed camera where the objects can move.
These three camera motions are similar to those of TREC Video 2005 with
the determination of the horizontal translation (pan), the vertical translation
(tilt) and the zoom. From a parametric motion model, the proposed approach
estimates frame-level camera motion, then analyzes segment-level camera mo-
tion (on a set of frames). Although the motion estimation used in this work
is carried out in uncompressed domain, our method can be adapted to the
compressed domain as in [12,11,3]. Indeed, the model parameters which are
handled can be indifferently estimated in the compressed or uncompressed do-
main. The main contribution of this paper resides in the motion recognition
that is based on a certain number of rules: combination designed to avoid
identifying low magnitude camera motions, a filtering according to TBM to
ensure the temporal coherence of the motions, and analysis on segment-level
to preserve the motions with consequent magnitude and duration.

The rest of the paper is organized as follows. Section 2 presents an overview
of the system architecture for camera motion classification and description.
Section 3 discusses motion parameter extraction. After a brief description of
the TBM in Section 4, the method of camera motion classification is detailed
in Section 5. We explain in Section 6 how identified motions are described.
Experimental results are given in Section 7. Finally Section 8 draws the con-
clusions.

2 System Overview

The system architecture is depicted in figure 1 and consists of three phases:
motion parameter extraction, camera motion classification and motion de-
scription. The core of the proposed system is the classification phase which
is divided into three stages. The first stage is designed to convert the mo-
tion model parameters into symbolic values. This representation facilitates
the definition of rules to combine data and to provide frame-level mass func-
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tions on different camera motions. A filtering of mass functions according to
TBM is carried out and contributes to ensuring the temporal coherence of the
belief masses. The second stage carries out a separation between static and
dynamic (zoom, translation) frames. Finally, in the third stage, the temporal
integration of motions is achieved and allows the motions to be studied on seg-
ment level (by gathering frames having a certain belief in a type of motion).
The advantage of this analysis is to preserve only the motions with significant
magnitude and duration. The description phase is then carried out by extract-
ing different features on each video segment containing an identified camera
motion type. For example, a zoom motion is characterized by a enlargement
coefficient.

Stage  3:  Temporal      integration of    zoom    / translation

Video    stream

Camera   motion  classification  

and  description

Phase   2: Camera  motion   classification

Stage  2:  Static   /   dynamic    separation

Phase   1: Motion       parameter      extraction

Phase   3: Camera  motion description

Stage  1:  Combination  based   on  heuristic  rules

Fig. 1. System architecture for camera motion classification and description

3 Motion parameter extraction

The dominant motion, supposed to come from camera motion, is estimated
between two successive frames by a parametric model. The affine model is
chosen and can describe 5 traditional types of camera motion: zoom, rota-
tion, horizontal translation, vertical translation, static camera. The velocity
vector field is expressed for the pixel position pi = (xi, yi) of the frame I(pi, t)
according to the following equation:

Vx(pi) = c1 + a1 · xi + a2 · yi

Vy(pi) = c2 + a3 · xi + a4 · yi

where θt = (c1, c2, a1, a2, a3, a4) are the parameters to be estimated. The deter-
mination of the model coefficients is carried out by the Motion2D software [17].
It yields a robust and incremental estimation of the dominant motion exploit-
ing the spatio-temporal derivatives of the frame intensity.

4



Before to use these coefficients, an average filter of size L1 on the parameters θt

is achieved in order to reduce noise and estimation errors. An example of the
parameter estimation is shown in figure 2 where the sequence contains a zoom
in. It can be seen that the parameters are disturbed and sometimes erroneous
(strong impulses between image 400 and 450). The temporal window size is
chosen by expertise to 13 frames corresponding to half of a second which is
coherent to the human reflex time.
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Fig. 2. The parameters (in pixels/frame) evolve according to time on a sequence
containing a zoom in. As regards the zoom motion, the only parameter expected
to be higher than 0 is (a1 + a4)/2 and the parameters c1 and c2 are expected to be
null.

Some model parameters are specific to a motion and are used to identify
camera motions. From the filtered parameters θ′t = (c′1, c

′
2, a

′
1, a

′
2, a

′
3, a

′
4), the

displacement of the camera dpl(t) and the divergent div(t) between two succes-
sive frames I(pi, t) and I(pi, t+1) are defined as well as the total displacement
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dpt(to, tf ) and the distance traveled dtl(to, tf ) between two times to and tf :

−→
dpl(t) = (c

′
1(t), c

′
2(t))

dpl(t) =
∥∥∥−→dpl(t)

∥∥∥
div(t) = 1

2
(a

′
1(t) + a

′
4(t))

dpt(to, tf ) =

∥∥∥∥∥tf−1∑
j=to

−→
dpl(j)

∥∥∥∥∥
dtl(to, tf ) =

tf−1∑
j=to

∥∥∥−→dpl(j)
∥∥∥

The total displacement dpt in pixels/frame corresponds to the displacement
in the straight line between the original and final position whereas the dis-
tance traveled dtl is the original way and corresponds to the integration of all
displacements between sampling times.

According to the magnitude of the variables div and dpl, the different camera
motions can be extracted. A translation (respectively a zoom) is detected if
the displacement (respectively the divergent) is high. When a light zoom and a
strong translation occur simultaneously, the zoom is not, or hardly visible and
thus should not be highlight. In the same way, only the zoom is preserved in
the presence of a strong zoom and a weak translation. In order to satisfy these
rules, the variables need to be converted into linguistic values to be combined.
Before describing camera motion classification, the following section will point
out the bases of the Transferable Belief Model.

4 Transferable Belief Model

The Transferable Belief Model was formalized by P. Smets [18] and comes
from the Dempster-Shafer’s evidence theory.

Let Ω = {H1, · · · , HN} be the frame of discernment containing N mutually
exclusive and exhaustive hypotheses related to a given problem. From the
frame of discernment, the power set of Ω denoted as 2Ω is defined and is
composed of all subsets of Ω (singleton and composed hypotheses).

2Ω = {A/A ⊆ Ω} = {∅, {H1}, · · · , {HN}, {H1, H2}, · · · , Ω}

It is assumed that the solution to a given problem is necessarily in the frame
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of discernment (closed world). On the contrary, the open-world assumption
admits the existence of hypotheses not defined in the frame of discernment.

A mass function or a Basic Belief Assignment (BBA) is a function m : 2Ω →
[0, 1] that assigns a value in [0,1] to each subset A of Ω. The value m(A) is
the part of belief that is allocated exactly to the proposition A. Under closed-
world assumption, a BBA is subject to the following constraints: m(∅) = 0
and

∑
A⊆Ω m(A) = 1. The subsets A ⊆ Ω such that m(A) > 0 are called focal

elements of m.

Consider two BBA m1 and m2 defined on the same frame of discernment and
provided by a source 1 and a source 2 respectively. According to applications,
two combinations are possible: conjunctive combination m1 ∩©m2(Ai) and dis-
junctive combination m1 ∪©m2(Ai).

m1 ∩©m2(Ai) =
∑

Aj∩Ak=Ai
m1(Aj) ·m2(Ak)

m1 ∪©m2(Ai) =
∑

Aj∪Ak=Ai
m1(Aj) ·m2(Ak)

The conjunctive combination (respectively disjunctive) is interpreted as a log-
ical “and” (respectively “or”). These combinations can then be used in logical
rules.

From a BBA, a transformation was proposed by P. Smets [18] to obtain a
probability measure called pignistic probability on the frame of discernment
Ω:

BetPΩ(A) =
∑
B⊆Ω

mΩ(B)

1−mΩ(∅)
|A ∩B|
|A|

, ∀A ⊆ Ω (1)

where |A| is the cardinal of A ⊆ Ω. This function can be used for decision-
making.

Let Ω1 and Ω2 be two distinct and disjointed frames of discernment, a BBA
can be defined on Ω = Ω1×Ω2 through the conjunctive combination as follows:

m1 ∩©m2(A×B) = m1(A) ·m2(B) ∀A ⊆ Ω1, ∀B ⊆ Ω2

The interest of the cartesian product is to apply TBM even when the frames
of discernment are disjointed and thus not compatible.
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5 Camera motion classification

Camera motion classification consists in locating in a video the places where
a camera motion takes place. The method, which depends on TBM, has to
identify the three camera motions that are translation, zoom and the absence
of motion. It also has to recognize strong and short motions as well as weak
and long motions, and to avoid false detections due to a poor estimation. The
principle of camera motion classification phase is presented in figure 3. It is
divided into three stages: combination based on heuristic rules, static/dynamic
separation and temporal integration of zoom and translation motions. The
sequel of this section describes each stage of the method.

Numerical
symbolic

 conversion

div

dlp m
dlp
 2,t

m
div

 1,t

Temporal filter 
of the 

mass functions

Static
rule

m
 3,t
xA B

Fusion

m
 4,t
xA B

m
 5,t
xA B

m
 7,t
xA B

m
 6,t
xA B

Integration
 of

zoom

m
 9,t
xA B

m
 8,t
xA B

Integration
of

translation

m
 10,t
xA B

Fusion Fusion

   

Stage 1
Combination based on heuristic rules

Stage 2
Static and dynamic

separation

Stage 3
Temporal integration of 
zoom and translation

Numerical
symbolic

 conversion

Inference
 rules

Fig. 3. Principle of camera motion classification phase

5.1 Combination based on heuristic rules (stage 1)

The first stage (fig. 3) consists in converting the model parameters into sym-
bolic values describing the retrieved motions. From these variables, we estab-
lish heuristic rules to combine them in order to give frame-level belief masses
on the different camera motions. Then a temporal filtering of belief masses
is carried out for ensuring the temporal coherence of the belief masses on a
neighborhood.

5.1.1 Numerical-symbolic conversion

The numerical variables dpl and div are transformed into symbolic values:
weak (W), average (A), large (L) and very large (VL). A type of fuzzy sets is
used to formalize expert knowledge and to provide a symbolic representation of
data. Each linguistic term or group is associated to a set defined by a function
as indicated in figure 4. With regard to the symbolic description of divergent,
it is carried from the absolute value of divergent (4.a). Indeed, the absolute
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value only gives information about the amplitude of the zoom whereas the
direction of the zoom is obtained by the sign. Thus the mass functions for
the variables div and dpl are respectively defined on the frame of discernment
div = {W, A, L, V L} and dpl = {W, A, L, V L}. The combination of these mass
functions will lead to camera motion detection.

W A  [ L L

dpl0.4 0.6 3.4 3.6

m
2

0

1
W  [ A A L  [ VL V L

4.3 4.6
jdivj

0.6 0.7 6 8

m
1

0
10 12

W A  [ L LW  [ A A L  [ VL V L
1

x10-3

(a) (b)

Fig. 4. Definition of the BBAs for the displacement dpl (a) and for the divergent
div (b) in pixels/frame

Because it is difficult to get annotated data base, the thresholds are fixed
by expertise. The TBM framework allows the expert to directly model the
doubt by union of hypotheses: a large doubt avoid risk but does not give lot
of information.

5.1.2 Inference rules

The approach to camera motion classification is based on heuristic rules. The
Transferable Belief Model (TBM) provides tools adapted to build models that
integrate inference mechanisms.

Let A = {T, T} be the frame of discernment of the translation motion and let
B = {Z,Z} be the frame of discernment of the zoom motion where T (resp Z)
is a hypothesis on the presence of the translation (resp zoom) and T (resp Z)
is an hypothesis on the absence of the translation (resp absence of zoom). The
motion identification can be carried out by applying the cartesian product of
sets A × B. For example, if a frame belongs to class (T , Z) then the frame is
regarded as static. On the other hand, if the frame belongs to class (T, Z) then
the frame has a camera motion at the same time of translation and zoom.

We define the set of rules R to attribute belief masses to the product set A×B:

• If div is weak and dpl is weak then the camera motion is static (T , Z).
• If div is average and dpl is large then the motion detected is translation

(T, Z).
• If div is very large and dpl is very large then the motion detected is trans-

lation and zoom (T, Z).
• and so on.

These rules R defined for camera motion classification are summarized in
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table 1. For example, if div is large and dpl is average then detected motion is
zoom and thus the belief mass on the product set A×B is assigned to (T , Z).
We can also notice propositions on several motions such as {(T , Z), (T , Z)}.
This means the absence of translation and ignorance of the presence of zoom,
which corresponds to a proposition on “static or zoom”. In the same way,
{(T , Z), (T, Z)} means the absence of zoom and ignorance of the presence
of translation, which corresponds to a proposition on “static or translation”
whereas A × B is a total ignorance of the camera motion. The combination
mdiv

1 and mdpl
2 with the rules R leads to the definition of a new BBA mA×B

3 =
mdiv

1 R©mdpl
2 which directly characterizes the belief on camera motions. It can

also be noticed that the rules are designed to avoid as far as possible secondary
motions. For example, if the displacement is very large and the divergent is
large then the zoom motion is neglected and only the translation motion is
considered. Finally, a BBA mA×B

3,t is obtained for each frame t of the video.

div

Weak Average Large V ery Large

dpl

Weak (T , Z) (T , Z), (T ,Z) (T , Z) (T , Z)

Average (T , Z), (T, Z) A× B (T , Z) (T , Z)

Large (T, Z) (T, Z) (T, Z) (T , Z)

V ery Large (T, Z) (T, Z) (T, Z) (T, Z)

Table 1
Attribution rules R according to divergent div and displacement dpl

In order to explain the method, we propose to process the example in which,
for a given image, the non null masses are mdiv

1 and mdpl
2 as follows:

mdiv
1 ({W}) = 0.7 mdpl

2 ({A, L}) = 0.2

mdiv
1 ({W, A}) = 0.3 mdpl

2 ({L}) = 0.8

The BBA mA×B
3 has 3 focal elements:

mA×B
3

({
(T , Z), (T, Z)

})
= mdiv

1 ({W}) ·mdpl
2 ({A, L}) = 0.14

mA×B
3

({
(T, Z)

})
= mdiv

1 ({W}) ·mdpl
2 ({L}) + mdiv

1 ({W, A}) ·mdpl
2 ({L})

= 0.80

mA×B
3 (A× B) = mdiv

1 ({W, A}) ·mdpl
2 ({A, L}) = 0.06

5.1.3 Temporal filtering of mass functions

Temporal filtering of mass functions was introduced and is based on the hy-
pothesis that camera motion cannot be very different from one frame to the
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next. If the case appears, then it is considered that all motions are possible,
without being able to highlight one rather than another. This filtering ac-
cording to TBM adds doubt by reallocating the belief on the union of motion
propositions if the temporally close beliefs deliver different information. The
filter is produced by the disjunctive combination of the sources mA×B

3,t on a
temporal window of size L2. A new BBA is then obtained:

mA×B
4,t = mA×B

3,t−(L2−1)/2 ∪© . . . ∪© mA×B
3,t+(L2−1)/2

The interest of this combination is to increase the temporal coherence of mo-
tions and thus prevent the presence of different motions on a neighborhood.
The consistency of a motion can be improved by filling the possible holes
generated by estimation errors.

Figure 8-a shows an example of sequence having a zoom out where the method
is applied with a window of size L1 = L2 = 13. When the divergent is average
and the displacement is weak, the motion is considered to be “static or zoom”
{(T , Z), (T , Z)} on curve mA×B

3,t . When the displacement becomes average with
an average divergent, the mass is allocated to total doubt A×B. The temporal
filtering (curve mA×B

4,t ) amplifies the zone of A× B by adding doubt. The two
following stages of classification allow camera motion to be found.

Globally, the rules and the filtering correspond to a very cautious process
leaving a wide place open to doubt rather than imposing a final decision on
camera motion.

5.2 Static/dynamic separation (stage 2)

The second stage (fig. 3) consists in separating the static frames from the dy-
namic frames (zoom, translation) by taking into account the temporal neigh-
borhood of beliefs allocated locally by the heuristic rules (here the preceding
filtering is not considered). In the absence of camera motion, the estimated
model parameters have often a weak magnitude. However this property is not
always checked locally because of noise or estimation errors. To take it into
account, a frame will be considered as static if the majority of close frames
are static. Thus a new BBA is defined and is based on the following rule: if a
certain number of frames around the frame studied have a belief on the static
hypothesis (respectively dynamic) then a belief mass will be allocated to the
static hypothesis (respectively dynamic) for the frame studied.

Let Ω = {S, D} be the frame of discernment where S and D indicate a static
and dynamic motion respectively. Ω is a coarsening of A× B and reciprocally
A× B is a refinement of Ω. In order to know if the frame t is rather static or

11



rather dynamic, each BBA mA×B
3,t is transformed into a BBA mΩ

3,t as follows:

mΩ
3,t({S}) = mA×B

3,t ({(T , Z)})

mΩ
3,t({D}) =

∑
K⊆A×B\{(T ,Z)} mA×B

3,t (K)

mΩ
3,t(Ω) = 1−mΩ

3,t({S})−mΩ
3,t({D})

From the previous example,

mA×B
3

({
(T , Z), (T, Z)

})
= 0.14

mA×B
3

({
(T ,Z)

})
= 0.80

mA×B
3 (A× B) = 0.06

mass mΩ
3 is obtained:

mΩ
3 ({S, D}) = mA×B

3

({
(T , Z), (T, Z)

})
+ mA×B

3 (A× B) = 0.20

mΩ
3 ({D}) = mA×B

3

({
(T ,Z)

})
= 0.80

For each frame t, a temporal window of size L3 centered on t is considered.
The new BBA for the frame t defined on Ω is deduced from the conjunctive
combination of the BBAs of all the frames of the window and defined on
the cartesian product Ω′ = Ωt−(L3−1)/2 × . . . × Ωt+(L3−1)/2 where each Ωi is
associated to frame i of window centered on frame t studied. The coarsening
process from Ω′ to Ω depends for each subset of Ω′ on the number of frames
that are considered to be static (S), dynamic (D) or doubt between these
hypotheses. If the subset has at least α% of frames on the static hypothesis,
then this combination mass is deferred to the static hypothesis S for the frame
t studied. In the same way, if the subset of Ω′ has at least 100−α% of frames
on the dynamic hypothesis then it is affected to the dynamic hypothesis D for
the frame t studied. If it is not the case, then the mass is returned to the set
of hypotheses {S, D}.

The number of images attributing a mass to the static hypothesis is determined
by n = ceil(L3.α) where ceil means round up to nearest integer. The number
of images with a mass on the dynamic hypothesis is obtained by L3 − n + 1.

The value of α = 50% is a compromise between the ability of detection of real
static frames and the risk of false detection.

Let us take the example with L3 = 3 and α = 50% with Ω1 = {S1, D1},
Ω2 = {S2, D2} et Ω3 = {S3, D3}. The number of images that must affect a
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mass to the static hypothesis is n = 2, whereas for the dynamic hypothesis
the number of images is of L3 − n + 1 = 2. The belief mass distribution of
image 2 is modified according to beliefs of close images (here image 1 and 3).
An example is shown in equation 2 how the proposition of cartesian product
Ω′ is redistributed on Ω:

{S1} × {D2} × {S3} → {S}

{S1} × {D2} × {D3} → {D}

{S1} × {D2} × {S3, D3} → {S, D}

(2)

If on three successive images, there is a strong belief mass related to static
hypothesis for image 1 and 3, and a strong belief mass allocated to dynamic
motion for image 2:

mΩ1
3 ({S1, D1}) = 0.3 mΩ1

3 ({S1}) = 0.7

mΩ2
3 ({S2, D2}) = 0.4 mΩ2

3 ({D2}) = 0.6

mΩ3
3 ({S3, D3}) = 0.1 mΩ3

3 ({S3}) = 0.9

The BBA mΩ
5 then is obtained:

mΩ
5 ({S}) = mΩ1

3 ({S1}) ·mΩ2
3 ({S2, D2}) ·mΩ3

3 ({S3})+

mΩ1
3 ({S1}) ·mΩ2

3 ({D2}) ·mΩ3
3 ({S3})

= 0.63

mΩ
5 ({S, D}) = 0.37

mΩ
5 ({D}) = 0

This example shows that the distribution of the masses depends on the pro-
portion of beliefs on the static and dynamic hypotheses. As two images out of
three have a strong belief on the static hypothesis, the resulting mass supports
the belief on the static hypothesis and the mass allocated to D is null.

Based on this rule, a BBA mΩ
5,t on Ω is defined for each frame t. It is extended

to A × B using the relations {(T , Z)} = S, {(T , Z), (T, Z), (T, Z)} = D and
A×B = Ω, and it is combined with mA×B

4,t using the conjunctive combination.

The resulting BBA is mA×B
6,t and if the mass attributed to the empty set is non-

null then it is transferred to the union of propositions. Table 2 recapitulates
the combination of the two BBA.

13



mA×B
5,t

(T , Z) (T, Z), (T , Z), (T, Z) A× B

mA×B
4,t

(T , Z) (T , Z) ∅ → A× B (T , Z)

(T, Z) ∅ → (T, Z), (T , Z) (T, Z) (T, Z)

(T , Z) ∅ → (T , Z), (T , Z) (T , Z) (T , Z)

(T, Z) ∅ → (T, Z), (T , Z) (T, Z) (T, Z)

Table 2
Combination of BBA mA×B

5,t and mA×B
4,t using the rule of conjunctive combination

and managing the empty set.

Figure 5 illustrates the second stage of this approach with the following pa-
rameters α = 50% and L3 = L2 = L1 = 13. The sequence is filmed with
fixed camera. For example, a belief mass is assigned to the proposition “zoom
or statics” (between the images 85 and 105 , and images 38 and 42 of mA×B

4,t )
and the dynamic/static separation redistributes the belief mass to the “static”
proposition on the curve mA×B

5,t . On the other hand, the dynamic/static sepa-
ration is not sufficient to allocate the belief to the “static” proposition on all
along the segment. Indeed, for example, no mass is associated to the “static”
proposition between images 1 and 10 of mA×B

3,t and the resulting mass (curves

mA×B
4,t ) is assigned with the “static or dynamic” proposition. It is the integra-

tion of this segment which will find the static camera. In figure 8-b, as the
motion is either “static or zoom” (T , Z), (T , Z) or total doubt A×B, the sepa-
ration cannot find static camera since no mass is associated to the proposition
“static”.
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Fig. 5. Stage 2: Illustration of filtering and static/dynamic separation on a filmed
sequence with fixed camera. The expected motion is static (T , Z).

5.3 Temporal integration of zoom and translation (stage 3)

The third stage (fig. 3) achieves a more global motion description on segment
level (by gathering frames containing the same motion type). This consists
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in segmenting the sequence by coherent motions (translation or zoom), then
estimating the motion magnitude on each segment. By describing motion on
each segment, the purpose of this integration is to preserve only motions of
consequent magnitude and duration.

5.3.1 Case of zoom

As soon as the pignistic probability BetP A×B({(T , Z), (T, Z)}) on a frame
(eq. 1) becomes higher than a threshold δ then the beginning of zoom is
detected and this time t0 is memorized. When BetP A×B({(T , Z), (T, Z)}) is
lower than δ then the zoom motion stops and this time tf is memorized. The
segment between t0 and tf contains a potential zoom which is analyzed to be
ensured of its presence. In order to detect this potential motion, δ is chosen
sufficiently low. As the divergent is not very well adapted to represent zoom,
the enlargement coefficient is introduced.

We develop the case in one dimension. Let a′1(t) be the parameter of the affine
model at the time t and let vx be the velocity for the position xi provided by
vx = a′1(t) · xi assuming the other coefficients to be null (case for a perfect
zoom). The position at the time t+1 is given by x′i = xi +vx = xi · (1+a′1(t)).
From where the ratio between the position at the final time tf and the position
at the initial time t0 is given by:

kx =
tf−1∏
t=t0

(1 + a′1(t))

If the motion is a zoom in, the ratio kx corresponds to an enlargement co-
efficient (kx > 1), denoted agx. On the other hand, if it is a zoom out then
kx is a reduction coefficient (kx < 1) and by convention the inverse of this
ratio agx = 1/kx is called enlargement coefficient. In the case of a frame (2
dimensions), one enlargement coefficient agx is defined along the x-axis and
one agy following the y-axis. To obtain only one enlargement coefficient ag,
the two coefficients agx and agy are multiplied. The enlargement coefficient
ag represents the ratio between frame size and the part of the frame that in-
creased until frame size. For zoom segment, the sign of divergent can change,
which means a change of zoom direction. In order to take this into account,
we determine on each zoom segment, the sub-segments having the divergent
of the same sign and an enlargement is calculated on each one of them.

Finally, the enlargement coefficient ag that characterizes the power of the zoom
is used to cancel or preserve the zoom on the segment or the sub-segment.
Thus, a BBA mΩZ

7 is built on the frame of discernment ΩZ = {Zoom, Zoom}
from the enlargement coefficient as shown in figure 6.
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ZoomΩ
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Fig. 6. Definition of BBA for the enlargement coefficient.

mΩZ
7 is then extended on A× B using the relations {(T , Z), (T, Z)} = Zoom,

{(T , Z), (T, Z)} = Zoom and A × B = ΩZ and the resulting BBA mA×B
7

is associated to each frame of the segment. The passage of description from
segment to frame allows the BBA mA×B

6,t defined previously to be combined

with this one and the resulting BBA is mA×B
8,t . Table 3 shows the combination

of the masses. It is important to note that, in case of conflict, mA×B
7,t being

more reliable than mA×B
6,t for the “zoom”, the mass associated to the empty

set is transfered to the proposition of the zoom coming from mA×B
7,t and to the

proposition of the translation coming from mA×B
6,t .

mA×B
6,t

(T , Z) (T, Z) (T , Z) (T, Z)

mA×B
7

(T , Z), (T, Z) (T , Z) (T, Z) ∅ → (T , Z) ∅ → (T, Z)

(T , Z), (T, Z) ∅ → (T , Z) ∅ → (T, Z) (T , Z) (T, Z)

A× B (T , Z) (T, Z) (T , Z) (T, Z)

Table 3
Combination of the mass functions mA×B

6,t and mA×B
7

5.3.2 Case of translation

As processing with zoom, a segment of potential translation is obtained using
BetP A×B({(T, Z), (T, Z)}) > δ, then the segment between to and tf is analyzed
by calculating maximum displacement dptmax on this window.

t = arg max
tk∈[to,tf ]

(dpt(to, tk)) and dptmax = dpt(to, t)

Maximum displacement dptmax is then standardized by the duration (from
time to to t) to have a relative representation of displacement. Thus standard-
ized maximum displacement dptmaxn characterizes the power of translation
on the segment and this value is used to define a mass function (fig. 7) on
ΩT = {Translation, Translation}. Like the zoom, mΩT

9 is extended on A×B,
then this one is associated to each frame of segment to be combined with
mA×B

8,t and the resulting BBA is mA×B
10,t .

The integration is applied with δ = 0.1 in figure 8-c. In fact, if δ is low,
the motion detection is improved. That can lead to false alarms, but in this
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Ω
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T

Translation

Fig. 7. Definition of the BBA for the standardized maximum displacement

algorithm, the temporal integration insures the reliability. We can see that
the integration of the zoom (curve mΩZ

7,t ) allows it to be preserved and thus

leads to the removal of the “static” proposition on the curve mA×B
8,t . Then, the

integration of the translation (curve mΩT
9,t ) allows it to be removed and thus

to only the proposition (T , Z) on the curve mA×B
10,t is preserved.

Finally the decision on camera motions is taken by choosing the maximum of
the pignistic probability for each frame.

6 Camera motion description

This phase (fig. 1) consists in describing each identified camera motion. For the
three motions (static, translation and zoom), a binary decision is attributed
to each frame. Based on the results of the previous paragraphs, each segment
where a zoom is identified is described by the enlargement coefficient and the
direction. The sign of the divergent is used to know the zoom direction (zoom
in or zoom out). The translation segment is represented by distance traveled
and standardized total displacement. Moreover, the translation direction is
obtained for each frame contained in a translation segment. A fuzzy quantifi-
cation (fig. 9) from vector phase

−→
dpl(t) is used to represent it. For example, a

diagonal motion from down-left to up-right is characterized by the four values
(Zone 1, Zone 2, Zone 3, Zone 4) = (0.5, 0.5, 0, 0).

7 Camera motion classification evaluation

Camera motion classification evaluation aims to verify the performance of the
method. Two studies are discussed: one on video extracts containing a single
camera motion and an other containing composed camera motions. Thereafter,
we apply the method with the following thresholds: L1 = L2 = L3 = 13
(window about a half second), α = 50% (stage 2) and δ = 0.1 (stage 3).
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Fig. 8. Illustration of the classification method (stages 1, 2 and 3) on a sequence
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Fig. 9. Membership functions according to the 4 directions.

7.1 Analysis of single motions

To evaluate the method of camera motion classification, video extracts con-
taining a single camera motion type were selected during the video playback.
The chosen video extracts (fig.10) are various contents (sport sequences, series
“The Avengers”,. . . ) and possess perceived motions. The corpus is made up
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of 42 video extracts (4605 frames) of a few seconds each:

• 8 extracts (899 images on total) at fixed camera
• 21 extracts (2053 images on total) containing a translation (6 translations

from right to left, 7 from top to bottom, 6 from left to right and 2 from
bottom to top)

• 13 extracts (1663 images on total) containing a zoom (7 zooms in and 6
zooms out)

Fig. 10. Examples of video extracts contained in the base. For each example, the
left image corresponds to the first image of the extract and the right image is the
last image of the extract. Two examples are filmed with fixed camera (in top), two
include a translation motion (in the medium) and finally two contain a zoom (in
bottom).

The results are reported for motion classification (presence of static, transla-
tion or zoom). Like evaluation measures, we use recall and precision. Recall R
evaluates the capacity of the classifier to find the videos in the base contain-
ing a retrieved motion and is defined as the number of relevant video extracts
retrieved containing the desired motion in a database divided by the total
number of video extracts retrieved. Precision P evaluates the capacity of the
classifier to find only videos having the desired motion and is defined as the
number of relevant video extracts retrieved containing the desired motion di-
vided by the total number of relevant video extracts in a database. However,
the classification of a video extract depends on camera motion allocated on
each one of these frames. We consider that a video is correctly identified if all
frames are correctly classified. Table 4 shows the results of motion classifica-
tion. If the zoom is considered, recall indicates that one video is not found.
It is about a zoom which is in fact detected at 73%. The beginning of this
video has a light zoom and is related with a static camera. With regard to the
translation motion, it misses one video for the recall, this one is detected at
95% and has a small static segment at the beginning. Hence camera motion
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classification presents good performances with a precision of 100%, a recall
> 92% for the three camera motions, which demonstrates the robustness of
the method.

Translation Zoom Static

Recall 95 (20/21) 92 (12/13) 100 (8/8)

Precision 100 (20/20) 100 (12/12) 100 (8/8)

Table 4
Performance of the classification of video extracts

Table 5 illustrates the description of zoom and translation according to the
direction. Here, a video is correctly identified if at least 80% of frames are well
classified. The obtained results shows the performance of the motion direction
description.

Right
to left

Up
to
down

Left to
right

Down
to up

Zoom
in

Zoom
out

Recall at
80%

100
(6/6)

100
(7/7)

100
(6/6)

100
(2/2)

100
(7/7)

83
(5/6)

Precision
at 80%

100
(6/6)

100
(7/7)

100
(6/6)

100
(2/2)

100
(7/7)

100
(5/5)

Table 5
Performance of the description of zoom and translation according to direction with
recall and precision calculated at 80%

7.2 Analysis of composed motions

Camera motion classification is studied here on video extracts where the mo-
tions can be superimposed (zoom and translation) or successive in the same
extract. Figure 11 shows an example of video extract including several camera
motions, initially a segment of zoom out and translation of left to right, then
a segment of zoom and finally a static segment. This example also underlines
the camera motion description. The indicators of the different camera mo-
tions can also be found (4 directions of the translation, the distance traveled,
standardized total displacement as well as the direction of the zoom and the
enlargement coefficient).

To evaluate the method, we annotated three video extracts according to the
three camera motions:

• a sports documentary with 20 shots and 3271 frames
• “The Avengers” series with 27 shots and 2412 frames
• TV news with 42 shots and 6870 frames
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Fig. 11. Classification on an video extract including several camera motions.

By assuming the known shots, the different motions are extracted by the
method and compared with the ground truth. The evaluation is carried out
by recall and precision on frame level (calculation of the frame number cor-
rectly identified for each motion). Nevertheless, the ground truth is sometimes
difficult to determine in certain places of the video (ambiguity between mo-
tions) or the border between two successive motions is difficult to find. From
these considerations, errors can be added to the classification errors coming
from the classification method. That allows the results presented in table 6
to be moderated. We can note that the results are good with more than to
70% recall and precision for the three videos. With regard to static, it is dom-
inating in the three videos and is detected with good accuracy. The motion of
translation is also easily found in the videos. On the other hand, the motion
of zoom is the least present in the videos. Considering this small quantity,
the results are relatively good with more than to 70% recall and precision.
Figure 12 is an example of the camera motion classification and corresponds
to the first shot of the “The Avengers” sequence where a translation motion
is followed by a static segment. We can notice that the motions identified by
the method are similar to those of the ground truth. As the border between
the motions is not exactly at the same place, the recall and the precision are
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81% and 100% for statics and 100% and 95% for the translation whereas the
motion determination seems to be correct.

documentary News series

Static
Recall 78 (1083/1386) 96 (3898/4052) 91 (1181/1304)

Precision 97 (1083/1112) 84 (3898/4661) 96 (1181/1236)

Translation
Recall 92 (1251/1366) 71 (1891/2658) 96 (853/889)

Precision 72 (1251/1734) 90 (1891/2098) 85 (853/1003)

Zoom
Recall 85 (550/649) 78 (201/257) 80 (375/470)

Precision 70 (550/786) 70 (201/286) 78 (375/479)

Table 6
Performance of the classification of frames on three video extracts with composed
motions
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0 140 18470

Fig. 12. Example of camera motion classification on the first shot of the “The
Avengers” sequence.

8 Conclusion

A method of camera motion classification based on Transferable Belief Model
has been presented. It consists in finding the motions of translation and zoom,
and static camera in a video. The approach is characterized by its rule-based
recognition system. The combination rules are designed to avoid as far as
possible secondary motions (low magnitude motions). A filtering according to
TBM is carried out and modifies the belief in a motion following the close
frames. A static/dynamic separation is archived and assumes that a frame is
static if these close frames are considered to be static. Finally the analysis on
segment level aims at only preserving motions of consequent magnitude and
duration. Then, the description of motions is carried out by quantifying them
(for example, enlargement coefficient for a zoom) to interpret them easily. The
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motion of translation and zoom are also characterized in a more local way with
the direction (zoom in, zoom out, translation from left to right. . . ).

In order to ensure the performances of the method, we have presented results
on videos containing one motion type or containing superimposed camera mo-
tions or which followed one another. In the two cases, the results obtained in
term of recall and precision enable us to conclude that our classifier is effective
to determine camera motions. One of the future lines of investigation would be
to consider other motion types such as rotation. The advantage of the TBM
framework is that it is easy to add new parameters without changing the
structure of the system. If it is assumed the rotation is relevant enough, the
associated parameters could be included. Lastly, our method requires knowl-
edge of shot change. A detector could also be designed from camera motion.
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