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Identification for gain-scheduling: a balanced subspace gpoach

Marco Lovera and Guillaume Mercere

Abstract—The problem of deriving MIMO parameter-  and gain-scheduling control techniques. Unfortunatéig, t
dependent models for gain-scheduling control design fromata  underlying assumption of the above cited LPV identification
generated bylocal identification experiments is considered and techniques is that the identification procedure can relyren o

a numerically sound approach is proposed, based on subspace . e . . .
identification ideas combined with the use of suitable propeies global identification experiment in which both the control

of balanced state space realisations. Simulation examplese  input and the scheduling variables are (persistently)tedci
used to demonstrate the performance of the proposed approhc  in a simultaneous way. This assumption may not be a

reasonable one in many applications, in which it would be
desirable to try and derive a parameter-dependent model on
the basis ofocal experiments only, i.e., experiments in which

In the practice of control engineering there is a significanthe scheduling variable is held constant and only the cbntro
number of applications in which a single control system musfput is excited.
be designed in order to guarantee the satisfactory closedgych a viewpoint has been considered in [13]-[15], where
loop operation of a given plant in many different operatingyumerical procedures for the construction of parametric
conditions. The gain scheduling approach to the problerodels for gain scheduling on the basis of local experiments
which has been part of the engineering practice for decadesmd for the interpolation of local controllers have been
can be roughly summarised as follows: find one or morgroposed. The aim of this paper is to further elaborate on

scheduling variablesvhich can completely parameterise thesych approaches, in order to provide a number of extensions,
operating space of interest for the system to be controllefgmely:

define a parametritamily of linearised models for the plant
associated with the set of operating points of interest|lfina
design aparametric controller which can both ensure the
desired control objectives in each operating point and an
acceptable behaviour during (slow) transients between one,
operating condition and the other. As is well known, a wide
body of design techniqyes is now avgilable for this problem in order to improve the numerical reliability of the
(see, €.9. [11-{30). Wh'Ch can be reliably solved, prodde subsequent model interpolation procedure.

that a suitable model in parameter-dependent form has been ) ) .

derived. The paper is organised as follows. The considered system

This modelling problem, however, raises a number Olpentification problem Is formulat(_ad in Sgction ”’. whileeth
significant issues. While the literature on non linear idenp.mpOS(.ed approach is described n Sect|.on lll. Finally, som
tification can now provide advanced tools for the estimatioﬁ'mm"’ltlon results are presented in Section IV.
of a wide variety of model classes, in such a case it Il. PROBLEM STATEMENT
would be useful to separate conventional input variables fr ) L ) o
scheduling variables (i.e., variables defining the opegati The system identification problem considered in this paper

point of the plant), by letting them enter the model in distin can be sgmmariseq as foIIows.. Consider the MIMO linear
ways ( [4], [5])- parametrically-varying system given by

I. INTRODUCTION

« The identification of local models is performed using
subspace techniques, so enabling the straightforward
treatment of MIMO as well as SISO modelling prob-
lems, in state space form;

Well known properties of subspace methods with re-
spect to balancing of identified models are exploited

Linear Parametrically Varying (LPV) models have been i = A(p)z + B(p)u (1)
recently proposed as a way of dealing with this kind of prob- _c D 5
lems. A LPV model is linear in the parameters and a vector of y=Cp)z+ Dp)u )
scheduling variables enters the system matrices in an affiggierew ¢ R™, y € R, z € R* andp € R” and
or linear fractional way ( [6]-[11]). Such a representation assume that the results of a number Bf identification
general nonlinear models can be useful in view of contraxperiments are available, associated with the operation o
design using modern robust control theory (see, e.g., [12fe system neaP different values of the parameter vector

. The aim of the identification procedure proposed in this
This paper has been supported by the Italian MIUR projeattifieation p P prop

and Adaptive Control of Industrial Systems paper is to determine a set of parameter dependen_t matrices
M. Lovera is with the Dipartimento di Elettronica e Infornmze, A(p), B(p), C(p) and D(p) either in affine (A) or linear
Politecnico di Milano, Milano, Italyl overa@l et. polim .it fractional transformation (LFT) which can provide a good

G. Mercére is  with the Laboratoire d’Automatique . . .
et d’Informatique Industrielle (LA, Poitiers, France. approximation of the system (2) over the considered range

gui | | aume. mer cer e@ini v-poitiers.fr of operating points.



I1l. A BALANCED SUBSPACE APPROACH TO on a set of uniformly spaced frequencieg = % k=
IDENTIFICATION FOR GAIN SCHEDULING 1,..., M, whereny is a zero mean complex random variable

The approach to the problem of identification for gainWlth covariance

scheduling proposed in this paper can be summarised in thE{ P? {nk}] R} S {nTH} _ |:%Rk 0 ] 5
following steps: S{ne} s s 0 iR, (87)

» Linear d|screte_-t|me _state space models are es.t|mat gch as this covariance function is uniformly bounded, i.e.
for each operating point, using a frequency-domain S )

. < im h m matri imilari
algorithm (see [16]): < R, estimate the syste atrices up to a similarity

. o . . f i i h fer f i f
« The identified models are balanced using the numerlcgli)ncse:ggignaind’ by extension, the transfer functiothe
algorithm of [17] (as implemented in the Matlab Control

Toolbox); lim |G -c| <o ®)
o If necessary, the balanced models are converted to M—o0 o0
continuous-time using a bilinear transformation; with probability 1.

« Finally, the parameter-dependent model is obtained by The algorithm proceeds by first estimating the impulse re-
direct interpolation of the state-space matrices of thsponse coefficients (5) from the available frequency respon
local models, made possible by the unique propertissamples and subsequently applying a realization algorithm
of balanced realisations (see [17]), and can eventualljphe Markov parameters are calculated by using the two sided
be converted to LFT form using results from the LPVinverse discrete Fourier transform
identification literature [6]. ) | 2M .

Each of the above mentioned steps will be described in ~ hi = 577 Y Gre i, i=0,...,2M—1 (9)

detail in the following. k=0

) ) o with Gy = Gy, kK =1,...,M — 1. Knowing these

A. Frequency domain subspace identification estimates, the following block Hankel matrix can be built

The problem of frequency-domain identification of MIMO T i
linear time invariant systems using subspace methods has 3 i U !
been extensively studied (see [16], [18]-{20]). More pre-  j  _ 2 3 r+1
cisely, most of the developed methods try to fit a discrete tim : : : :
state space model to different types of measured frequency iLq
data, either Fourier transforms of the 1/0 data or samples,
of the frequency response of the system [16], [18] at somth ¢ >, >n andg + 7 < 2M.
discrete set of frequencies. For reasons which will become Since this Hankel matrix can be factored as [16]
clear(_er in the f_oIIowing, in ?h?s paper we focus_on a parecul gm) =0, (I _ AQJW)*l c, (11)
algorithm, which was originally proposed in [16]. Such
algorithm assumes that the "true” system is of finite ordewith

€ RV (10)

hgy1 -+ hgpr—

n and can be described by a discrete-time linear state space 0,=[CT (©AT .. (CAq,l)T]T (12)
model q=
C-=[B AB --- A'B], (13)
z(t+1) = Ax(t) + Bu(t) (3a) ing the sinaul e d tion (SVD)Ja
computing the singular value decomposition .
y(t) = Cr(t) + Dufd), CONME P
with «(t) € R™ the input vectory(t) € R? the output vector . C e o 0] [VT
andz(t) € R™ the state vector. The corresponding frequency  Hor = USVT = [U, U] { N ] [VST} ;o (14

response will be denoted as
o and we can estimate the observability subspao@@& U,
G(e¥) = nge_jwk =0 -A)'B+D (4 or O, = U,5Y2. Finally, the extraction of the system
k—0 matrices can be carried out using conventional subspace

with g, the Markov parameters techniques.

B. Balancing of the identified models

Dfork=0
gk = { CA1BTor k>0 %) Once P local models have been obtained, the problem of
orfk > recovering the whole parameter-dependent system has to be

The identification problem considered in [16] can be formufaced. It turns out that this task is greatly simplified if the

lated as follows: givenM/ noise corrupted samples of thelocal models are converted to a suitable balanced form. In
frequency response of the system order to clarify this point, the main properties of intefgal

‘ balanced realisations have to be briefly summarised ( [21],
Gr =G +ng, k=1,...,.M 6) [22)).



Definition 3.1: Consider the discrete-time system (3) andtorresponding eigenvectors, i.e., the columns of the loalan

the matrices ing transformatiori’. If these eigenvalues are distinct, then
o0 T oo - the corresponding eigenvectors are uniquely determined to

W, = Z (AR cTcAx, w. = ZA"’BBT (AF) within sign, i.e., T is essentially unique. If, on the other
k=0 k=0 hand, two or more eigenvalues are repeated, then their

which are respectively known as the observability and cor¢orresponding eigenvectors can be rotated arbitrarilyhén t

trollability Gramians of the state space system (3). Theestacorresponding eigenspace. This, in turn, implies that ag lo

space realization is internally balanced if as the eigenvalues are distinct, if the true system exhibits
) a smooth dependence from the scheduling paramegtso
Wo =W, =% =diag(oy -+ on), (15)  that the overall parameter dependent model can be directly
reconstructed from the identified local models.

where{o;};_, are the singular values oV, W,. ’ ) ) u= _
Definition 3.2: Consider the observability matri@, and ~ Since, in general, the assumption of distinct eigenvalues
the controllability matrixC, defined in (12) and (13). The cannot be guaranteed a priori, as fa_r as our |dent|f|_cat|on
corresponding state space realizationgis internally bal- problem is concerned, the following situations may arise:
anced ifO7 0, = C,C] = . « If the elements of the state space matrices of the
In the noise free case, the frequency domain realization identified local models exhibit a smooth variation as a
algorithm presented in the previous subsection leads to the function of the parameter, then the overall parameter-

following factorization [16] dependent model can be directly recovered using the
. oy —1 interpolation technigues outlined in the following sub-
Hyp = Og (I = AM) 7 C, (16) sections.
with ¢ > n, r > n andg + r < 2M. Now, the SVD (14) « If, instead, the behaviour of the elements of the state
allows to write space matrices exhibit abrupt sign changes (associated
. . . with sign changes in the columns of the balancing
H,, = USY?SIP0T. 17) transformations), then one should check for situations
Thus, the estimates of the observability and controligbili in which the eigenvalues of the balanced Gramians are
matrices satisfy not distinct. _
. L . . « If signs changes are present but the eigenvalues are
0, =032 ¢ =320, (18) distinct, then a "mild” nonuniqueness is occurring,

which can simply be corrected by adjusting the signs
R of the "stray” matrix elements;
(’){(’)q =3 (19) « If, on the other hand, sign changes are associated with

Hence, we obtain

T IM & omnT non unique eigenvalues, then the best solution is to
C:Cp = (I - A7) 8, (T - A%)" (20) momentarily neglect the local model giving rise to the
For a stable system, the state space realization given by the problem and performing the model interpolation (as
proposed algorithm is thereforg balanced wher/ tends described in the following subsections) usiRg-1 local
to infinity. models only.

In order to improve the numerical performance of the
algorithm, it is proposed to fix the state space basis of tHe. From discrete-time to continuous-time
estimated matrices by finding a similarity transformatibn  ynj| now, only discrete time frequency domain identifi-
such that{T*lAT, TlB,CT,Dh is in internally balanced cation has been considered. If the goal of the identification
form. To this purpose, we use the algorithm first derived iprocedure, however, is to work out a continuous-time model

[17], which consists in the following steps: for the system, then the well known bilinear transformation
1) Compute the Gramiang/, and W, of the identified can be applied. In particular, explicit formulas exist foet
model; direct transformation of the state space matrices fronrelisc
2) apply a Cholesky factorisation to obtait, = L,L?, to continuous time (see [16]):
W, = L.LT, whereL, and L. are the lower triangular 9 9
factors of the Gramians; A, = ?(I + A A+TI), B.= \/T(I-i- A)7'B
3) compute the SVOLT L. = UXVT, “"2 s
The balancing transformation is then defined By = Cc= \/TC(I+A)_1, D.=D—-C(I+A)'B,
LVE=1/2 71 =x-12yT LT, s

The most interesting properties of balanced realisatiasis, whereT is the sampling period. The main advantage of the
far as this contribution is concerned, is associated with thbilinear transformation with respect to other approacioes t
uniquenesgproperties of the balancing transformation (se¢he discrete/continous conversion is that this transftiona
[17] and [21] for details). Essentially, the question turngreserves balancing, i.e., when applied to a discrete-time
on the eigenvalues (real and nonnegative) of the produsystem in balanced form, yields a balanced continuous-time
of the reachability and observability Gramians, and theisystem (see also [23]). Therefore, the above comments on the



essential uniqueness of balanced realisations in theetiésscr ones in [10] provide a very general way of dealing with
time can be successfully exploited for model interpolatiothe problem, at the cost of critical requirements on the
also in the continuous-time case. experimental conditions which might not be easily realisab
D. Model interpolation in many applications. On the other_hand, the technique of
' [13], [14] has the advantage of being much closer to the
Once the elements of the state space matrices of thgtual practice of system identification but suffers from th
system have been estimated following the above steps,n@merical drawbacks associated with the adoption of a fixed

number of options are available as far as the derivation @fenerally not well conditioned) basis for the manipulatio
the actual parameter dependent model is concerned. Thestate space models.

first, and simplest, would be to directly fit to the system

matrices of the local models using suitable regressorseédrm IV. SIMULATION EXAMPLES
from the scheduling parametgr This would directly yield Example 1
a parameter dependent model in so-caiiéftheform (LPV- Consider the parameter-dependent system given by the
A), e, equations
i =A(6)zr + B(6)u (21) z(k +1) = A(p)z(k) + Bu(k) (28)
y = C(8)z + D(S)u (22) y(k) = Cx(k) (29)

wheres € R? is the vector of regressors (formed from linear,here
or non linear functions of the elements pf such that the

parameter dependent matrices can be written as A 8 (1) (1) (30)
A(0) = Ao+ A1dy + ... 4 Aads (23) 0.0lp —(p—0.004) —0.39
and similarly forB(4), C'(6) andD(d). In some applications, B=1[0 0 1}T , C=1[002 0 —05] (31)

however, it is desirable to obtain as output of the system . .
identification procedure a model in so-called LPV-LFT form@nd the parameter ranges in the interval from.1 t0 0.95.
i.e., in which the state space matrices are expressed ad k¢ Bode plots of the frequency responses associated with

linear fractional transformation over a suitable lineaeigtor  the system for different values of are given in Figure 1.
representing time-varying parameters: As can be seen, the dynamics of the system is significantly

affected by the parameter variations. For this system it is

& = Az + Bow + Biu (24)
z = Coz + Doow + Do1u (25) S B —
y = Crx + Digw + D11u (26)

w=Az, A=dagdil, ...dl,) (27)

andw,zeR", r=r1 +... +1r4.

As is well known in the robust control literature and also
pointed out in [6], [8], LPV-A and LPV-LFT representations
are related to each other. Denoting the composition of the
system matrices

_[A() BO)
M“)‘{c(a) D(5)

by expressing each of th&l/s, i = 1,...,d by means of
a rank r; decomposition asM; = U;V; one can write ‘ ‘ |
M(6) as M(0) = My + UAV, whereU = [U;...Uy], Wy
vV =[V...VI]T and A is given by equation (27). _

The obtained form for the system matrices coincides witfi'd- 1: Example 1: frequency response of the parameter
the one which is obtained in the special case of a linear dependent system fgr= (0.1: 0.05 : 0.95).
fractional transformation characterised by havibg, = 0,

Magnitude (dB)

:|=M0+M151+...+Md5d,

Phase (deg)

hence the transformation between the two forms. assumed that frequency domain data, i.e., measurements
) ) of its frequency response around each operating point are
E. Comments and discussion available. On the basis of such data, linear time-invariant

As mentioned in the Introduction, the proposed approacttate space models have been identified and balanced using
seems to offer a useful trade-off between the two classéise SMI algorithm outlined in Section Ill. The resulting
of solutions to this problem which have been so far promodel parameters (elements of the estimated3, C and
posed in the literature. On one hand, subspace methods formatrices) are presented in Figure 2. Its is apparent from
the identification of LPV state space models such as ththe Figure that, as expected from the previous theoretical
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the transfer functions associated with the identified state
— space models are presented. As can be seen, their numerical
oL “ : : ‘ ‘ _‘ ‘ : values span a wide range of orders of magnitude, so that
‘ ‘ this representation for the parameter dependent model is
much more likely to give rise to numerical issues in the

. subsequent controller design phase. It is striking thah surc
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Fig. 2: Example 1: elements of the estimatéd B, C' and 0t 02 080405 06 0T 08 09 !
D matrices as functions qf.

analysis, the estimated matrix elements exhibit a smooth
and clearly recognizable dependence from the scheduling
parametemp. In particular, no sign changes due to the non

unigueness of the balancing transformation are present (as g o R 6 é

10
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

. . . 0.1 .. . .
previously mentioned, however, this effect can be removed b

either manually or by means of an easily automated procgig. 4: Example 1: numerator and denominator coefficients
dure). Note, in passing, that in this case sign changes can be ¢ the transfer functions of the estimated models.
the only possible obstacle to the straightforward inteapoh

of the system matrices as the singular values of the balanced
Gramians (see Figure 3) are distinct for all the considerddxample 2
values ofp. Itis also interesting to note that while the Grami-  Consider now a parameter-dependent system with

inator coefficients

g
£ 29‘9‘9‘@—6—9—9—9—9—9—9_9_@_9_@_@_9_@

107

Denol

. 0 1 0
A= 0 0 1
025 —0254+p 05—p

B and C as in Example 1 and the paramegerranging
from 0.1 to 0.8. The Bode plots of the frequency responses
associated with the system for different valuep @fre given

in Figure 5, while the parameters of the identified local
sk : : : : , models are shown in Figure 6. As can be see from the
Figure, in this case sign changes are clearly visible, wareh

due to the non uniqueness in the used balancing transforma-
tion. A check of the eigenvalues of the balanced Gramians,
however,shows (see Figure 7) that the sign changes are due

, (32)

1+ : 1 to a "mild” nonuniqueness, since the eigenvalues are distin
for all considered values gf. Therefore, it is possible to
o ° R i N N N proceed with model interpolation once the sign changes have
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
o been corrected.
Fig. 3: Example 1: eigenvalues of the balanced Gramian V. CONCLUSIONS

matrices, as function of. The problem of deriving MIMO parameter-dependent

models for gain-scheduling control design from data gener-
ans are not very well conditioned (i.e., a part of the systerated bylocal identification experiments has been considered
is poorly controllable/observable), the estimated eldsieh and a novel approach based on subspace identification ideas
the system matrices are characterised by "nice” numericabmbined with the use of suitable properties of balanced sta
values, so that the final interpolation step is not likely tespace realisations has been presented and discussed. The
give rise to significant numerical issues. As a comparisomumerical advantages of the adopted state space viewpoint
in Figure 4 the numerator and denominator coefficients dfave been demonstrated in a number of simulation examples.
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Fig. 5. Example 2: frequency response of the parameter

dependent system for= (0.1 :0.05: 0.8).
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