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Abstract

We give an efficient algorithm to randomly generate finitely generated
subgroups of a given size, in a finite rank free group. Here, the size of
a subgroup is the number of vertices of its representation by a reduced
graph such as can be obtained by the method of Stallings foldings. Our
algorithm randomly generates a subgroup of a given size n, according to
the uniform distribution over size n subgroups. In the process, we give
estimates of the number of size n subgroups, of the average rank of size n

subgroups, and of the proportion of such subgroups that have finite index.
Our algorithm has average case complexity O(n) in the RAM model and
O(n2 log2 n) in the bitcost model.

Keywords: subgroups of free groups, random generation

MSC: 05A16, 20E05

∗The first and third authors benefitted from the support of the PICASSO project Au-

tomata and free groups. The third author acknowledges partial support from the ESF

program AutoMathA and the Algebraic Cryptography Center, at the Stevens Institute of

Technology.
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Algorithmic problems in combinatorial group theory have been the focus of
increased interest (see [3, 18, 15, 14, 16, 17, 20] for recent examples). This is
especially the case for the theory of free groups and the investigation of their
finitely generated subgroups, which is the focus of this paper.

As in other fields, the investigation of algorithmic problems and of their
complexity brings to light interesting structural properties of the objects under
study. One classical approach is to study the properties of random objects, here
of random finitely generated subgroups of a free group. This naturally depends
on the probability distribution we adopt, we come back to this below.

The complexity of algorithms is often estimated according to the worst-
case paradigm. It can also be estimated in average, or generically [16]. Both
these concepts also depend on the choice of a distribution, and can benefit
directly from the enumeration and generation results in this paper. Random
generation can also be useful to test conjectures or algorithms with large set
of representative instances (again, depending on the choice of a probability
distribution), provided that the random generation algorithm is fast enough.

In this paper, we use the well-known fact (Stallings [26]) that every finitely
generated subgroup of a free group F with basis A admits a unique graphi-
cal representation of the form (Γ, 1), where Γ is a finite directed graph with
A-labeled edges and 1 is a designated vertex of Γ — subject to certain combi-
natorial conditions, see Section 1.1 for details. Then we consider the number of
vertices of Γ to be a measure of the size of the subgroup represented by (Γ, 1).
Note that the size of H is strongly dependent on the choice of the basis A of
F . Very importantly also, for each n ≥ 1, there are finitely many subgroups of
F of size n. The probability distribution on subgroups discussed in this paper
is the uniform distribution on the set of fixed size subgroups: if there are s(n)
subgroups of size n, each has probability 1

s(n) .

A large and growing number of algorithmic problems on free groups admit
efficient solutions using these graphical representations (see [14, 15, 16, 17, 18,
21, 24] among others), and this further emphasizes the interest of a random
generation scheme based on this representation.

The main result of the paper is an efficient algorithm to randomly generate
size n subgroups of F . Its average case complexity is O(n) in the RAM, or unit-
cost model, and O(n2 log2 n) in the bit-cost model, see Section 3.3 for a more
precise discussion. Our algorithm actually generates graphical representations
(Γ, 1) of subgroups, but we want to emphasize that, as these representations
are in bijective correspondence with finitely generated subgroups of F , we truly
achieve a uniform distribution of (size n) subgroups.

The strategy followed by the algorithm is described in Section 1.2. The
algorithm itself is actually simple and easily implementable, besides being fast.
Its proof is more complex; it relies on the recursive nature of the combinatorial
structures underlying graphical representations of subgroups (see Section 2, and
in particular Section 2.1), and we make direct use of the concepts and the
tools of the so-called recursive method heralded by Nijenhuis and Wilf [22] and
systematized by Flajolet, Zimmermann and van Cutsem [11].
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In Section 4, we study the distribution of the ranks of size n subgroups and
we show that if F has rank r ≥ 2, then the mean value of the rank of a size n
subgroup is (r−1)n−r

√
n+1, with standard deviation o(

√
n). In Section 5, we

show how our strategy can be modified (and simplified) to randomly generate in
linear time size n finite index subgroups (that is, subgroups of rank (r−1)n+1)
— even though these groups are negligible among general size n subgroups. We
actually give a precise estimate of the proportion of such subgroups and we
prove that it converges to 0 faster than the inverse of any polynomial.

The paper closes on a short discussion of related questions, and in particular
of the comparison of our distribution with that which is induced by the random
generation of an n-tuple of words and the consideration of the subgroup they
generate, see [14, 19, 20] for instance.

Throughout this paper, we denote by |X | the cardinality of a set X , and by
[[1, n]] the set {1, . . . , n} (where n is a positive integer).

1 General notions and generation strategy

1.1 Graphical representation of subgroups

Let F be a free group with finite rank r ≥ 2 and let A be a fixed basis of F . We
sometimes write F = F (A) and the elements of F are naturally represented as
reduced words over the alphabet A ⊔ A−1. It is well-known that the subgroups
of F are free as well. Moreover, each finitely generated subgroup of F can be
represented uniquely by a finite graph of a particular type, by means of the
technique known as Stallings foldings [26] (see also [28, 15, 27]). We refer the
reader to the literature for a description of this very fruitful technique, and we
only record here the results that will be useful for our purpose.

An A-graph is defined to be a pair Γ = (V, E) with E ⊆ V × A × V , such
that

• if (u, a, v), (u, a, v′) ∈ E, then v = v′;

• if (u, a, v), (u′, a, v) ∈ E, then u = u′.

The elements of V are called the vertices of Γ, the elements of E are its edges,
and we sometimes write V (Γ) for V and E(Γ) for E. We say that Γ is connected
if the underlying undirected graph is connected. If v ∈ V (Γ), we say that v is
a leaf if v occurs at most once in (the list of triples defining) E(Γ) and we say
that Γ is v-trim if no vertex w 6= v is a leaf. Finally we say that the pair (Γ, v)
is admissible if Γ is a v-trim and connected A-graph.

Then it is known that:

• Stallings foldings associate with each finitely generated subgroup H of
F (A) a unique admissible pair of the form (Γ, 1), which we call the graph-
ical representation of H in this paper [26, 28, 15];
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• every admissible pair (Γ, 1) is the graphical representation of a unique
finitely generated subgroup of F (A) [26, 28, 15];

• if H is given by a finite set of generators (in the form of reduced words
over A ⊔ A−1) of total length n, then the graphical representation of H
can be computed in time O(n log∗ n) [27];

• if (Γ, 1) is the graphical representation of H , then rank(H) = |E(Γ)| −
|V (Γ)| + 1 [26, 28, 15];

• if (Γ, 1) is the graphical representation of H , then H has finite index if and
only if for each v ∈ V (Γ) and for each a ∈ A, there is an edge of the form
(v, a, w) ∈ E(Γ) [26, 28, 15], if and only if rank(H) = (|A| − 1)|V (Γ)| + 1.

We sometimes identify H and its graphical representation (Γ, 1) — for in-
stance when we say that we randomly generate subgroups of F : what we gener-
ate is actually the graphical representation of such subgroups. As explained in
the introduction, we consider the number of vertices to be a measure of the size
of Γ and we write |H | = |Γ| = |V |. In particular, F has finitely many subgroups
of size n.

1.2 Enumeration and random generation

As we shall see, A-graphs fall in the category of decomposable structures, that
is, structures that can be built from unit elements and from operations such as
the union, direct product, set formation, etc. We will use the so-called recursive
method to enumerate and to randomly generate such structures [11]. Details
are given further in the paper, concerning the enumeration (Section 2) and the
random generation algorithm and its complexity (Section 3). At this point,
let us simply say that the random generation of size n A-graphs requires a
pre-computation phase in O(n), after which each draw takes time O(n).

The rest of this section is devoted to an overview of our strategy.

Remark 1.1 There exists another method than the recursive method, to de-
rive a random generation algorithm from a combinatorial specification, this time
according to a Boltzmann distribution. Recall that, in such a distribution, an
object γ receives a probability essentially proportional to an exponential of its
size |γ|. (More precisely this probability depends upon a positive real parameter
x, and it is proportional to x|γ| when γ is an unlabeled structure and to x|γ|/|γ|!
when γ is labeled; see Section 1.2.1 below about labeled vs. unlabeled struc-
tures.) In particular, Boltzmann samplers do not generate objects of a fixed
size. They depend on the real parameter x > 0 and, for any given integer n, the
value of x can be chosen such that the average size of the generated elements is
n. Even though the size of the objects generated is not fixed, Boltzmann sam-
plers guarantee that two elements of the same size have the same probability to
be generated.

A method to systematically produce Boltzmann samplers was recently in-
troduced by Duchon, Flajolet, Louchard and Schaeffer [7] for labeled structures
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(Flajolet, Fusy and Pivoteau for unlabeled structures in [8]). The evaluation of
x is the only required precomputation and the complexity of generation itself
is linear as long as small variations in size are allowed. This approach can also
be used for exact-size generation, but in the case of A-graphs it is less efficient
than the recursive method (see Remark 2.3). ⊓⊔

1.2.1 We count labeled A-graphs

Enumeration for us, is the enumeration of structures up to isomorphism. The
structures which we want to generate are admissible pairs (Γ, 1), that is, A-
graphs with one vertex labeled 1, that are connected and 1-trim. We later use
the phrase admissible A-graphs. Leaving aside for a moment the properties
of connectedness and 1-trimness, we are interested in A-graphs with a distin-
guished vertex. This is an intermediary situation between labeled and unlabeled
structures, which are two great categories of structures for which there exist a
large toolkit for enumeration and random generation [11, 10, 7, 8].

An A-graph Γ = (V, E) of size n is said to be labeled if it is equipped with
a bijection λ: [[1, n]] → V . Of course, there are n! different such bijections, but
some of them may yield isomorphic labeled A-graphs. For instance, if E = ∅
(so that Γ consists of n isolated vertices), all labelings of Γ are isomorphic.

Γ1 Γ2 Γ3 Γ4

a

b

a

b

a

a

b

babaa

Figure 1: Four A-graphs with different numbers of non-isomorphic labelings

Example 1.2 Consider the A-graphs in Figure 1. Then all labelings of Γ1 are
isomorphic but Γ2 has 2 non-isomorphic labelings. How many non-isomorphic
labelings does Γ3 have? And Γ4? ⊓⊔

Counting structures such as A-graphs can lead to complex considerations
involving, say, the automorphism groups of each of the connected components
of the A-graphs, but standard methods of analytic combinatorics actually solve
this enumeration problem for us, see Section 1.2.2. These methods rely on the
use of labeled structures, and we will therefore enumerate and generate labeled
A-graphs. Why this is justified even for the purpose of randomly generating
admissible pairs is discussed in Section 1.2.3.
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1.2.2 Generating series

Let A be a class of combinatorial structures. If A has an elements of size n, the
formal power series

∑

n anzn and
∑

n
an

n! z
n are called respectively the (ordinary)

generating series and the exponential generating series (EGS ) of the class A.
As it turns out, certain operations on classes of labeled combinatorial struc-

tures have a direct translation over their EGS. For instance, suppose that A is
the union of the disjoint classes B and C (that is, a size n element of A is a size
n element of either B or C), and let A(z), B(z) and C(z) be the EGS of the
three classes. It is immediate that A(z) = B(z) + C(z).

For more complex operations, one needs to handle the question of relabelings.
If S is a size n structure with a labeling function λ, we say that µ is an expansion
of λ if the domain of µ is of the form {k1, . . . , kn} ⊂ N with k1 < · · · < kn and
µ(ki) = λ(i) for each i. If S1, . . . , Sr are structures of size n1, . . . , nr with
labeling functions λ1, . . . , λr, then the sequence S = (S1, . . . , Sr) is a structure
of size n =

∑

i ni and we say that a labeling λ of S is compatible with the λi if
it is obtained by the combination of expansions of the λi, whose domains form
a partition of [[1, n]]. In particular, λ is not uniquely determined by the λi.

1

2

Γ1

1

3 2

Γ2

1

3

2

5 4

a labeling of (Γ1, Γ2). . .

2

5

1

4 3

and another

a

a

bba a

a

bba a

a

bba

Figure 2: Two labeled A-graphs and two compatible labelings of the sequence
they compose

Example 1.3 Figure 2 shows two labeled A-graphs of sizes 2 and 3, and several
compatible labelings of the sequence they compose. ⊓⊔

We record here three such operations, that will be important for our purpose,
and we refer the readers to [9, 10] for the proof of this important result.

Proposition 1.4 Let A be a class of labeled structures with EGS A(z).

• Let B be the class of sequences of structures from class A – that is, a
size n labeled structure in B is a tuple (S1, . . . , Sr) of labeled structures in
A (each Si of size ni with n =

∑

i ni), equipped with a labeling function
compatible with the labelings of the Si. Then the EGS of B is

A(z) =
1

1 − B(z)
.
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• Let C be the class of cycles of structures from class A, where a cycle of
structures is an equivalence class of sequences of structures in A, under
the relation which identifies a sequence with its cyclic permutations. Then
the EGS of C is

C(z) = log

(

1

1 − B(z)

)

.

• Let D be the class of sets of structures from class A, where a set of struc-
tures is an equivalence class of sequences of structures in A, under the
relation which identifies a sequence with its permutations. Then the EGS
of D is

D(z) = exp
(

B(z)
)

.

Let us first apply this calculus to a simple example. Let A be the class
consisting of a single graph, with one vertex and no edges (the vertex being
necessarily labeled 1). Its EGS is A(z) = z. The class of labeled sequences of
structures in A is in bijection with the class of labeled line graphs of the form
with {i1, . . . , in} = [[1, n]], and its EGS is, according to Proposition 1.4, equal

i1 i2 i3 in· · ·

to 1
1−z =

∑

n zn. This corresponds to the fact that the number of such size n
sequences is n! (so that its quotient by n! is 1).

Similarly, the EGS of the class of cycles of structures in A, that is, the class
of labeled cyclic graphs (such as the graphs in Example 1.2 that are labeled

with a single letter) is log
(

1
1−z

)

.

We extend these examples in Section 2.1 to compute the EGS of labeled
A-graphs.

1.2.3 A rejection algorithm

The enumeration and random generation of labeled A-graphs is however not
our objective. We want to generate admissible pairs, that is, A-graphs with a
distinguished vertex 1, that are connected and 1-trim. This will be achieved by
a rejection algorithm (see [5]).

Suppose one wants to draw a number between 1 and 5, using a dice. It is
natural to throw the dice repeatedly, until the result is different from 6. This is
a semi-algorithm, since in the worst case it may never end — if we draw only
6’s —, but we will loosely call it an algorithm.

Formally, suppose we want to generate elements of a set X , according to
a probability law pX . Suppose that X is a subset of Y , and that we have a
probability law pY on Y , whose restriction to X is pX . If we have an algorithm
to generate elements of Y according to pY , we may use this algorithm to generate
elements of X as follows: repeatedly draw an element of Y , reject it if it is not
in X , stop if it is in X . The average complexity of such an algorithm depends
on the complexity of the generating algorithm on Y , on the complexity of the
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test whether an element of Y is in X , and on the average number of rejects.
One can show that if pY (X) is the probability for an element of Y to be in X ,
the average number of rejects is 1/pY (X).

Concretely, we will show that the probability pn for a size n labeled A-graph
to be connected and 1-trim (rigorously: λ(1)-trim) tends to 1 when n tends to
infinity (Section 2.2 and 2.3). This justifies the use of a rejection algorithm since
the average number of rejects tends to 0 when n tends to infinity.

There remains one problem: such a rejection algorithm will generate labeled
connected 1-trim A-graphs, and we are interested only in the information con-
tained in (Γ, λ(1)) – that is, we do not care how the n−1 vertices different from
λ(1) are labeled. In other words, an admissible pair, obtained from a labeled A-
graph by forgetting the labeling of the vertices numbered 2 to n, will be counted
several times. The following lemma shows that this is not an obstacle.

Lemma 1.5 Let Γ be an A-graph of size n and let v be a vertex of Γ. If Γ is
connected, then there are (n − 1)! isomorphism classes of labeled structures on
Γ such that vertex v is labeled 1.

Proof. Let Ā = {ā | a ∈ A} be a disjoint copy of A, and let Γ̃ be obtained
from Γ by adding, for each edge (x, a, y), a new edge (y, ā, x). It is immediately
verified that Γ̃ is an (A ∪ Ā)-graph. For each vertex w 6= v, let uw be a finite
word on the alphabet A ∪ Ā labeling a path in Γ̃ from v to w. Then w is the
unique vertex accessible from v following a path labeled uw, and the words uw

are pairwise distinct. This observation guarantees that distinct labelings of Γ
mapping 1 to v, are non isomorphic. ⊓⊔

Thus each size n admissible pair (Γ, 1) is counted the same number of times,
namely (n− 1)! times. Therefore, applying a rejection algorithm that randomly
generates size n labeled connected 1-trim A-graphs and forgetting labels 2 to n
also guarantees a random generation of admissible pairs for the uniform distri-
bution on all admissible pairs of size n.

Summarizing the algorithmic strategy, we will randomly and equally likely
generate a labeled A-graph, reject it if it is not connected and 1-trim, draw
another labeled A-graph, etc, until we draw a connected 1-trim labeled A-graph.
We then ignore the labeling of the vertices numbered 2 to n. Details on the
algorithm and its complexity are discussed in Section 3.

For convenience, we will call a labeled A-graph Γ admissible if the pair (Γ, 1)
is admissible in the sense of Section 1.1.

2 Enumeration of A-graphs

We first observe that in an A-graph Γ = (V, E), for each a ∈ A, the edges in E
of the form (x, a, y) can be interpreted as the description of a partial injection
from V to V (partial means that the domain of this injection is a subset of V ).
If the A-graph is labeled and has size n, each letter can therefore be interpreted
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as a partial injection from [[1, n]] to itself. The labeled A-graph itself can then
be seen as an A-tuple of partial injections.

In this section, we discuss the enumeration of partial injections on [[1, n]], the
probability for an A-tuple of such partial injections to yield a labeled connected
A-graph, the probability for that graph to be 1-trim, and finally the number of
size n subgroups.

2.1 Partial injections and A-graphs

Each partial injection is a set of disjoint cycles and non-empty sequences (in
analogy to the decomposition of a permutation as a union of cycles). The
EGS for cycles is log( 1

1−z ), and that for sequences is 1
1−z (Section 1.2.2). It

follows that the EGS for non-empty sequences is 1
1−z − 1 = z

1−z , and the EGS
for the union of the (disjoint) classes of cycles and non-empty sequences is

z
1−z +log( 1

1−z ). Then Proposition 1.4 shows that the EGS for partial injections
is

I(z) = exp

(

z

1 − z
+ log

( 1

1 − z

)

)

=
1

1 − z
exp

(

z

1 − z

)

.

Let In be the number of partial injections from [[1, n]] to itself, so that I(z) =
∑

n
In

n! z
n.

Remark 2.1 The series I(z) turns out to be also the (ordinary) generating se-
ries of the average number of increasing subsequences in a random permutation.
The first values of the sequence (In)n≥0, referenced EIS A002720 in [25] are

1, 2, 7, 34, 209, 1546, 13327, 130922, 1441729, 17572114, 234662231, . . .

⊓⊔

The above expression of I(z) yields a simple recurrence relation for the

sequence (In)n. Indeed, we find that the series I ′(z) =
∑

n≥0
In+1

n! zn is equal to

I ′(z) =
2 − z

(1 − z)3
exp

(

z

1 − z

)

=
2 − z

(1 − z)2
I(z).

Thus (1 − z)2I ′(z) = (2 − z)I(z) and the following recurrence relation follows:

∀n ≥ 2, In = 2n In−1 − (n − 1)2In−2, (1)

with I0 = 1 and I1 = 2.

Lemma 2.2 For each integer n ≥ 1, we have

(n + 1)! ≤ (n + 1)In−1 ≤ In ≤ n e1/
√

nIn−1 ≤ n! e2
√

n−1.
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Proof. We proceed by induction on n, noting that I0 = 1. The inequality
(n + 1)In−1 ≤ In is verified for n = 1 and n = 2. Suppose that n ≥ 2 and
(n + 1)In−1 ≤ In. By the recurrence relation, we have

In+1 = (2n + 2)In − n2In−1 = (2n + 2)In − (n + 1)2In−1 + (2n + 1)In−1

≥ (2n + 2)In − (n + 1)In + (2n + 1)In−1

≥ (n + 1)In + 2nIn−1

≥ (n + 1)In + In = (n + 2)In,

with the last inequality derived from the recurrence relation on the In. Thus, for
each n ≥ 1, we have In ≥ (n+1)In−1. The inequality (n+1)! ≤ (n+1)In−1 ≤ In

follows immediately.
For n ≥ 1 let un = In

In−1
. We proceed by induction on n to prove that

un ≤ ne1/
√

n, noting that u1 = 2 ≤ e. From Equation (1)

un+1 = 2(n + 1) − n2

un
≤ 2(n + 1) − ne−1/

√
n

It remains to show that

2(n + 1) − ne−1/
√

n ≤ (n + 1)e1/
√

n+1.

or
2(n + 1) ≤ ne−1/

√
n + (n + 1)e1/

√
n+1.

For any real number x,

ex ≥ 1 + x +
x2

2
+

x3

6
.

Therefore

ne−1/
√

n + (n + 1)e1/
√

n+1 ≥ 2(n + 1) +
√

n + 1 −√
n +

1

6
√

n + 1
− 1

6
√

n

and we want to show that

√
n + 1 −√

n +
1

6
√

n + 1
− 1

6
√

n
=

√
n + 1 −√

n +

√
n −

√
n + 1

6
√

n
√

n + 1
≥ 0,

or equivalently,

6(n + 1)
√

n − 6n
√

n + 1 +
√

n −
√

n + 1 ≥ 0

(6n + 7)
√

n ≥ (6n + 1)
√

n + 1

(6n + 7)2n ≥ (6n + 1)2(n + 1).

Now the difference
(

(6n + 7)2n
)

−
(

(6n + 1)2(n + 1)
)

is equal to 36n2 +36n−1,

which is positive for all n ≥ 1. This completes the proof that un ≤ ne1/
√

n for
all n ≥ 1.
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Consequently In ≤ n e1/
√

nIn−1 and

In =
In

I0
=

n
∏

i=1

ui ≤ n! e
∑n

i=1
1√
i .

As the function x 7→ 1√
x

is decreasing on the positive domain, we find that

1√
i+1

≤
∫ i+1

i
dx√

x
for each i ≥ 1, and

n
∑

i=2

1√
i

=

n−1
∑

i=1

1√
i + 1

≤
∫ n

1

dx√
x

= 2
√

n − 2.

Thus e
∑n

i=1
1√
i ≤ e2

√
n−1, which concludes the proof. ⊓⊔

Remark 2.3 The computation of I(z) allows us to justify our assertion that
Boltzmann samplers are less efficient than the random generation based on the
recursive method, see Remark 1.1. More precisely, the behavior of Boltzmann
samplers is often such that the size of the generated object sits between (1−ε)n
and (1 + ε)n with high probability. In our case, it is essential that the tuple of
partial injections we generate all have the same size. It is often the case that
a Boltzmann sampler can be used to produce an exact-size sampler, using a
rejection algorithm. In the case of partial injections however, as the distribu-
tion of the sizes of partial injections is not sufficiently concentrated around the
mean size, each draw of a random partial injection of size exactly n takes times
O(n7/4), which is not very satisfactory. Here is why.

The mean size of a partial injection produced under the exponential Boltz-
mann model is (see [7, Proposition 1]):

Ex(size of a partial injection) = x
I ′(x)

I(x)
= x

2 − x

(1 − x)2

and its variance is

σ2
x(size of a partial injection) =

d

dx
Ex(size of a partial injection) =

2

(1 − x)3
.

Thus, to generate partial injections of expected size Ex = n, one has to choose
x = 1 − 1/

√
n + 1. In this case , σ2

x = 2(n + 1)3/2. From [7, Theorem 4]
dealing with H-admissible generating functions (see Section 2.3.2) the exact-
size generation requires

√
2πσx = O(n3/4) rejections in average and the overall

cost of exact-size sampling is O(nσx) = O(n7/4) in average. ⊓⊔

As discussed at the beginning of this section, if r = |A|, then a labeled A-graph
of size n can be assimilated to a r-tuple of partial injections on [[1, n]], so the
EGS of labeled A-graphs is

∑

n≥0

Ir
n

n!
zn.

11



2.2 Connectedness

Recall that an A-graph is connected if the underlying undirected graph is con-
nected. In this section, we show the following result.

Theorem 2.4 Let A be an alphabet of cardinality r ≥ 2 and let pn be the
probability for an n-vertex labeled A-graph to be connected. Then limn7→∞ pn = 1
and more precisely, pn = 1 − 2r

nr−1 + o( 1
nr−1 ).

In particular, this shows that labeled A-graphs are asymptotically connected.
The proof of Theorem 2.4, given below, relies on the following theorem, due to
Bender (see [1, p. 497] for a survey and [2] for a complete proof).

Theorem 2.5 Let F (z, y) be a two-variable real function which is analytic at
(0, 0). Let J(z) =

∑

n>0 jnzn, C(z) =
∑

n>0 cnzn and D(z) =
∑

n>0 dnzn be
functions such that

C(z) = F (z, J(z)) and D(z) =
∂F

∂y
(z, J(z)).

If the sequence (jn)n>0 satisfies jn−1 = o(jn), and if for some s ≥ 1, we have
∑n−s

k=s |jkjn−k| = O(jn−s), then

cn =

s−1
∑

k=0

dkjn−k + O (jn−s) .

Proof of Theorem 2.4. Let J(z) =
∑

n≥1 jnzn where jn =
Ir

n

n! . Then the
EGS of labeled A-graphs is 1 + J(z).

Decomposing these graphs into their connected components (connected com-
ponents of the underlying undirected graph) and using Proposition 1.4, we find
that 1 + J(z) = exp(C(z)), where C(z) =

∑

k≥1 ckzk, with ck = Ck

k! and Ck is
the number of connected labeled A-graphs with k vertices.

It follows that C(z) = log(1 + J(z)). We note that the map F (z, y) =
log(1 + y) is analytic at (0, 0) and we let

D(z) =
∂F

∂y
(z, J(z)) =

1

1 + J(z)
.

By Lemma 2.2, In−1 ≤ In

n+1 , and therefore

jn−1 =
Ir
n−1

(n − 1)!
≤ Ir

n

(n + 1)r(n − 1)!
≤ Ir

n

nr−1 n!
=

jn

nr−1
.

In particular, we have

jn−1 = O
(

jn

nr−1

)

= o (jn) . (2)

12



We now want to verify whether
∑n−s

k=s jkjn−k = O(jn−s) (this is the last
hypothesis of Theorem 2.5, for a fixed s ≥ 1). Let S be the sum above. By
symmetry, we get

S =

n−s
∑

k=s

Ir
k

k!

Ir
n−k

(n − k)!
≤ 2





⌊n/2⌋
∑

k=s

Ir
k

k!

Ir
n−k

(n − k)!



 .

We show that for n large enough, the finite sequence
(

Ir
k

k!

Ir
n−k

(n−k)!

)

s≤k≤⌊n/6⌋
is

decreasing. From Equation (1), we have

Ik+1

Ik
= 2(k + 1) − k2 Ik−1

Ik
≤ 2(k + 1);

and by Lemma 2.2, we have
In−(k+1)

In−k
≤ 1

n−k+1 . Therefore

Ir
k+1I

r
n−(k+1)

Ir
kIr

n−k

≤ 2r(k + 1)r

(n − k + 1)r
.

Moreover k!
(k+1)!

(n−k)!
(n−k−1)! = n−k

k+1 , and it follows that

Ir
k+1I

r
n−(k+1)

(k + 1)!(n − k − 1)!

k!(n − k)!

Ir
kIr

n−k

≤ 2r(k + 1)r

(n − k + 1)r

n − k

k + 1

≤ 2r(k + 1)r−1

(n − k + 1)r−1

n − k

n − k + 1

≤ 2r(k + 1)r−1

(n − k + 1)r−1
.

This value is less than or equal to 1 when k+1
n−k+1 is less than or equal to c =

2−
r

r−1 . Since r ≥ 2, we have 1
4 ≤ c ≤ 1

2 , and for any k ≤ n−3
5 , k+1

n−k+1 ≤ 1
4 ≤ c.

For any n ≥ 18, ⌊n
6 ⌋ ≤ n−3

5 , thus the sequence is decreasing on the domain
s ≤ k ≤ ⌊n

6 ⌋.

⌊n/6⌋
∑

k=s+1

Ir
n−k

(n − k)!

Ir
k

k!
≤ (⌊n/6⌋ − s)

Ir
s+1

(s + 1)!

Ir
n−s−1

(n − s − 1)!

From Lemma 2.2, Ir
n−s−1 ≤ 1

(n−s+1)r Ir
n−s and Ir

s+1 ≤ (s+1)rer/
√

s+1 Ir
s . There-

fore

Ir
n−s−1

(n − s − 1)!

Ir
s+1

(s + 1)!
≤ (s + 1)rer/

√
s+1 Ir

s Ir
n−s

(s + 1)! (n − s − 1)! (n − s + 1)r

≤ Ir
n−s

(n − s)!

Ir
s (s + 1)r−1 er/

√
s+1

s! (n − s + 1)r−1

13



and we have

⌊n/6⌋
∑

k=s+1

Ir
n−k

(n − k)!

Ir
k

k!
≤ (⌊n/6⌋ − s)

Ir
n−s

(n − s)!

Ir
s (s + 1)r−1 er/

√
s+1

s! (n − s + 1)r−1
,

which is O
(

Ir
n−s

(n−s)!n
−(r−2)

)

. Note that it is O
(

Ir
n−s

(n−s)!

)

when r = 2.

We now study the remaining part of the sum S. It follows from Lemma 2.2

that if k ≥ s, then In−k ≤ (n−(k−1))!
(n−(s−1))! In−s, so we have

Ir
n−k

(n − k)!
≤ (n − (k − 1))!r−1

(n − (s − 1))!r−1

(n − k + 1)

(n − s + 1)

Ir
n−s

(n − s)!

=
(n − k)!r−1

n!r−1
(n − k + 1)r−1

s−2
∏

i=0

(n − i)r−1 (n − k + 1)

(n − s + 1)

Ir
n−s

(n − s)!
.

By Lemma 2.2 again, we have Ik ≤ k! e2
√

k−1, and hence

Ir
k

k!
≤ k!r−1e(2

√
k−1)r

It follows that

Ir
n−k

(n − k)!

Ir
k

k!
≤
(

n

k

)−(r−1)
(n − k + 1)r

n − s + 1

s−2
∏

i=0

(n − i)r−1e(2
√

k−1)r Ir
n−s

(n − s)!
.

Note that for s = 1,
∏s−2

i=0 (n − i)r−1 = 1.

Now observe that for each s ≤ k ≤ n/2, (n−k+1)r

n−s+1

∏s−2
i=0 (n− i)r−1 < ns(r−1).

We get

⌊n/2⌋
∑

k=⌊n/6⌋+1

Ir
n−k

(n − k)!

Ir
k

k!
≤ ns(r−1) Ir

n−s

(n − s)!

⌊n/2⌋
∑

k=⌊n/6⌋+1

(

n

k

)−(r−1)

e(2
√

k−1)r,

For any k such that ⌊n/6⌋+1 ≤ k ≤ ⌊n/2⌋ we have
(

n
k

)

≥
(

n
⌊n/6⌋

)

. Using Stirling

formula (n! ∼
√

2πe−nnn+ 1
2 ) we get

(

n

⌊n/6⌋

)−1

∼
√

2π
⌊n/6⌋⌊n/6⌋+1/2

nn+1/2
(n − ⌊n/6⌋)n−⌊n/6⌋+1/2

∼
√

2πn

(⌊n/6⌋
n

)⌊n/6⌋+1/2 (

1 − ⌊n/6⌋
n

)n−⌊n/6⌋+1/2

Since ⌊n/6⌋
n ≤ 1

6 and 1− ⌊n/6⌋
n < 1, there exists 0 < C < 1 such that

(

n
⌊n/6⌋

)−1 ≤
Cn for n large enough. Hence,

⌊n/2⌋
∑

k=⌊n/6⌋+1

(

n

k

)−(r−1)

e(2
√

k−1)r ≤ n

3

(

n

⌊n/6⌋

)−(r−1)

e(2
√

⌊n/2⌋−1)r

≤ n

3
C(r−1)n er

√
2n
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In particular, for any D such that C < D < 1 we have

⌊n/2⌋
∑

k=⌊n/6⌋+1

(

n

k

)−(r−1)

e(2
√

k−1)r = O
(

D(r−1)n
)

.

Consequently

⌊n/2⌋
∑

k=⌊n/6⌋+1

Ir
n−k

(n − k)!

Ir
k

k!
=

Ir
n−s

(n − s)!
O
(

ns(r−1)D(r−1)n
)

where 0 < D < 1

Finally we find that

S =
n−s
∑

k=s

Ir
k

k!

Ir
n−k

(n − k)!
= 2

Ir
n−s

(n − s)!

(

Ir
s

s!
+ O

(

n−(r−2)
)

+ O
(

ns(r−1)D(r−1)n
)

)

= 2
Ir
n−s

(n − s)!
O (1) .

Hence
∑n−s

k=s jkjn−k = O(jn−s). Thus we can apply Theorem 2.5 for any fixed
positive integer s, it yields

cn =

s−1
∑

k=0

dkjn−k + O (jn−s) .

Since d0 = 1 and d1 = −j1 = −Ir
1 = −2r, we get that

cn = jn − 2rjn−1 + O (jn−2) .

Now Equation (2) above yields

jn−2 = O
(

jn−1

nr−1

)

= O
(

jn

n2(r−1)

)

,

and the independent technical Proposition 2.10 below yields

In

n!
=

e−1/2

2
√

π
n−1/4e2

√
n(1 + o(1)).

Therefore

In−1

In
=

1

n

(

1 − 1

n

)−1/4

e
2
√

n
(√

1− 1
n−1

)

(1 + o(1)) =
1

n
(1 + o(1))

and
Ir
n−1

Ir
n

=
1

nr
(1 + o(1)).
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Finally

jn−1 =
Ir
n−1

(n − 1)!
=

Ir
n

n!

1

nr−1
(1 + o(1)) =

jn

nr−1
(1 + o(1)).

We conclude that cn = jn

(

1 − 2r

nr−1 + o
(

1
nr−1

))

or

Cn = Ir
n

(

1 − 2r

nr−1
+ o

(

1

nr−1

))

. (3)

Recall that we denote by pn the probability for an n-vertex graph whose tran-
sitions are defined by an r-tuple of partial injections on [[1, n]] to be connected.
Equation 3 shows that

pn =
Cn

Ir
n

= 1 − 2r

nr−1
+ o

(

1

nr−1

)

,

which concludes the proof of Theorem 2.4. ⊓⊔

2.3 1-trimness

Recall that for a labeled A-graph Γ to be admissible, Γ must be 1-trim, that
is, no vertex v 6= 1 may be a leaf (see Section 1.2.3, and also Section 1.1).
Moreover, vertex v is a leaf if and only if it has less than 2 images or preimages
in the |A| partial injections that define Γ.

In this section, we show the following result.

Theorem 2.6 Let A be an alphabet of cardinality at least 2. The probability
for an n-vertex labeled A-graph to have no leaf is 1 + o(1).

We immediately record the following corollary, which gives our random gen-
eration strategy its final justification.

Corollary 2.7 Let A be an alphabet of cardinality at least 2. The probability
for a given size n labeled A-graph Γ to be admissible, is 1 + o(1).

Proof. In view of Theorems 2.4 and 2.6, an n-vertex labeled A-graph is con-
nected with probability 1 + O

(

1
n

)

, and without leaves (in particular: 1-trim)
with probability 1+ o(1). It follows that the probability for an n-vertex labeled
A-graph to be connected and without leaves is

(

1 + O
(

1

n

))

(1 + o(1)) = 1 + o(1),

and the result follows. ⊓⊔

The rest of this section is devoted to the proof of Theorem 2.6. We first
observe that it suffices to establish this result when |A| = 2: indeed, if A =
{a1, . . . , ar} with r > 2 and if the {a1, a2}-part of an A-graph has no leaf, then
neither does the whole A-graph. So we assume that r = 2 for the rest of this
section.
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2.3.1 Number of sequences

We note that a leaf in an A-graph forms a length 1 sequence in the functional
graph of one of the partial injections, and is an endpoint of a sequence in the
functional graph of the other.

We start with a study of the parameter Xn, which counts the number of se-
quences in the functional graph of a partial injection on [[1, n]]. We will compute
the expectation and the variance of Xn in Section 2.3.3. Note that the number
of endpoints of sequences in the functional graph of a random partial injection
is bounded above by the quantity accounted for by the parameter 2Xn.

We first introduce the bivariate series J(z, u) =
∑

n,k
Jn,k

n! znuk, where Jn,k

denotes the number of partial injections on [[1, n]], whose functional graph has
k sequences (that is, such that Xn = k). The EGS of non-empty sequences was
already computed and it is equal to z

1−z or, in this multivariate setting, zu
1−z .

The EGS of cycles is log z
1−z (also in this multivariate setting). The multivariate

analogue of Proposition 1.4 (see Flajolet and Sedgewick [10, ex. 7, section III.3])
then shows that

J(z, u) = exp

(

zu

1 − z
+ log

(

1

1 − z

))

=
1

1 − z
exp

(

zu

1 − z

)

.

In particular, J(z, 1) = I(z).
The expectation of variables Xn and X2

n are

E(Xn) =

∑

k kJn,k
∑

k Jn,k
and E(X2

n) =

∑

k k2Jn,k
∑

k Jn,k
.

Now
∑

k Jn,k is the coefficient of zn in J(z, 1) and
∑

k kJn,k is the coefficient of

zn in ∂
∂uJ(z, u)

∣

∣

u=1
. The coefficient of zn in ∂2

∂u2 J(z, u)
∣

∣

u=1
is
∑

k k(k− 1)Jn,k.
Let

Hp(z) =
1

(1 − z)p
I(z) =

1

(1 − z)p+1
exp

(

z

1 − z

)

.

Then we have

J(z, 1) = I(z) = H0(z),

∂

∂u
J(z, u)

∣

∣

∣

u=1
=

z

(1 − z)2
exp

(

z

1 − z

)

=
z

1 − z
I(z) = zH1(z),

∂2

∂u2
J(z, u)

∣

∣

∣

u=1
=

z2

(1 − z)3
exp

(

z

1 − z

)

=
z2

(1 − z)2
I(z) = z2H2(z).

For convenience, if S(z) is a formal power series, we let [zn]S(z) denote the
coefficient of zn in S(z). Then the expectation of variables Xn and X2

n are
given by

E(Xn) =
[zn]zH1(z)

[zn]I(z)
=

[zn−1]H1(z)

[zn]H0(z)
, (4)

E(X2
n) =

[zn]z2H2(z)

[zn]I(z)
+

[zn]zH1(z)

[zn]I(z)
=

[zn−2]H2(z)

[zn]H0(z)
+

[zn−1]H1(z)

[zn]H0(z)
. (5)
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The variance of Xn is

σ2(Xn) = E(X2
n) − E(Xn)2. (6)

Thus finding asymptotic estimates of E(Xn) and σ2(Xn) requires finding
estimates of the coefficients of the functions Hp(z) for p = 0, 1, 2.

2.3.2 Saddlepoint asymptotics

Saddlepoint analysis is a powerful method to find asymptotic estimates of the
coefficients of analytic functions which exhibit exponential-type growth in the
neighborhood of their singularities. We refer the reader to the books by Flajolet
and Sedgewick [9] and [10, Chap. VIII], and to the survey by Odlyzko [23] for
a thorough presentation of saddlepoint analysis.

The fast growth of the coefficients of Hp(z) justifies the application of sad-
dlepoint analysis. The theorem we want to use, Theorem 2.9 below, requires
an additional hypothesis, namely the H-admissibility of the functions Hp [10,
Section VIII.5]. We now verify that this rather technical condition is satisfied.

Let f(z) be a function that is analytic at the origin, with radius of conver-
gence ρ, positive on ]0, ρ[. Put f(z) into its exponential form f(z) = eh(z) and
let

a(r) = rh′(r) and b(r) = r2h
′′

(r) + rh′(r).

The function f(z) is said to be H-admissible if there exists a function δ: ]0, ρ[−→
]0, π[ such that the following three conditions hold:

(H1) limr→ρ b(r) = +∞.

(H2) Uniformly for |θ| ≤ δ(r)

f(reiθ) ∼ f(r)eiθa(r)− 1
2 θ2b(r) when r tends to ρ.

[That is, f(reiθ) = f(r)eiθa(r)− 1
2 θ2b(r)(1 + γ(r, θ)) with |γ(r, θ)| ≤ γ̃(r)

when |θ| < δ(r) and limr→ρ γ̃(r) = 0.]

(H3) and uniformly for δ(r) ≤ |θ| ≤ π

f(reiθ)
√

b(r) = o(f(r)) when r tends to ρ.

Lemma 2.8 The functions H0(z), H1(z) and H2(z) are H-admissible.

Proof. First it is elementary to verify that Hp(z) = 1
(1−z)p+1 exp

(

z
1−z

)

(p =

0, 1, 2) is analytic at the origin, with radius of convergence ρ = 1, and is positive
on the real segment ]0, ρ[. Following the definition of H-admissibility above, we
find that Hp(z) = ehp(z) with hp(z) = z

1−z − (p + 1) log(1 − z), so that

ap(r) = r
(p + 2) − (p + 1)r

(1 − r)2
and bp(r) = r

(p + 2) − pr

(1 − r)3
. (7)
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Therefore Condition (H1) is satisfied.
Let δ(r) = (1 − r)17/12 (for a discussion on the choice of δ, we refer the

readers to [10, Chap. VIII]). For θ small enough, one can expand hp(re
iθ) into

hp(re
iθ) = hp(r) +

∞
∑

m=1

αm(r)
(iθ)m

m!
,

with αm(r) = r d
dr αm−1(r) and α0(r) = hp(r) (by definition of a Taylor devel-

opment). In particular, we find

α1(r) = ap(r),

α2(r) = bp(r), and

α3(r) =
r

(1 − r)4
(

(2 + p) + 4r − pr2
)

.

Thus, as r tends towards 1, for |θ| ≤ δ(r), α3(r)θ
3 = O

(

(1 − r)1/4
)

= o(1).

More generally, αm(r)θm = O
(

(1 − r)1/m+1
)

= o(αm−1(r)). Therefore, uni-
formly for |θ| ≤ δ(r)

hp(re
iθ) = hp(r) + iθa(r) − 1

2
θ2b(r) + o(1)

and Condition (H2) follows.
Finally, we have

|Hp(re
iθ)| =

1

|1 − reiθ |p+1
exp

(

ℜ
(

reiθ

1 − reiθ

))

=
1

(1 + r2 − 2r cos θ)(p+1)/2
exp

(

r(cos θ − r)

1 + r2 − 2r cos θ

)

.

We observe that for r > 0, r(cos θ − r) and (1 + r2 − 2r cos θ)−1 are decreasing
functions of θ on ]0, π[. Thus, for each r > 0 and δ(r) ≤ |θ| < π, |Hp(re

iθ)| is
bounded above by |Hp(re

iδ(r))|, namely

|Hp(re
i(1−r)

17
12 )| =

exp

(

r(cos(1−r)
17
12 −r)

1+r2−2r cos(1−r)
17
12

)

(1 + r2 − 2r cos(1 − r)
17
12 )(p+1)/2

In the neighborhood of 0, cos θ = 1− 1
2θ2 +O(θ4). So when r tends towards

1, we have

cos(1 − r)17/12 = 1 − 1

2
(1 − r)17/6 + O

(

(1 − r)17/3
)

,

1 + r2 − 2r cos(1 − r)17/12 = 1 + r2 − 2r + r(1 − r)17/6 + O
(

(1 − r)17/3
)

= (1 − r)2
(

1 + r(1 − r)5/6 + O
(

(1 − r)11/3
))

,

1

1 + r2 − 2r cos(1 − r)17/12
=

(1 − r)−2

1 + r(1 − r)5/6 + O
(

(1 − r)11/3
)

= (1 − r)−2
(

1 − r(1 − r)5/6 + O
(

(1 − r)5/3
))

.
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Moreover

r(cos(1 − r)
17
12 − r)

1 + r2 − 2r cos(1 − r)
17
12

=
r

(1 − r)2

(

1 − r − 1

2
(1 − r)17/6 + O

(

(1 − r)17/3
)

)

(

1 − r(1 − r)5/6 + O
(

(1 − r)5/3
))

=
r

1 − r

(

1 − 1

2
(1 − r)11/6 + O

(

(1 − r)14/3
)

)

(

1 − r(1 − r)5/6 + O
(

(1 − r)5/3
))

=
r

1 − r

(

1 − (1 − r)5/6 + O
(

(1 − r)5/3
))

.

It follows that

|Hp(re
i(1−r)17/12

)| = (1 − r)−(p+1)
(

1 − r(1 − r)5/6 + O
(

(1 − r)5/3
))(p+1)/2

exp

(

r

1 − r

(

1 − (1 − r)5/6 + O
(

(1 − r)5/3
))

)

.

As a result,

|Hp(re
iθ)| ≤ (1 − r)−(p+1)(1 + O(1 − r)5/6)

exp

(

r

1 − r

(

1 − (1 − r)5/6 + O
(

(1 − r)5/3
)

)

)

,

|Hp(re
iθ)| ≤

(

Hp(r) + exp

(

r

1 − r

)

O((1 − r)
5
6−(p+1))

)

exp

(

− r

(1 − r)
1
6

+ O((1 − r)
2
3 )

)

,

and hence

|Hp(re
iθ)|
√

bp(r) = o(Hp(r)),

that is, Condition (H3) is satisfied. ⊓⊔

We now want to use the following theorem [10, Theorem VIII.5].

Theorem 2.9 (coefficients of H-admissible functions) Let f(z) be a H-
admissible function and ζ = ζ(n) be the unique solution in the interval ]0, ρ[
of the saddlepoint equation

ζ
f ′(ζ)

f(ζ)
= n.

Then

[zn]f(z) =
f(ζ)

ζn
√

2πb(ζ)
(1 + o(1)) .

where b(z) = z2h′′(z) + zh′(z) and h(z) = log f(z).
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Let us record immediately an application of this result.

Proposition 2.10 With the notation above, for p = 0, 1, 2,

[zn]Hp(z) =
e−1/2

2
√

π
np/2−1/4e2

√
n(1 + o(1)).

Proof. For any positive integer n the saddle point ζp(n) is the least positive

solution of z
H′

p(z)

Hp(z) = n, that is, the least positive solution of

(n + p + 1)z2 − (2n + p + 2)z + n = 0

and it follows that

ζp(n) = 1 − p +
√

4n + (p + 2)2

2(n + p + 1)
= 1 − 1√

n
− p

2n
+ O

(

1

n3/2

)

.

Moreover from Equation (7), the function bp(r) is bp(r) = r (p+2)−pr
(1−r)3 . Therefore

[zn]Hp(z) =
e

ζp
1−ζp

√

2π ((p + 2) − pζp)

1

ζn
p (1 − ζp)p

√

1 − ζp

ζp
(1 + o(1)) .

Now
√

1−ζp

ζp
= n− 1

4 (1+o(1)), (1−ζp)
p = n− p

2 (1+o(1)) and
√

2π ((p + 2) − pζp) =

2
√

π(1+o(1)). Finally
ζp

1−ζp
= (

√
n−1− p

2 )(1+o(1)) and ζ−n
p = exp(−n log ζp) =

exp(
√

n + p+1
2 )(1 + o(1)). So

[zn]Hp(z) =
e
√

n−1−p/2

2
√

π
e
√

n+(p+1)/2np/2−1/4(1 + o(1))

=
e−1/2

2
√

π
np/2−1/4e2

√
n(1 + o(1)).

⊓⊔

2.3.3 Expected value and standard deviation of Xn

We now conclude the study of the expected value and the standard deviation
of the number of sequences in a random partial injection.

Lemma 2.11 The expected number E(Xn) of sequences in a random partial
injection of size n is asymptotically equal to

√
n with standard deviation o(

√
n).

Proof. Recall that the expected values of the random variable Xn and X2
n and

the variance of Xn are given in Equations (4), (5) and (6) in Section 2.3.1. We
can use Proposition 2.10 to estimate these quantities.
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From Equation (4) we find that

E(Xn) =
(n − 1)1/4e2

√
n−1

n−1/4e2
√

n
(1 + o(1)) =

√
n(1 + o(1)),

that is, the expected number E(Xn) of sequences in a random partial injection
of size n is asymptotically equal to

√
n.

Similarly, from Equation (5) we get

E(X2
n) =

(n − 2)3/4e2
√

n−2

n−1/4e2
√

n
(1 + o(1)) +

√
n(1 + o(1)) = n(1 + o(1)),

and from Equation (6) σ2(Xn) = o(n). Thus the standard deviation σ(Xn) of
the number of sequences in a random partial injection of size n is o(

√
n). ⊓⊔

2.3.4 Proof of Theorem 2.6

Before we prove Theorem 2.6, let us recall the statement of Chebyshev’s in-
equality.

Proposition 2.12 (Chebyshev’s inequality) If X is a random variable of
expectation E(X) with a finite variance σ2(X) then for any positive real α

P{|X − E(X)| ≥ α} <
σ2(X)

α2
. (8)

As we already noted, given a pair of partial injections, a leaf in the re-
sulting A-graph is an endpoint of a sequence in one of the partial injections,
and a singleton in the other. In view of Lemma 2.11, Chebyshev’s inequality
(Equation (8)) applied to Xn and α =

√
n, shows that

P{|Xn −√
n| ≥ √

n} = o(1). (9)

In other words, the probability that a partial injection of size n contains more
than 2

√
n sequences tends towards 0 when n tends towards ∞. Let us call such

a partial injection sequence-rich. Then n-vertex labeled A-graphs defined by
a pair of partial injections, one of which at least is sequence-rich, occur with
probability o(1).

Let us now focus on the labeled A-graphs defined by partial injections, each
of which contains less than 2

√
n sequences. Again, a vertex is a leaf if it is an

endpoint of sequence for one of the injections and a singleton in the other one.
As the two injections play symmetric rôles, we estimate the probability for a
vertex to be an endpoint in the first injection and a singleton for the second
one: the total estimate will be bounded above by twice that probability.

Since the first injection has at most 2
√

n sequences, it has at most 4
√

n
endpoints. To estimate the number of second partial injections in which at least
one of these vertices is a singleton, we count the number of partial injections
that do not involve such a vertex. For any given vertex, there are In−1 such
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partial injections, and as we have to consider up to 4
√

n potential endpoints, the
number of partial injections in which at least one of these vertices is a singleton
is bounded above by 4

√
nIn−1.

Therefore there are at most 8
√

nIn−1In pairs of partial injections that are
not sequence-rich and that exhibit at least a leaf. As In−1 ≤ In

n , this number is
less than or equal to 8√

n
I2
n, and the associated probability is less than or equal

to 8√
n
.

Consequently the probability for an n-vertex labeled A-graph to have at
least a leaf is less than or equal to

o(1) +
8√
n

= o(1),

which concludes the proof.

2.4 The number of size n subgroups

Let Sn,r be the number of size n subgroups of F = F (A), where rank(F ) = r. By
Corollary 2.7, the number of admissible labeled A-graphs of size n is Ir

n(1+o(1)).
By Lemma 1.5, each size n subgroup is represented by (n−1)! distinct admissible
labeled A-graphs, so

Sn,r ∼ Ir
n

(n − 1)!
.

Proposition 2.10 gives us an equivalent of In/n!, and it follows that

Sn,r ∼ n n!r−1 Ir
n

n!r
∼ n n!r−1 e−r/2

2rπr/2
n−r/4e2r

√
n.

By Stirling’s formula, n! is equivalent to
√

2πe−nnn+ 1
2 and it follows that

Sn,r ∼ (2e)−r/2

√
2π

e−(r−1)n+2r
√

nn(r−1)n+ r+2
4 .

3 Random generation algorithm

As discussed in Section 1.2, and in particular in Section 1.2.3 (see also Section 3.2
below), the core of our random generation algorithm for admissible A-graphs,
is a procedure to randomly generate size n partial injections.

The recursive decomposition of partial injections investigated so far allows us
to use the recursive method introduced by Flajolet, Zimmermann and van Cut-
sem [11] (following work by Nijenhuis and Wilf [22]) to efficiently and randomly
generate partial injections of size n.

Recall that a partial injection is a set of disjoint components, that are either
cycles or non-empty sequences. The recursive method consists, in our case, in:

• choosing the size k of a component (k ∈ {1, . . . , n}) according to the
distribution of the sizes of components in a random size n partial injection;
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• choosing whether that size k component is a cycle or a sequence – accord-
ing to the distribution of these two types among size k components;

• and choosing a size n − k partial injection.

We give more details below, on how these steps are performed. The result
of the procedure is a sequence of symbols of the form ξ1(k1) . . . ξr(kr), where
k1 + · · · + kr = n, the ξi are in {σ, κ}, σ(k) stands for sequence of size k, and
κ(k) stands for cycle of size k. Such a sequence represents, in a natural way, an
unlabeled size n partial injection and the last step of the algorithm consists in
randomly labeling that partial injection.

Let us now be more precise.

3.1 Partial injections

The tool to grasp the distribution of the sizes of components in partial injections
is the pointing operator Θ: pointing a labeled object consists in marking one of
its atoms, or equivalently one of its labels from {1, · · · , n}. Naturally, there are
n ways of pointing an object of size n. So if the EGS of a labeled combinatorial
class C is C(z) =

∑

cnzn/n!, then the pointed class of C, denoted by ΘC, has
EGS

ΘC(z) =
∑

n≥0

ncn

n!
zn = z

d

dz
C(z).

If C is, as in our situation, defined as a set of components of a class D with EGS
D(z), then C(z) = exp(D(z)) and

ΘC(z) = z
d

dz
C(z) = z

d

dz
(exp(D(z)))

= z

(

d

dz
D(z)

)

exp(D(z)) = ΘD(z) C(z).

The combinatorial interpretation of this equality is the following: marking an
atom of an element of C amounts to marking an atom of one of its components
(of size, say, k), and the remaining part of the element of ΘC is a non-pointed
element of C of size n − k.

For partial injections, we have I(z) = exp(D(z)), with D(z) = z
1−z +

log( 1
1−z ). Therefore

ΘI(z) = ΘD(z) × I(z) =

(

z

(1 − z)2
+

z

1 − z

)

I(z), (10)

where z
(1−z)2 is the EGS of pointed labeled sequences and z

1−z is the EGS of

pointed labeled cycles. Now

[zk]
z

(1 − z)2
=

{

k if k ≥ 1,
0 if k = 0,

[zk]
z

1 − z
=

{

1 if k ≥ 1,
0 if k = 0,
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so we have

n
In

n!
=

n
∑

k=1

(k + 1)
In−k

(n − k)!
. (11)

Therefore the probability pk = P(size k) for the pointed component to be of size
k is

pk =
(k + 1)

In−k

(n−k)!

In

(n−1)!

=
1

In

(

(k + 1)
(n − 1)!

(n − k)!
In−k

)

and the probability for a size k component to be a sequence (resp. a cycle) is

P(sequence) =
k

k + 1
P(cycle) =

1

k + 1
.

We are now ready to describe the random generation algorithm for partial
injections of size n. The discussion of its complexity is postponed to Section 3.3.

Let Uniform([0, 1[) be the function that returns a real number chosen uni-
formly at random in the interval [0, 1[. Recall that if X is a random variable
with values in [[1, n]] with probability P(X = i) = pi then the value of X can be
generated randomly with respect to this probability distribution as follows (see
[5] for example).

RandomX

dice = Uniform([0, 1[)
k = 1, S = p1

while dice ≥ S

k = k + 1
S = S + pk

return k

Our algorithm to randomly generate a partial injection of size n uses directly
this idea. Because the probabilities discussed above (for a component of a
random partial injection to have size k, for a size k component to be a cycle)
are rational numbers, we choose to express the algorithm entirely in integers,
in order to facilitate exact computation, and thereby to guarantee the absence
of bias in the distribution of the partial injections. Concretely, we multiply dice

and the pk by In.
The algorithm requires a preliminary phase, during which a table containing

the values of Ik (0 ≤ k ≤ n) is computed using the recurrence relation in
Equation (1).

We denote by Uniform(N) a function that returns an integer chosen uni-
formly at random in the interval [0, N [.

RandomPartialInjection(n)
Result = []
while n > 0

// Compute the size k of a component
dice = Uniform(In)
k = 1, T = 1, S = 2In−1 // That is, S = Inp1
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while dice ≥ S

k = k + 1
T = T ∗ (n − k + 1)
S = S + (k + 1)TIn−k // That is, S = S + Inpk

// Decide whether the component is a sequence or a cycle
dice

′ = Uniform(k + 1)
if dice

′ < k

then Append σ(k) to Result

else Append κ(k) to Result

n = n − k

// Randomly label the final result
Label Result with RandomPermutation(n)
return Result

The outer while loop of the algorithm produces a sequence of symbols of
the form (ξ1(k1), . . . , ξr(kr)), with each ξi ∈ {σ, κ} and such that

∑r
i=1 ki = n,

that describes the size and the nature of the components of the size n partial
injection.

The last step of the algorithm, which randomly generates a permutation of
the n elements on which the partial injection is defined, can be performed in
linear time and space using the algorithm given in Section 5.

3.2 Admissible A-graphs

Recall (see Section 1.2.3) that our algorithm to generate admissible A-graphs
consists in randomly generating, for each letter of the alphabet A, a partial
injection of size n, and then using a rejection algorithm to keep only admissible
A-graphs.

Assuming that the table for the values of In is already computed, the algo-
rithm reads as follows.

RandomAdmissibleAGraph(n)
repeat

for each a ∈ A

compute the partial injection Ia for a using RandomPartialInjection(n)
until the resulting A-graph is admissible.

3.3 Complexity

The algorithm requires manipulating large integers: In is of the order of O(nn).
Computing in multiprecision, that is, without any approximation, guarantees
the absence of bias in the distribution of the generated objects. However, we
also briefly discuss floating point implementations at the end of this section.

We first evaluate the complexity of the algorithm in the RAM model, i.e.,
under the unit cost assumption (or uniform cost convention) according to which
each data element (here: each integer) is stored in one unit of space, and the
elementary operations (reading, writing, comparing, performing arithmetic op-
erations, etc) require one unit of time, – even for large numbers.
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The pre-computation phase that stores the values of In uses the recurrence
relation on the In given in Equation (1), and it requires O(n) operations.

The (worst case) time complexity T (n) of RandomPartialInjection(n)
(assuming that the values of the In are precomputed) satisfies the following
inequality

T (n) ≤ max
1≤k≤n

(ck + T (n − k))

(where c is a constant), so that T (n) ≤ cn, that is, T (n) = O(n).
Next, checking whether the A-graph generated is connected can be done

using common algorithms on graphs (depth-first search) in time O(n). Checking
1-trimness is also done in O(n), by scanning the list of edges which has at most
|A|n elements. This part of the algorithm does not require manipulating large
numbers.

Corollary 2.7 shows that size n A-graphs are admissible with probability 1+
o(1). Therefore the number of rejects (see Section 1.2.3) for lack of admissibility
is equal in average to 1

1+o(1) = 1 + o(1). Thus the average number of rejects

tends to 0 when n tends to infinity.
In conclusion, for the RAM model, the random generation algorithm requires

a precomputation that can be done in linear time, and it uses, in average, O(n)
operations to generate each admissible A-graph.

In the case of the bit complexity (or logarithmic cost convention), an integer
N is handled via its binary representation, of length O(log N). In particular,
the representation of In has length O(n log n). The basic operations on numbers
of that size (reading, writing, comparison, addition, multiplication by a number
whose binary representation is of length O(n)) are performed in time O(n log n),
whereas the multiplication of two such numbers takes time O(n log2 n). Under
this bit-cost assumption, the time and space required for the pre-computation
are O(n2 log n) (instead of O(n) in the RAM model). And each random draw
takes time O(n2 log2 n).

Remark 3.1 Under the bit-cost assumption, we should also take into consider-
ation the complexity of the function Uniform(N). Since this function returns
an integer, it can be performed by a rejection algorithm, randomly choosing
each bit of (the binary expansion of) N , that is, in 1 + ⌊log n⌋ unit cost oper-
ations. In such a process, the probability that the integer generated is greater
than N is at most 1/2 ( b−1

b in base b), so the average number of reject is at
most 2, and the complexity of Uniform(N) is O(log N). ⊓⊔

In practice, it is often convenient to use floating point arithmetic instead of
multiprecision arithmetic. In theory, the approximations made in floating point
arithmetic induce a loss of precision, and may therefore introduce a bias in the
probability distribution of the generated objects.

Denise and Zimmermann [4] showed that the complexity of the floating point
implementation is the same as for the RAM model. They also show that, if
certain precautions are taken (essentially in the choice of the rounding operator
for each operation), a floating point implementation introduces only a negligible
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bias in the probability distribution of the generated objects. In the case of partial
injections, using the standard rounding operator does not seem experimentally
to produce a significant bias, but it is not theoretically proved.

4 On the rank of a size n subgroup

We conclude this paper with a few applications of the above results to the study
of the rank distribution of size n subgroups. The first one concerns the expected
value of this rank, and the others establish the intuitive results that finite index
(resp. fixed rank k) subgroups are asymptotically negligible.

Recall that the rank of a subgroup H with a size n graphical representation
Γ is equal to |E(Γ)| − n + 1, where |E(Γ)| is the number of edges of the graph
Γ (see Section 1.1).

Corollary 4.1 The average rank of a size n subgroup of F (A) is (|A| − 1)n −
|A|√n + 1, with standard deviation o(

√
n).

Proof. Let Γ an A-graph. For each letter a of the alphabet A, the number of
a-labeled edges is the difference between n and the number of sequences in the
functional graph of the partial injection determined by the a-labeled edges. In
view of Lemma 2.11, the number of a-labeled edges is therefore asymptotically
equal to n − √

n, with standard deviation o(
√

n), and the announced result
follows. ⊓⊔

Corollary 4.2 Let H be a size n subgroup of F (A) and let k ≥ 1 be an integer.
Then the probability that rank(H) ≤ k is asymptotically o

(

1
n

)

.

Proof. Corollary 4.1 shows that the mean value of the rank of H is E(rank) =
(|A| − 1)n − |A|√n + 1, with variance σ2(rank) = o(n).

If rank(H) ≤ k, then in particular |rank(H) − E(rank)| ≥ E(rank) − k. It
follows, by Chebyshev’s inequality (see Equation (8) above), that

P{rank ≤ k} ≤ P{|rank − E(rank)| ≥ E(rank) − k}

≤ o(n)

O(n2)
= o(

1

n
).

⊓⊔

5 Finite index subgroups

We saw in Section 1.1 that a finitely generated subgroup has finite index if and
only if, in its graphical representation, every letter labels a permutation, that
is, a partial injection whose domain is the full set of vertices. Let us say, in
that case, that the corresponding A-graph is a permutation A-graph. Based on
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this observation, we can adapt our approach to get a linear time (in average)
random generation algorithm.

As in the general case (see Section 3.2), we use a rejection algorithm: we
repeatedly randomly generate a permutation of size n for each letter a ∈ A,
until the resulting graph is connected and 1-trim.

Random generation of permutations is a classical object of study, and it
can be performed in time O(n) (in the RAM model, O(n log n) in the bit-cost
model) using the following algorithm (see [5] for example):

RandomPermutation(n)
for i ∈ {1, · · · , n}

P[i] = i
for i from 2 to n

j = 1 + Uniform(i) // j is a random integer in [[1, i]]
Swap P [i] and P [j]

return P

Note that this algorithm does not require manipulating large integers.
The efficiency of the rejection algorithm depends on the average number of

rejects, and hence on the probability, for a permutation A-graph to be connected
and 1-trim. Trimness is a moot point since a permutation A-graph never has
any leaf.

Connectedness is not guaranteed, but we note that Dixon [6] uses Bender’s
theorem (Theorem 2.5 above) to compute the asymptotic expansion of the prob-
ability for a pair (or a r-tuple) of size n permutations to generate a transitive
subgroup of Sn, that is, to define a connected permutation A-graph. He shows
in particular that this probability is of the form 1 − 1/nr−1 + O(1/n2(r−1)).

Thus the average number of rejects tends to 0 when n tends to infinity,
and the average case complexity of the random generation of an admissible
permutation A-graph is O(n) (in the RAM model, O(n log n) in the bitcost
model).

We can also show that finite index subgroups are asymptotically negligible
among subgroups of a given size.

Proposition 5.1 The probability for a randomly chosen size n subgroup of
F (A) to have finite index is O(nr/4e−2r

√
n). In particular, it is o

(

n−k
)

for
any k ≥ 1.

Proof. Let r = rank(F ) = |A|. The number of size n finite index subgroups
is at most the number of r-tuples of permutations, namely n!r. The number of
size n subgroups is, according to the discussion in this paper, equivalent to the
number of r-tuples of partial injections, that is, it is equal to Ir

n(1 + o(1)).
Thus the probability that a size n subgroup has finite index is at most equal

to
(

n!
In

)r

(1 + o(1)). By Proposition 2.10 (applied with p = 0), we know that

In/n! = O(n−1/4e2
√

n). Therefore
(

n!

In

)r

= O
(

nr/4e−2r
√

n
)

,
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which converges to 0 faster than the inverse of any polynomial. ⊓⊔

6 A few questions

A first question, prompted by Proposition 5.1, is the following. Even though
finite index subgroups are negligible among finitely generated subgroups, we
saw in Section 5 how to randomly generate them. When k is fixed, rank k
subgroups are also asymptotically negligible among finitely generated subgroups
(Corollary 4.2). Can we find an efficient random generation algorithm for these
subgroups?

Our second question is related with another method used in the literature to
generate subgroups (not only for free groups). This method is based on the idea
of randomly generating a k-tuple of elements that generate the subgroup — with
k fixed and, say, the maximal length of the generators being allowed to tend
to infinity. It is used for instance by Jutsikawa [14] to study the distribution
of malnormal subgroups in free groups. We refer also to Martino, Turner and
Ventura [19] on the distribution of monomorphisms between free groups, and
to Miasnikov and Ushakov [20] for a survey of this technique in relation with
group-based cryptography.

The question that arises in this context is to compare the distribution of
subgroups that occurs with this generation scheme and the distribution we
considered in this paper. They must be different since we fix the size of the
subgroups generated, whereas they fix the number and the maximal length of
a set of generators, which may lead to graphical representations of varying size.
One must also take into consideration the fact that each subgroup is generated
by a potentially large number of k-tuples of generators. However, it remains
possible that generic properties (those that have asymptotically probability 1)
coincide for both distributions.
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