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Electrical Engineering Laboratory of Grenoble France (LEG), 38402 St Martin d’Hères, France

This paper deals with the use of spherical harmonic representation to identify the magnetic multipolar sources associated to a given
item, by measuring the near field around it. If the model presents many advantages, its use in an inverse problem approach requires
special caution to critical points like the choice of sensor number and location. A method is presented that makes it possible, from a high
number of information, to reduce the sensor number to a minimum and to optimize their location with respect to robustness. The robust-
ness issue is solved by using an original method based on a genetic algorithm. A simple but didactic example illustrates the difficulties
that can be met and our strategy to overcome them.

Index Terms—Electric machines, harmonic analysis, inverse problems, magnetic field measurment.

I. INTRODUCTION

F
OR many applications, it is interesting to determine a

model for the magnetic sources that compose an electrical

device. Thanks to this model, it is then possible to know the

induction all around the structure, in particular far away where

sensors may not be placed. The applications can be various:

electromagnetic compatibility, magnetic shielding, military

naval discretion, etc.

If the geometry and the magnetic properties of the device are

well known, a direct approach (based on finite-element [1] or

boundary-integral methods) can be adopted. We would like now

to focus on items for which nothing is known about its sources.

It is clearly the worst case to deal with because no a priori in-

formation can be used. As a consequence, an inverse problem

approach must be applied. To do so, a representative model of

the sources must be chosen. By using information (near field

measurement) the model is identified. It can be noticed that the

identification can also be applied after a direct computation to

obtain another model for the sources, that can be easier to handle

than the initial one.

A model based on spherical harmonics [2] presents specific

advantages that make it a good candidate for inversion. This

model is quite well known and has already been used in the

past [3]. Nevertheless, not a lot of answers have been given to

this general problem: the equivalent sources of an object must

be identified, nothing is known about it; where sensors must be

located? How many are required to well solve the problem? Is

there an optimum number for that? Is the identification robust

with respect to noise sensors?

If a measurement system makes it possible to have a high

number of information at a distance from the device, the mul-

tipolar sources can be identified [4]: the problem is over sized.

What happens if, for instance, only to check the variation of
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the device magnetic state, the same identification should be

achieved with only a few sensors?

The paper deals with a method that studies how to well iden-

tify the multipolar sources in a over sized case and then with

a minimum number of sensors. One specificity for the sensors

is that their location is defined by their robustness with respect

to (sensor) noise. A method based on genetic algorithms which

minimize the matrix conditioning of the inverse problem finds

the best setting for sensors. In order to also increase robustness,

attention is paid to the choice of the center for the decomposi-

tion. A simple but educational example illustrates the general

approach.

II. SPHERICAL HARMONIC IDENTIFICATION

A. Spherical Harmonic Model

The solving of Laplace’s equation in spherical coordinates

leads to the following expression for magnetic induction cre-

ated by an electrical device included in a volume ( )

(1)

where

(unit of IS);

an order of decomposition;

associated suborder;

spherical harmonic functions;

spherical coordinate for a point outside ( )

where the induction is expressed;

are called spherical harmonic coefficients.

B. Spherical Harmonic Model Properties

The coefficients are intrinsic to the source and to the

choice of the decomposition center. Therefore, they do not de-

pend on measurements but only on the source. Each of them are
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linked to a multipolar representation [5] with specific periodic-

ities. Order 1 corresponds to a dipole, order 2 to a quadripole,

etc.

Moreover, for a given order coefficients are associ-

ated to a decreasing law, where is the distance from

the measurement point to the center of the decomposition. As a

consequence, if we are far enough from the sources, the induc-

tion contribution of high orders becomes negligible. Thus, the

infinite sum can be truncated to an order while ensuring a

good representation for the field. It is important to specify what

negligible contribution means. This means that the induction

contribution becomes lower than a given limit. This limit can

be sensor resolution during experiment or computer precision

regarding computation results.

Finally, the magnetic field in (1) linearly depends on the

coefficients. It is possible to use this property to build a matrix

system that will be studied for inversion.

C. Inverse Problem

The aim is to determine the coefficients of the model

from information, i.e., the magnetic field around the studied

device. This problem is a problem of identification (or inverse

problem).

If the decomposition is limited at the order and if

is the sensor number (point where information is collected), a

linear system which links the coefficients to the information

points is built

(2)

where is a -dimension vector of information (induc-

tion components on all the sensors), is a -di-

mension vector of the different coefficients, and is a

( , ) -dimension matrix of spherical harmonic

influences on sensors.

As spherical harmonics constitute an orthogonal basis for

magnetic induction, this point ensures a quite well-posed

system.

The system (2) has to be solved to get all the coeffi-

cients. If the number of information given by the magnetic sen-

sors ( induction components) is smaller than the number of

the coefficients ( for a -order source)

the system is rank-deficient and resolution is a physical non-

sense. In this work, the two other scenarios are treated: in the

first case, the problem is oversized (the information number is

higher than the number of unknowns); in the second case, as

we want to be sure to well solve the problem with the min-

imum sensor number, we choose to solve a square problem (the

number of unknown coefficients is equal to the number of infor-

mation). The system is solved by a singular value decomposition

(pseudoinversion).

To decrease the matrix condition number, the unknown coef-

ficients are also normalized.

D. Conditions for a Well-Posed Problem

As it has been seen before, for a given signal-to-noise ratio

and a given radius , the order is enough to correctly

Fig. 1. Geometry of the studied device represented by a shifted dipole (M =

63 Am , located at [1.5;0.5;0.5]) included inside a shield (square base of side
a = 4:5 m and height h = 2:5 m).

compute induction far from the sphere ( ) defined by its center

(center for the harmonic decomposition), and radius . If

is defined, then the number of unknowns is deduced

, and as a consequence, the minimum infor-

mation number is also defined to well inverse the problem.

Regarding the available sensor number, the main difficulty is

to determine associated to the chosen center , the radius

, and the studied device.

As we will see later, for some cases, the maximum order

may decrease with the choice for the center of harmonic

decomposition. Thus, so do the sensor number.

Indeed, the further (the higher ), the less sensor number

is required but, unfortunatel,y the lower signal-to-noise ratio is

also received.

Once these three points defined , the last point

to determine is the location of sensors on the identification

sphere ( ). This location must be robust enough to preserve

the solving accuracy from the noise inherent to information

(computation or sensor noises).

III. THE STUDIED DEVICE

Our approach is illustrated through a didactic example.

The studied device is represented by a parallelepiped (square

base of side a and height h) made of magnetic material (relative

permeability of 1000), inside which a shifted dipole is included

(Fig. 1).

This device is modeled thanks to a finite-element software. Its

mesh is fine enough not to have a high numerical noise on the

external computed induction. The interest of this kind of model

is that induction information is easily for any number of points.

We define the minimum sphere of center (center of

the shielded parallelepiped) and radius ( m) that

includes the whole device.

We also define a spiral curve located on a sphere centered

on and of various radii [for example m, m

(see Fig. 1) and m]. This curve makes it possible to verify

if the result of identification is correct or not by comparing it to

finite element computation.
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Fig. 2. Comparison of the induction modulus computed on (�) spiral curve
(r1 = 4 m) with the finite-element model and the multipolar model when
N = 6 (up) or N = 3 (down).

IV. A DIDACTICAL EXAMPLE

A. Determination in the Over Sized Case

Identification is firstly made by using a high number of

information: 540 induction component values (equivalent to

180 triaxial sensors) given by the finite element model on a

cube tangent to . As the maximum order of the source

is unknown, identification is achieved by assuming a high

maximum order (22), and then for lower orders (until 10). The

coefficients that are obtained present a great variance

for high orders. As the coefficients are intrinsic to the

source, the computed coefficients that exhibit a high variance

are correlated to numerical noise and the ones that are not

affected can be linked to the real device sources. At the end, the

device has a 6–maximum-order .

The checking on the spiral curve ( m) confirms

this result by comparing the multipolar model with

(good agreement) and (high discrepancy) (Fig. 2).

Let us note that as the finite-element results have very low noise

and as a lot of information is used, even if the coefficients have

been identified on further points, they can give good accuracy

really close to the device.

B. Influence of the Choice for the Decomposition Center

If the center is used for the model, the 6–maximum-order

involves that 16 triaxial sensors are required for a confi-

dent identification on sphere .

The choice of center for decomposition comes naturally

with respect to the external shape of the studied device. Never-

theless, in our example, the equivalent magnetic center clearly

defers from the geometrical center that has firstly been chosen

for identification. This may be the case for a lot of items that

Fig. 3. Induction contribution for high orders on (�) spiral curve (r = 7 m).

present an external casing inside which magnetic sources are

included. For this configuration, the choice of another center

makes it possible to have a lower maximum order for the

multipolar development.

An optimization algorithm is used to find the best center for

which the norm of 5 and 6 order coefficients are minimized and

the lower order ones maximized. This algorithm computes in-

formation on new minimum spheres that include the device, that

are centered on point and that has a radius . Information

is obtained by using the initial model centered on . New order

is determined as in the previous section.

After optimization, a new center is found (quite close to the

dipole source) that corresponds to a new maximum order equal

to 3 and a minimum radius of 5 m [the associated sphere is

noted ( )] As a consequence, a confident solving can now be

made with only 5 triaxial sensors located on ( ), instead of 16

located on ( ).

C. Influence of the Choice for the Radius R

Until now, identification has been made as close as possible

to the device in order to get the higher signal-to-noise ratio.

Another way to work with a lower maximum order, while

keeping the initial center , is to put sensors far enough from

the device. Thus, for a given radius , the total induction con-

tribution due to higher orders becomes naturally negligible with

respect to sensor noise level.

The noise level is 0.1 nT for example. Then, the contribution

for orders from 4 to is lower than the noise at 7 m far from

(Fig. 3). As a consequence, is equal to 3. Nevertheless,

the signal-to-noise ratio becomes also weak. This means that

identification will be affected by the sensor noise whereas it is

not the case for identification on ( ) whose center is and

radius is 5 m.

D. Location of Sensors: Robustness With Respect to Noise

To work with minimum sensor number (i.e., lower ,

equal to 3) while measuring the higher induction signal, we want

now to put the five required sensors on ( ) and to be sure that

the identification will be robust with respect to sensor noise.

As noticed previously, the system to inverse is a quite

well-posed problem. But if equations are too parallel (closed

to the contradiction), a small noise on measurements can lead

to a divergent solution. A good indicator for the stability of an

inversion process is given by the condition number of the direct

matrix .



1170 IEEE TRANSACTIONS ON MAGNETICS, VOL. 42, NO. 4, APRIL 2006

Fig. 4. Optimal sensor configuration obtained by the genetic algorithm.

A genetic algorithm is used to find the optimum location for

the five sensors by minimizing the condition number of the di-

rect matrix .

Sensor position are forced on the sphere ( ) (ten parame-

ters). The objective function is the condition number. We choose

a population of 40 individuals and a number of 1000 genera-

tions. An optimum location is found for the five sensors (Fig. 4).

One advantage for the solution is that this procedure is totally

independent from the equivalent multipolar sources. It is only

linked to spherical harmonic functions, to the number of sensors

and to their position.

Then a new identification is made to test if this location is

really robust with respect to sensor noise. Induction is computed

on sensors. The initial multipolar model [that was identified on

( ] and whose maximum order was 6) is used. It gives the same

values as finite element model. Previous noise is then added

on each sensor components before inversing the problem and

finding the coefficients.

To validate the identification, the new model is used to com-

pute induction modulus on the centered spiral curve whose

radius is 7 m. Fig. 5 shows a good agreement with finite el-

ement model. In spite of the noise, the inversion is correctly

made.

V. CONCLUSION

In this paper, a method is presented to identify an equivalent

multipolar source model (based on spherical harmonic func-

tions) by near field measurements.

For a given source, the main difficulty is to well estimate its

associated maximum order that allows to limit the infinite de-

velopment to a finite one. In a first step, this maximum order is

determined by using a lot of information around the device. This

information consists of magnetic induction triaxial components.

Fig. 5. Test of the multipolar model identification (based on five sensors
located on the shifted sphere (S ) at a position optimized with respect to noise
sensor) on the centered spiral curve (�) whose radius r is 7 m.

It can be obtained from a direct modeling (based on finite ele-

ment or boundary and integral methods) or from a measurement

system. The maximum order is determined by studying the vari-

ance of identified model coefficients.

Then, a method is given to choose the best center for spher-

ical development. A good choice may make it possible to de-

crease the maximum order. It must be lower as possible because

it conditions the minimum sensor number that ensures to get a

good identification. The distance where sensors are located also

strongly influences the value for this maximum order but special

attention must be paid to signal-to-noise ratio.

Once maximum order, decomposition center and sensor dis-

tance are clearly determined, it is then possible to only use a few

sensors around the device while making an exact identification.

For inversion, the sensor position is also crucial: an optimiza-

tion method is presented that makes it possible to have a robust

inversion with respect to the noise.

Finally, a robust procedure has been defined to determine

the magnetic state of a device from a minimum sensor number

around it.
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