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This paper presents the numerical resolution of the problem defined by corona discharge in a gas at the edge of a blade facing a plate.
We use the finite element method to solve the Poisson equation and the method of characteristics to determine the distribution of charge
density (charge conservation equation). The main point is the use of a structured mesh which is redefined at each iteration step to avoid
artificial numerical diffusion when solving the charge conservation equation. This algorithm is applied using an injection law giving the
charge density at the injector as a function of the local electric field.

Index Terms—Finite elements, injection through corona discharge, method of characteristics (MOC), space charge effect.

I. INTRODUCTION

THE electric corona discharge in gas is commonly used in
many engineering devices and processes. It is generated,

for example, in order to electrically charge small particles or
drops or surfaces of larger objects, to initiate chemical reactions,
etc. The injected space charge of density modifies the distri-
bution of electrical field which, in turn, controls the distri-
bution of space charge. In some applications, like electrostatic
precipitation, several electrodes are injecting charge carriers in
an insulating medium, and, often, these injecting electrodes are
not wires. The discharges then occur in restricted zones of the
electrodes where the electric field takes high values.

There are not yet reliable and accurate numerical models
for the computer simulation of this phenomenon. Previous
attempts to obtain numerical solutions are based on the clas-
sical methods to solve the equations of Poisson and of charge
conservation. These attempts using structured or unstructured
mesh were limited to two-dimensional (2-D) configurations
where the injecting electrodes are wires characterized by an
approximately constant electric field at their surface. The
problem is much more difficult when the injecting electrode
is sharp (for example, a blade or a needle). For a high enough
voltage applied between the electrodes, a corona discharge is
created near the needle tip or the blade edge. In these cases, it is
not possible to prescribe a priori the value of the electric field
at the injecting electrode as it is commonly done for injecting
wires. Recent attempts [1], [2] propose to use some sort of
injection law to account for the resulting effect of the corona
discharge, i.e., of the complex ionizing phenomena occurring
in the bi-ionized layer of small extent close to the zone of
high curvature of the electrode. In our previous study [9], the
injected charge was fixed a priori. We focus here on the use
of such an injection law combined with the redefinition of the
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Fig. 1. Schematic view of the two electrodes configuration blade–plane.

mesh at each iteration step to obtain a satisfactory solution of
the problem in the 2-D blade–plate configuration.

II. MATHEMATICAL FORMULATION

Most numerical studies to determine the space charge den-
sity and the electrical field were performed in 2-D electrodes
configurations, for instance, for wire-duct electrostatic precipi-
tators [3]–[5] and axi-symmetric point-plane configuration [1]
(a few works considered real three-dimensional (3-D) configu-
rations [6], [7]). We consider here the two-dimensional (2-D)
problem of a blade facing a plate as sketched in Fig. 1, with the
radius of curvature of the blade being small compared with the
distance between blade and plate. In practice, the domain will
be bounded by a field line of the harmonic field at a distance
high enough from the blade edge (Fig. 2). The distributions of
electric potential and charge density between the two elec-
trodes are governed by the coupled Poisson equation (1) and
charge conservation (2)

(1)

(2)

where the current density is ;
here, denotes the medium permittivity, denotes the electrical
field the medium conductivity, denotes the
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Fig. 2. Structured mesh for the finite element method (FEM) and method of characteristics (MOC) .

mobility of charge carriers, and denotes the velocity field of
the medium. Assuming the medium conductivity to be zero and
the diffusion and convection currents to be negligible compared
with the drift current, the expression of simplifies into

The boundary conditions associated with the Poisson equa-
tion (1) are of Dirichlet type on the electrodes and
of Neumann type on the axis of symmetry and
on the outer boundary (field line). From the mathematical view-
point, only one boundary condition concerning is associated
with (3), and it has been shown that the correct condition con-
sists in prescribing the charge density at the injector [2]. Such a
condition was not retained in most of the past works, with the
authors using a condition on the electrical field at the injecting
electrode. These authors followed the assumption of Kaptzov
stating that, above the inception voltage of corona discharge,
the field distribution near the injecting electrode remains un-
changed and equal to the one existing at threshold . In prac-
tice, this proposition is good only for wires as injecting elec-
trodes, the constant electrical field at the injector being given by
Peek law [7].

In the case of blades and needles, it is not possible to pre-
scribe a priori the field distribution on the injecting electrode.
In a first attempt [2], we worked with an imposed charge dis-
tribution at the blade, near the edge (rectangular and Gaussian
distributions). The corona discharge occurs at the edge of the
blade where the field takes high values and generates a bi-ion-
ized region. This region can be taken into account in an indirect
way by introducing an injection law (the intricate physical phe-
nomena in this region being ignored) giving the value of the
space charge density which leaves the bi-ionized zone. In this

approximation, the density of injected charge at a point
of the injector is related to the local value of the electrical field

at this point [2]

(3)

where is the threshold field for corona inception and the
function only if . This function increases
very sharply with so that the field resulting from the in-
jection will remain close to , thus approximately fulfilling
the Kaptzov approximation. In practice, we used the linearized
expression

(4)

where takes large values.
Taking the applied voltage as the reference for the elec-

tric potential and , and for the
field, the charge and the current densities respectively, (1) and
(2) lead to the following nondimensional equations:

(5)

(6)

The boundary conditions then become

on the blade

(7)

on the plate (8)

on the axis and on the outer boundary (9)

With these conditions for the potential and the charge density
on the electrodes, the problem is mathematically well posed.
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III. NUMERICAL TECHNIQUE

The Poisson equation can be solved by the finite difference
method FDM [5] or the charge simulation method CSM [8]. As
in most works [2]–[4], [6], [7], this equation is solved here by the
finite element method (FEM) . To solve the equation of conser-
vation of charge, the method of characteristics (MOC) was used
in a lot of studies [2], [5], [8], [9], [11], but some authors [4], [7]
used the finite volume method FVM (donor cell). Apart from a
few works using unstructured mesh [4], most authors worked
with a structured mesh [6], [10], [11]. In a first study [9], we
used a structured mesh and Poisson equation was solved by the
FEM. We tested the two numerical methods FVM and MOC to
determine the distribution of space charge between blade and
plate. This study showed that the MOC is better than the FVM,
because FVM gives a local minimum in the current density on
the plate collector; therefore, only the MOC is used in this work
with a structured mesh for solving the problem.

The two coupled equations are solved by successive approx-
imations until convergence. The space charge being known,
the FEM with triangular elements of first order is used to de-
termine the potential distribution. Then, with the new field dis-
tribution, the MOC is used to determine the charge density
at the nodes of the structured mesh. For strong injections, it is
necessary to introduce an under-relaxation between successive
approximations to have convergence of the iterative process [9].
The structured mesh (Fig. 2) is redefined at each approximation
in order to integrate (6) along the field lines and, therefore, to
avoid numerical diffusion. The nodes of this mesh are the points
of intersection between electric field lines and the equipotential
lines; the initial structured mesh is defined from the harmonic
solution of Laplace [9].

IV. MESH REDEFINITION

When the nodes remain the same during the whole iteration,
independently of the structured or unstructured character of the
mesh, the solution for a discontinuous distribution of the charge
density on the injector (blade) gives a continuous distribution of
current density on the plate. This does not arise from the diffu-
sion of ions [discarded in the models (5) and (6)], but from the
so-called numerical diffusion. If the different sets of nodes lay
on field lines, integration of (6) along these lines then saves the
discontinuous nature of charge density. This led us to redefine
the mesh at each iteration step.

With a new distribution of electric potential calculated by
FEM, new field lines are determined and the new nodes are de-
fined on them from prescribed values of the potential. To de-
termine these new field lines issuing from points on the blade,
several techniques have been tested; the most satisfactory one
consists in approximating the local new distribution of potential
by a linear function defined through a least square procedure
(with weights) involving the six nodes of the two neighboring
quadrangles (this gives far better results than the linear form on
the triangular elements of the mesh).

The crucial step is to select the nodes on the blade which
are the initial points of the new field lines. In the case where
these points are fixed and distributed smoothly on the blade,
the lines are found to be packed in the charge free region just

outside the charged zone. This is due to the contrast between
the strong divergence of field lines in the region of strong charge
density and the zero divergence in the charge free zone (Fig. 3).
Therefore, the nodes must be selected very close to each other
in the injecting part of the acute extremity of the blade in order
to have a rather regular spacing of the field lines in the major
part of the domain (Fig. 3).

We investigated two techniques to determine the nodes on
the blade which act as the starting points of the new field lines.
The first technique is a sort of shooting method: The node lo-
cation on the blade is modified in order to have the position at
which the field line intersects the plate as close as possible to
predetermined points (defined by the Laplacian field). In order
to minimize the computation time, the field lines are determined
only once at each iteration step and the difference between the
new intersection on the plate and the target is used to redefine
the starting node of the next iteration. Extra constraints on the
starting nodes displacement and an under-relaxation damp the
oscillations of these nodes and lead to the convergence of the
iterative process.

In the second technique, one determines the starting nodes on
the blade in a global way. The width of the injecting zone of the
blade is determined by the condition deduced from
the injection law (7). The number of starting nodes is kept con-
stant in each of the charged and charge free zones and their rel-
ative distribution on each part of the blade is always the same.
Unfortunately, this technique of starting nodes redefinition leads
to oscillations of important amplitude during the iterative process
which does not converge. These oscillations have a simple “phys-
ical” origin: If the electric field on the blade takes values higher
at iteration step than at step , the width of injecting zone
on the blade is increased as well as the injected space charge .
Then, the field lines will diverge more, the space charge effect
will be stronger and will induce a reduction of the field on the
blade; this, in turn, will tend to reduce the space charge. The in-
troduction of an under-relaxation in the redefinition of starting
nodes has not led to convergence of the iteration.

V. RESULTS

By adequately choosing the various parameters influencing
the rate of convergence, a good convergence of the iterative
process is obtained even for rather large values of the injec-
tion parameter ( up to 100): For a mesh with 2500 nodes,
after about 90 iterations, the average error in the charge calcu-
lation between two successive iterations is of the order 10 .
By using at each iteration step an extra interpolation between
the previous mesh and the one determined from the new po-
tential distribution, the computation time could be reduced (70
iterations instead of 90), but this implies an adequate choice of
the parameters (factors of interpolation). The MOC technique
with redefinition of the structured mesh gives satisfactory re-
sults: The current flowing from the blade to the plate is con-
stant to within 0.4%. Figs. 3 –5 are relative to a blade of hyper-
bolic cross-section with a nondimensional radius of curvature

at the edge. Fig. 3 shows the field lines in the central
zone for a strong charge injection (the nondimensional charge
density at the blade ). The coulombic repulsion results
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Fig. 3. Field lines in the case V=V = 5 corresponding to a strong injection
(blade of hyperbolic cross section with a nondimensional radius of curvature
r = 0:02).

Fig. 4. Current density on the plate versus distance from the symmetry axis for
various values of the applied voltage (the injection law (4) is used with A = 50)
for hyperbolic blade–plate configuration r = 0:02.

in a strong spreading of the field lines near the blade edge (note
that the starting nodes of the field lines are very close).

The existence of a threshold field for corona discharge
induces a quasidiscontinuity in the charge density injected by
the blade [despite the fact that (4) mathematically implies a
continuity]. This explains the sudden drop of current density
on the collecting plate (Fig. 4) consistent with the experimental
observations. Fig. 4 shows that the magnitude of the injected
space charge and its spreading are increasing with the applied
voltage . The current–voltage characteristic curve is presented
in Fig. 5 using the nondimensional total current. Below the
inception voltage , there is no corona effect and . For
high applied voltages, there is a tendency to saturation of the
nondimensional current corresponding to an asymptotic law

for the total current per unit length.
The same algorithm has been applied successfully to the con-

figuration of planar blade with cylindrical edge. Retaining the
same injection law, we get results for the current density on the
plate fully similar to the ones of Fig. 4. The only difference be-
tween the application of the algorithm in the two cases (planar
and hyperbolic blades) is the choice of the parameters of nodes
distributions and of the under-relaxation factors.

VI. CONCLUSION

We obtain the numerical solution of the problem of injected
space charge in the blade–plate configuration by the application
of theFEMtodeterminethepotentialdistributionandof theMOC
to determine the distribution of charge density and by redefining

Fig. 5. Current–voltage characteristic using for hyperbolic blade–plate
configuration r = 0:02.

the mesh at each step of the successive approximations scheme.
This numerical solution, obtained by using an injection law, very
satisfactorily accounts for the physical observations, particularly
for the quasidiscontinuity of the current density on the plate. The
technique of successive approximations converges rapidly when
the charge density distribution is given on the blade. The
convergence is slower when imposing an injection law which
modifies at each iteration step, combined with individually
redefining the starting nodes on the blade.

The algorithm developed with a blade of hyperbolic shape
has been successfully applied for a planar blade with cylindrical
edge. The most difficult point in the mesh redefinition is to de-
termine on the blade the nodes which are the initial points of the
field lines. The global redefinition of the starting nodes has to
be refined in order to have a convergence of the iteration and,
maybe, a decrease of the computation time.
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