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Abstract— This paper is concerned with the identification
of piecewise linear MIMO state space systems in a recursive
way. The proposed method summons up benefits of recursive
parameters estimation, on-line switching times detectionand
on-line order estimation. A structured identification scheme
which applied on-line, allows to track both the extended ob-
servability matrix range space and its dimension. This method
is used on-line to blindly identify switching systems and tolabel
the different submodels. Since subspace identification methods
rely on batch data block matrices, a minimum dwell time in
each discrete state is necessary to achieve good performances.
Simulation results comfort this point and illustrate the abilities
and the benefits of the proposed approach.

I. I NTRODUCTION

A great number of complex industrial applications in-
cludes more or less hybrid systems. Hybrid systems are com-
monly thought of as systems which include both discrete-
events and continuous phenomena. And yet, the black-box
identification of such systems is a still developing research
area. The domain is relatively young but since a few years,
it has been attracting an increasing research activity. The
problem of retrieving both the discrete state and the cor-
responding dynamical part from only the input-output data
measurements is a rather challenging problem.

A large majority of the contributions published in the
literature deals with the subclass of Piecewise ARX models.
Inspired by pattern recognition techniques, [3] proposes to
partition the regressors space into regions on which each
linear local model is valid and then, estimate each model
by standard LS regression. The solution in addition to
requiring a knowledge of the system order is suboptimal
since the convergence depends strongly on the initialization
step. In [13], an optimal solution to the global problem
is presented, converting the identification problem into a
linear or quadratic mixed integer programming one as there
exist efficient and powerful tools in this area to solve it in
an optimal way. Conversely this algorithm suffers from a
very high complexity. [17] presents an algebraic approach
in which homogenous polynomials are used to realize a
segmentation of the regression space into regions which
corresponds to the discrete states. This method is ideal only
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in a noise-free context (see also [5]). It is also possible to
cluster in a suboptimal way the generated data by resorting
to bayesian inference, the system order and the number of
modes being known a priori [6].

Some common characteristics of these methods are that
they are mostly iterative, difficult to apply on-line and pro-
vide just input-output models with more or less guarantee of
optimality. They rely on data partitioning either to compute
completely regions of the regression space and then the
related parameters [6], [3], [13] or to estimate first the
parameters so as to derive the switching times [17].

Input-ouput models certainly describe systems well but
there may be inappropriate for many practical analyses of
systems especially multivariable systems. Therefore, some
authors [12], [2] addressed recently the problem of subspace
identification of switching systems in an off-line context.
In this case, as the state is generally unkown, there is
no available regression vector so that partitioning of the
regression space becomes harder. Detection of the switching
times seems to be an alternative to deal with switching
MIMO systems using subspace methods. Owing to the fact
that subspace methods operate on batches of successive
measurements, a minimum dwell time assumption in each
discrete state is required.

Switching systems may also be regarded as time varying
systems. Generally, the data basis used off-line for the
identification of such systems may cover only some modes
of the systems and not the whole. This situation is probably
the weak spot of off-line switching systems identification
methods.

In this paper we follow the idea of detection and propose a
recursive algorithm which realizes online the multiple tasks
of estimation, detection and decision. Firstly, a structured
subspace identification scheme is presented which differs
from the standard approaches in that it does not require any
singular values computation. Furthermore, an extension of
that method to both rank and subspace adaptive tracking
is straight. The designed method is then applied for online
estimation of the submodels of an hybrid MIMO system.
For this kind of system, each submodel may be slowly time-
varying and from a submodel to another, the order may also
change. For this reason, the order is continuously estimated.

The paper is organized as follows. Section II gives the



problem formulation. The background of the structured sub-
space identification strategy is developed in section III. The
section IV presents the application of the new identification
scheme to the on-line switching systems identification and
provides simulation results to demonstrate the effectiveness
of the scheme.

II. PROBLEM FORMULATION

Consider a system represented by the following discrete
state space model

{

xt+1 = Axt + But

yt = Cxt + Dut + vt

(1)

where ut ∈ R
nu , yt ∈ R

ny and xt ∈ R
nx are the input,

output and state vectors respectively.vt ∈ R
ny stands for

zero-mean white gaussian noise vector. It is also supposed
that E

[
uiv

T
j

]
= 0 ∀ i, j and E

[
viv

T
j

]
= σ2

vδijIny
where

E [ ] denotes the expected value andδ is the Kronecker
delta. Further, the model (1) is assumed to be observable
and asymptotically stable. Given a collection of the input-
output data of such a system, we are interested in estimating
the matrices(A, B, C, D) of the model (1). It is well known
that these matrices are not uniquely determined since for any
nonsingular matrixT , (TAT−1, TB, CT−1, D) explains
the input-output behaviour of the system in (1) as well.

Subspace based identification methods (SIM) are nowa-
days considered as good alternatives to the more traditional
prediction error or maximum likelihood approaches for di-
rectly estimating a state space realization from input-output
data. They more precisely rely on the following embedded
data equation:

Yt,f,N = ΓfXt,N + HfUt,f,N + Vt,f,N (2)

whereΓf is the extended observability matrix,Hf the block
lower triangular Toeplitz matrix:

Γf =








C

CA

...
CAf−1








, Hf =










D 0 . . . 0

CB D · · · 0

CAB CB . . . 0

...
...

...
...

CAf−2B CAf−3B . . . D










Xt,N =
[

xt · · · xt+N−1

]
, f > nx andVt,f,N , Yt,f,N

andUt,f,N are the block Hankel matrices defined in a similar
way as :

Ut,f,N =








ut ut+1 . . . ut+N−1

ut+1 ut+2 . . . ut+N

...
...

. ..
...

ut+f−1 ut+f . . . ut+f+N−2








There exist many works on subspace identification of
systems in the literature [14]. Most of the SIM are imple-
mented using Singular Values Decomposition (SVD) of huge
matrices blocks (MOESP, N4SID). The SVD is essentially
used to determine the system order and then to compute
Γf . The main drawback of such methods is that the SVD is
known to be too computationally demanding and difficult to
update recursively [8]. Hence, it has been necessary to find

SVD alternative algorithms to apply the subspace concept in
a recursive framework. Several reliable algorithms have been
developed. For example, the IV-PAST method [4], borrowed
from [18], have been introduced to track the observability
subspace in a coloured noisy framework. More recently,
the paper [10] have suggested an identification version of
the Propagator Method [11] ordinarily used for subspace
tracking in signal array processing. The main advantage of
this approach over the previous conception lies in the use ofa
linear operator and quadratic criteria which lead to recursive
least squares implementations for the algorithms. This latter
method will be discussed more deeply.

The next section tries to provide a better solution for a
more general application of the Propagator Method in MIMO
systems identification. Our objective is also to turn it into
an efficient tool of deriving the system order and finally a
complete structured scheme for identification of switching
systems.

III. A DAPTATION OF THE PROPAGATORMETHOD TO

MIMO SYSTEM IDENTIFICATION

A. Propagator Method for system identification

The technique presented hereafter has been firstly in-
troduced in [10] in a recursive identification framework.
It consists in the adaptation of the Propagator Method to
recursive system identification. For brevity, only its general
scheme is presented. Focusing on the data equation (2), the
so-called observation matrixZt,f,N = Yt,f,N −HfUt,f,N is
first estimated using for example a QR decomposition. Then,
a basis of the observability matrix range space is computed
from

Zt,f,N = ΓfXt,N + Vt,f,N (3)

by making a strong use of the observability assumption. It
follows indeed from the observability of the system in (1)
that rank(Γnx

) = rank(Γf ) = nx. SinceΓf ∈ R
nyf×nx

andnyf > nx, one can find a permutation matrixS which
rearranges the rows ofΓf in such a way thatnx linearly
independant rows appear in the firstnx positions.

SΓf =

[

Γ
(1)
f

Γ
(2)
f

]

with Γ
(1)
f a square matrix of dimensionnx. As the rows of

Γ
(1)
f span the row space ofΓf there exists a unique matrix

Pf [11] such that

SΓf =

[

Γ
(1)
f

PfΓ
(1)
f

]

=

[
Inx

Pf

]

Γ
(1)
f

SinceΓ
(1)
f is invertible, it is possible to obtain an expression

of the observability matrix in a particular basis by determin-
ing the propagator. If one partitions the whole equation (3)
using the same permutation, the following is obtained :

[

Z
(1)
t,f,N

Z
(2)
t,f,N

]

=

[
Inx

Pf

]

Γ
(1)
f Xt,N +

[

V
(1)

t,f,N

V
(2)

t,f,N

]



Then, an estimate ofPf can be obtained in a noiseless set
(V = 0) by minimizing the following least square criterion

∥
∥
∥Z

(2)
t,f,N − PfZ

(1)
t,f,N

∥
∥
∥

2

F

whereZ
(i)
t,f,N is a submatrix constructed fromZt,f,N in the

same manner asΓ(i)
f is from Γf .

The interested reader is referred to [10] or [9] for more
details on that method.

B. Discussion on permutation matrix selection

Selecting the permutation matrixS introduced in the
previous subsection is a rather challenging task. SinceΓf

is unknown, there is a great problem in recognizing which
rows are linearly independent. In [10], the firstnx rows of
Γf have implicitly been assumed to be linearly independent.
But, this assumption is accurate only for the MISO class of
systems.

To find S, it is sufficient to characterizenx linearly
independent rows inΓf . For an observable MISO system,
the observability matrixΓnx

is square and invertible so that
S is chosen to be the identity matrix. For a general MIMO
system, the problem is slightly complicated. Let denote in
this case,

γj =








CT
j

CT
j A
...

CT
j Af−1








(4)

whereCT
j refers to thejth row of C. If all the poles are

observable from the outputyj, (as it is for MISO systems)
thenγj is necessarily of ranknx. But that is far from being
always the case for general MIMO systems since the other
outputs may introduce dynamics in the state vector which
would not be visible byyj . Consider an auxiliary output̃y
defined as

ỹ = y1 +

ny∑

j=2

αj yj

with αj real numbers. The objective of this manipulation
is to replace one of the outputs (for exampley1) by this
auxiliary output from which all the poles of the system may
be observable. It is possible to find the numbersαj such
that γ̃ = γ1 +

∑ny

j=2 αjγj is of full rank nx. An important
condition is thatỹ must be sensitive to all the observable
dynamics of the system, whatever output they are acting on.
The choice of these coefficientsαj must be so as to guarantee
the observability of all the system poles inỹ. An easy way
to choose them consists in generating them randomly as
nonzero real numbers. Finally, the data equation (2) can be
rewritten as follows

Ỹt,f,N = Γ̃fXt,N + H̃fUt,f,N + Ṽt,f,N (5)

with
[
ỹ y2 . . . yny

]T
←

[
y1 . . . yny

]T
(6)

C̃
T
1 ← C

T
1 +

ny∑

j=2

αjC
T
j , D̃

T
1 ← D

T
1 +

ny∑

j=2

αjD
T
j

The matricesΓ̃f and H̃f are defined fromA, B, C̃, D̃
where C̃ and D̃ correspond to the matricesC and D in
which the respective first rows have been replaced byC̃T

1 and
D̃T

1 . In the remainder of the paper we will adopt whenever
possible, simplified notations asY := Ỹt,f,N , Γ := Γ̃f ,
Γ

(1) := Γ̃
(1)
f . Then, (5) becomes

Y = ΓX + HU + V (7)

The permutation is applied to this equation in the objective
to put the sub-matrix̃γ in the firstf rows of SΓ̃f . S may
be chosen as :

S =
















I(1, :)
I(ny + 1, :)

...
I ((f − 1)ny + 1, :)

I(2 : ny , :)
I(ny + 2 : 2ny , :)

...
I ((f − 1)ny + 2 : fny , :)
















whereI is the identity matrix of orderfny.

C. Propagator estimation

In this subsection, the problem of the propagator described
earlier is considered. By being inspired by the MOESP
class of subspace methods, the first step of the propagator
estimation consists in eliminating the termHU in the data
equation, projecting the whole equation onto the orthogonal
complement subspace of the row space ofU . In this objec-
tive, let follow the QR implementation method [16]

[
U

Y

]

=

[
R11 0

R21 R22

] [
Q1

Q2

]

(8)

Premultiplying byS and postmultiplying byQT
2 , one gets

SR22 = SY Q
T
2 =

[
Inx

P

]

Γ
(1)

XQ
T
2 + SV Q

T
2 (9)

and then

1

N
SR22R

T
22S

T =

[
Inx

P

]
1

N

(

Γ
(1)

X
)

Q

(

Γ
(1)

X
)T

︸ ︷︷ ︸

(I)

[
Inx

P

]T

+
1

N
SV QV

T
S

T

︸ ︷︷ ︸

(II)

+S
1

N

(

ΓXQV
T +

(

ΓXQV
T
)T

)

︸ ︷︷ ︸

(III)

S
T

(10)

whereQ = QT
2 Q2 = I − UT

(
UUT

)−1
U

The equation (10) can be simplified as follows:

• Using the independence and ergodicity properties of the
sequence{vt} and the fact that it is statistically uncor-
related with{ut}, one can easily show that(II) →
σ2

vIfny
asN → ∞.



• On the other hand, by developing(III) using the
expression ofQ and writing

1

N
XV T =

1

N

N∑

t=1

xtv
T
t

=
1

N

N∑

t=1



Atx0v̄
T
t +

t∑

j=1

Aj−1But−j v̄
T
t





v̄t =
[
vT

t · · · vT
t+f−1

]T
, and recalling thatA is

stable, it is straightforward to see that(III) → 0 as
N → ∞.

• Similarly, whenN → ∞, (I) reduces to

(I) =
1

N
ZZ

T with Z = Γ
(1)X

Since Γ
(1) is invertible, one realizes a similar transfor-

mation by settingZ = Γ
(1)X. It is important to notice that

assigning a value toS amounts to set a basis of the searched
state space representation in (1). LetΣz = 1

N
ZZ

T be the
covariance matrix ofz.
Therefore we have :

Σ :=
1

N
SR22R

T
22S

T

=

[
Σz ΣzP

T

PΣz PΣzP
T

]

+

[
σ2

vI 0
0 σ2

vI

]

(11)

=

[
Σ11 Σ12

Σ21 Σ22

]

whereσ2
v denotes the variance of{vt}. Then the propagator

can be estimated by minimising the following cost function

‖Σ21 − PΣ11‖2
F , (12)

since
P = Σ21Σ

−1
11 . (13)

It should be noticed that the estimate obtained here for
P may be biased in the presence of noise. An interesting
way to suppress this inconvenient may be for example to
use the instrumental variable method [8] which provides a
theoretical satisfaction. Unfortunately, introducing aninstru-
mental variable would probably not suffice to remove the
noise effect and will particularly complicate the choice of
the order detecting threshold as we will see in subsection
III-D.

Once the propagator is estimated, the extended observabil-
ity matrix can be obtained as

Γf = ST

[
Inx

P

]

. (14)

The matricesA and C of the system (1) are immediately
extracted as follows

A =
(

Γ
↑
f

)†

Γ
↓
f , C = Γf (1 : ny, :),

with Γ
↑
f = Γf (1 : (f − 1)ny, :) , Γ

↓
f = Γf (ny + 1 : fny, :).

B andD can then be estimated by a linear regression from
C andA, assuming the system is asymptotically stable (see
[8] for more details).

D. Order estimation

To estimate conveniently the matrixP by (13), an estimate
of the system ordernx is essential. Under some mild as-
sumptions, an order estimation procedure is suggested in this
subsection. Generally from subspace identification schemes
point of view, the order results almost always from an SVD
of the matrixR22 in (9) for example. To that purpose, [1]
defines the information criteria NIC and SVC similarly to
the Akaike’s criterion and based indeed on singular values.
Here, we would like to characterize the order without resort
to the very computationally expensive SVD so that an on-line
application becomes possible. For that, assume the order of
the system (1) has an available upper bound, which is anyway
the basic requirement for any subspace identification method
(f has to be set greater thannx). Then, the main idea behind
this method relies on exploiting the particularly interesting
structure of the matrixΣ. Firstly, two versions of our method
in a deterministic framework are introduced. The stochastic
case will be dealt in the last paragraph of this section.

1) Deterministic context:Without noise,σ2
vI from equa-

tion (11) does not exist. The underlying idea in the strategy
followed is to consider sequentially a submatrix ofΣ in
(11) of the form∆r = Σ(1 : r, 1 : r), r running fromrmin

towardsrmax with rmin < nx < rmax (see fig. 1 for an
illustration).

Assumption 1 The covariance matrixΣz = 1
N

ZZ
T of the

vector z = Γ
(1)x is positive definite, which is equivalent to

say rank(X) = nx that is, all the modes are sufficiently
excited. Consequently any square submatrix of the form
∆r = Σz(1 : r, 1 : r) is also positive definite.

0

fny

fnynx

nx

r

r
rmin

rmax

Fig. 1. Sequential slicing of matrixΣ

In reference to this assumption,∆r is invertible as long
as r ≤ nx but becomes non invertible as soon asr > nx.
These arguments justify the rank pursuit algorithm described
below in two equivalent versions. In each version, a specific
decision criterionhr+1 associated to every value ofr allows
to check whetherr is the order or not.

Version 1: A first possibility may consist in computing
recursively the inverse of∆r extracted fromΣ going from
r = rmin towardsr = rmax until the order is detected.

If ∆r is invertible, ∆−1
r+1 may be computed using the

matrix blocks inversion lemma (see appendix A in [7]) in



the following way :

∆
−1
r+1 =

[
∆r wr+1

wT
r+1 sr+1

]−1

= h−1
r+1

[

hr+1∆
−1
r + ϕ

r+1
ϕT

r+1
ϕ

r+1

ϕT

r+1
1

]

(15)

with
ϕ

r+1
= −∆

−1
r wr+1 ∈ R

r

hr+1 = sr+1 + wT
r+1ϕr+1

∈ R (16)

The partition (15) is possible thanks to the symmetric
structure ofΣ. The underlined elements refer to column
vectors. Then, it follows from the formula (15) that if∆r is
nonsingular, so is∆r+1 if and only if hr+1 6= 0.

Admitting ∆
−1
rmin

is known, an initial value forr is taken
as r = rmin. One proceeds to the computation ofhr+1; if
hr+1 = 0, then∆r+1 is singular and the conclusionnx = r
is drawn; conversely, ifhr+1 6= 0, the recursion is pursued by
computing∆r+1, and thenhr+2 and so on. The procedure
is stopped when it becomes evident that∆r+1 is singular.
At the end of this loop

Σ
−1
11 = Σ

−1
z

= ∆
−1
r (17)

is known andP is computed as in equation (13).
Version 2: Another recursion option may be led by fo-

cusing on the value ofP in (13). It presents notably the
advantage of providing directly the value ofP once the
order is detected. HavingPr we would like to estimatePr+1.
These matrices take the forms

Pr =

[
wT

r+1

W

]

∆
−1
r =

[
pT

r

Πr

]

Pr+1 =
[

W κ
]
[

∆r wr+1

wT
r+1 sr+1

]−1

=
[

Ωr+1 ωr+1

]

whereW = Σ(r + 2 : fny, 1 : r), wT
r+1 = Σ(r + 1, 1 : r),

κ = Σ(r+2 : fny, r+1), sr+1 = Σ(r+1, r+1), pT
r refers

to the first row ofPr andΠr, to the remaining part.
When r is incremented of1, Pr loses a row and gains a

column. Using the matrix identity (15), it is easy to reach
the following adaptations laws:

ωr+1 =
(
κ − Πrwr+1

)
/hr+1, (18)

Ωr+1 = Πr − ωr+1p
T

r

The parameter of interest is nowhr+1 = sr+1 − pT

r
wr+1.

It is important to notice that, despite the benefits to
compute directlyP , given the dimensions of the matrices
involved, this second version may be sometimes costly in
terms of computational time.

2) Stochastic context:In a stochastic context, the term
σ2

vI from equation (11) is no longer null. Then, in practice,
hnx+1 will probably be greater than zero, but the method
could be efficiently performed using a convenient threshold
comparison. Naturally, this threshold may depend on the
level of the noise acting on the process. It needs also to be

related to the system we wish to identify and hence, has to be
computed or adapted somehow, particularly in the piecewise
systems case (see section IV).

The presence of noise tends to increase all the quantities
hr but a gap is still observable in their values when the
iteration process reaches the rank ofΣ unless the noise
is dominant compared to the signal. Note that, owing to
the assumption 1and the Schur complement theorem (the
parameterhr+1 is indeed the Schur complement of∆r in
∆r+1), all hr are positive scalar forr ≤ nx. It follows from
(11) that

hr+1 = sr+1 + σ2
v

− wT
r+1∆

−1
r

(
Ir + σ2

v∆
−1
r

)−1
wr+1 (19)

If we make the hypothesis that all the eigenvalues of∆r are
significantly greater than the noise variance, then the spectral
radius ofσ2

v∆
−1
r is in the unit circle. Therefore, expanding

the term in brackets at the first order we get the following
approximation

hr+1 ≈
(
sr+1 − wT

r+1∆
−1
r wr+1

)

+
(
σ2

v + σ2
vwT

r+1∆
−2
r wr+1

)
(20)

which is composed of the useful signal part and the noise
contribution. Forr = nx, the first term becomes null so that
hnx+1 ≈ σ2

v

(
1 + ϕT

nx+1ϕnx+1

)
whereϕj is defined as in

(16). Taking in account these remarks, a threshold can be
chosen as

Thres(r) = T0

(
1 + ϕT

r+1ϕr+1

)
(21)

whereT0 denotes a constant, supposed to be slightly greater
than the noise varianceσ2

v . When the order is detected, we
can estimatea posteriori the noise variance in the following
way sincehnx+1 has been computed.

σ̂2
v =

hnx+1

1 + ϕT
nx+1ϕnx+1

E. Recursive update of the matrixΣ

In the previous parts, a complete off-line identification
scheme has been investigated. From now on, we are inter-
ested in working out an on-line version of that procedure
in order (as we will see in the last section) to apply it to
switching systems estimation.

The on-line version of our algorithms relies on the recur-
sive adaptation of the matrixΣ (see eq. (11)) through the
new captured information. At each time instant,Σ is updated
first and then, the procedure described above is run.

Assume that a QR factorization as in (8) is known at the
instant t̄. Then, att̄ + 1, a new data column is stacked as
follows

[ √
λ

[
R11(t̄) 0

R21(t̄) R22(t̄)

]
uf (t̄ + 1)
yf(t̄ + 1)

]

with yf (t̄ + 1) =
[

yT (t̄ − f + 2) . . . yT (t̄ + 1)
]T

and
λ < 1 a forgetting factor. It has been shown in [8] that the



last data column can be zeroed out applying a sequence of
Givens rotations as

[ √
λ

[
R11(t̄) 0

R21(t̄) R22(t̄)

]
uf (t̄ + 1)
yf (t̄ + 1)

]

G1(t̄ + 1)

=

[
R11(t̄ + 1) 0 0

R21(t̄ + 1)
√

λR22(t̄) ȳf (t̄ + 1)

]

Then,
R22(t̄ + 1) =

[√
λR22(t̄) ȳf (t̄ + 1)

]

andR22R
T
22 is updated as

R22(t̄ + 1)R22(t̄ + 1)T

= λR22(t̄)R22(t̄)
T + ȳf (t̄ + 1)ȳf(t̄ + 1)T

︸ ︷︷ ︸

ΦR(t̄+1)

and
Σ(t̄ + 1) = λΣ(t̄) + SΦR(t̄ + 1)ST (22)

As already mentioned, it is not of great interest to adapt
entirely the matrixΣ. If the order might vary then, assuming
S is suitably set, it is essential to adapt all the firstrmax

columns or rows. After that, the order searching procedure
is to be triggered on. Two choices are possible : either
it is known that the order will always be greater than a
certain numberrmin and then∆−1

rmin is recursively adapted
(using the matrix inversion lemma) together withΣ, or this
information is not available and the procedure is started from
r = 1.

From r = rmin, the order searching recursion is then
turning on up to the ordernx. TheAlgorithm 1 below sums
up the whole on-line procedure described previously.

Algorithm 1 On-line subspace tracking algorithm

• Initialising: set λ, T0, f, Σ, ∆
−1
rmin

• FOR t = 1, . . . ,∞

1) Update the QR factorization of the data
matrix as in subsection III-E

2) Update Σ using (22)
3) Update ∆

−1
rmin

using the matrix inversion
lemma

4) FOR r = rmin, . . . , rmax

– Compute hr+1 and Thres(r)
– IF hr+1 ≤ Thres(r)

nx ← r;
– Once the order is known, compute the

propagator using the formula (13)
– Deduce the system matrices as in

subsection III-C
BREAK;

– ELSE
Compute ∆

−1
r+1 by the formula (15);

r ← r + 1;
– ENDIF

5) ENDFOR

• ENDFOR

IV. A PPLICATION TO SWITCHING SYSTEMS ESTIMATION

A. Description of the procedure

Consider now a piecewise linear system described by the
following state space representationMi

Mi :

{

xt+1 = Aixt + Biut

yt = Cixt + Diut + vt

(23)

The embedded data equation in (5) still holds as long as all
the data involved are generated by the same submodel. But
when the system switches between two local models (from a
modeli to a modelj for example), this equation is no longer
acceptable in this form as there will be in the matricesU

and Y data stemming from two different submodels. The
figure below gives an illustration of the changes affectingΓ

during the transition fromi to j.

τ − 1 τ τ + 1










Ci

CiAi

...
CiA

f−2
i

CiA
f−1
i










→










Ci

CiAi

...
CiA

f−2
i

CjA
f−1
i










→










Ci

CiAi

...
CjA

f−2
i

CjAjA
f−2
i










→ . . .

Γ
i

Γ(τ ) Γ(τ + 1)

where matrices inRoman correspond to the model before
the switching timeτ and matrices inscript to the model after
the switch.

In the neighborhood[τ− , τ + k], k ≤ f of a commutation
the QR factorization of the data matrix similarly as in (8) is
as follows

[
U i Umix

Y i Y mix

]

=

[
R11 0
R21 R22

] [
Qi

1 Qmix
1

Qi
2 Qmix

2

]

where the superscriptmix and i refer respectively to mixed
data and pure data generated by thei-th submodel. Then,
since
[

Y i Y mix
]

=
[

Γ
iXi

Γ
mix
x

]
+

[
H iU i Hmix

u

]

+ V

one gets after some straightforward manipulations

R22 =Γ
iXi

(
Qi

2

)T
+ V QT

2

+
(
Γ

mix
x + Hmix

u − H iUmix
) (

Qmix
2

)T

︸ ︷︷ ︸

mixed data

(24)

where

Hmix
u =

[
Hmix

1 umix
1 · · · Hmix

k umix
k

]

Γ
mix
x =

[
Γ

mix
1 xmix

1 · · · Γ
mix
k xmix

k

]

As long as only data from one submodel are present in the
window, we have

rank
(

Γ
iXi

(
Qi

2

)T
)

= rank(R22) = ni
x

Hence, theAlgorithm 1 keeps tracking the rank of the cur-
rent active submodeli until a switch occurs. From equation
(24) the presence of mixed data is likely to increase the
rank of the matrixR22. Hence, any change in the dynamics
or in the zeroes of the system will be visible by the order
estimation algorithm1 since it induces a rank increase in the
matrix Γ (see also [2]).

1even if it is not necessarily followed by an order change



Managing the transition period is a rather challenging
problem essentially due to the recursive nature of the ap-
proach followed. One problem related to this period is for
example the risk of a state space basis change underlined in
[15]. At each commutation, the state was to be computed in
order to bring all submodels in the same basis. Applying the
propagator method in the switching systems identification
context allows to get rid of this problem since the system
matrices obtained remain in the same basis (as long as
the permutation does not change as well as the order). We
propose to use a procedure in two steps.

• Firstly, the detection of the switch is achieved. The
parameters of the previous submodel are memorised and
a new model created.

• Secondly, after the estimates have converged, a classi-
fication task tests whether the new captured model is
already known or not.

The switches detection strategy is based on the assumption
that the switching times are separated by a certain minimum
delayTs called the dwell time. This dwell time is supposed
to be large enough to include the widthf of the data
window and to allow the convergence of the estimation
procedure. The commutations could be state-driven, time-
driven or event-driven provided that the minimum dwell
time requirement is satisfied. In practice, when starting
the algorithm with random values, a dwell time of about
Ts = (2 − λ) f/ (1 − λ) samples is generally sufficient for
achieving good convergence.

When the system enters the zone of transition, pursuing the
update (with mixed data) will corrupt the obtained model for
the submodeli. So, once the detection is done, the learning of
the submodeli has to be immediately stopped, the final value
(just before the switching occurs) of the submodel obtained
to be recorded and thealgorithm 1 to be reinitialised with
a new model. As, there may exist some delayδ between
the actual switching instantτ and the detected one (τ̂ ), the
parameters obtained atτ̂ − δ are memorised instead.

Instead of creating continuously new models as new
dynamics appear, it seems more convenient to classify the
different submodels in order to recognise their upcoming
occurrences. To that purpose, a classifier based on an ap-
propriate metric (measure of similarity) may be used. Let

θ(t) = vec

([
D(t)

Γ(t)B(t)

])

where vec(·) is the vectorization operator.θ(t) is a vector
of dimension(f + 1)nynu and characterises at each time
the current submodel. The current submodel is compared to
the already known submodels which have the same order by
analyzing the similarity ofθ(t) with known parameters. Let
consider for simplicity the euclidean distance as a similarity
measure

di(t)
2 = ei(t)

T ei(t) (25)

with ei(t) = θ(t) − θi and θi is the parameter of some
recorded modeli. When the new submodel is close enough
to some existing submodel, the two submodels are merged.

Otherwise, it is saved as being a novel submodel and labelled
as different from all the others.
B. Simulation

In order to illustrate the procedure presented above let us
consider a numerical simulation. Four linear submodelsM1,
M2, M3, M4 respectively of order 2, 2, 4, 3 are switching
continuously.

M1 :







A1 =

[
1.23 −0.49
1 0

]

B1 =

[
2
0

]

C1 =
[

0.864 0.755
]

D1 = 1

M2 :







A2 =

[
0.36 −0.5
0.5 0

]

B2 =

[
2
0

]

C2 =
[

1.62 0.1
]

D1 = 2

M3 :







A3 =






0.563 −0.31 0.46 −0.314
1 0 0 0
0 1 0 0
0 0 1 0




 B3 =






1
0
0
0






C3 =
[

0 0 0.1 1
]

D3 = 0

M4 :







A4 =





0.1725 −0.032 −0.65
1 0 0
0 1 0



 B4 =





2
0
0





C4 =
[

1.25 .5 0
]

D4 = 0

The input signal is chosen as a white gaussian zero-mean
noise of variance 1.5. The simulation is run with an additive
output white noise such that SNR = 35 dB. The switching
times are 300, 700, 1200, 1500 etc. We setf = 7, λ = 0.9
and we apply thealgorithm 1.

Figure 2 presents the order estimate and the evolution
of system poles modulus. At each switching time we can
notice that the order estimate increases suddenly up tof −1
even if there is no change in the order. This phenomenon is
attributable to the presence of mixed data coming from two
different submodels. The switching times are estimated with
a relatively small delay (about 4 samples). On the other hand,
since any transition lasts at leastf samples the convergence
delay of the order estimation algorithm after a switching
occurs is necessarily higher thanf (see fig. 2 ).

Figure 3 compares the two firsthr to the two first singular
values of the matrixR22 from (8). There is manifestly a
great similarity between them since the plots are in phase
and seem to differ just by a scaling factor and a bias term.

On the figure 4, we represent the evolution of the threshold
in (21). That clearly demonstrates the necessity of choosing
a model-dependent threshold. To further test the efficiencyof
the switches detection algorithm, a Monte-Carlo simulation
of size100 has been carried out. Without no additive noise
we get100 % of success in the detection and in the presence
of noise (SNR=35dB) the performance changes slightly to be
about98 %.

V. CONCLUSION

This work demonstrates the possibility to identify on-line
MIMO linear piecewise systems in a recursive way using a
detection approach. The method proposed may be applied
as well to time invariant systems as to slowly time varying
systems.
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Fig. 2. (a): on-line stimation of the system order. The vertical lines indicate the
switching times - (b): magnitude of local models poles estimated on-line
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Fig. 3. Comparison of the singular values of matrixR22 in (8) and the quantities
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Fig. 4. Evolution of the threshold used for determining the order

A structured identification scheme known as propagator
method has been conveniently prepared to be applied for
bindly identifying online the submodels orders and param-
eters. The switching times are easily recognized since they
are followed by an increase in the estimated order.

A noteworthy drawback of the off-line methods for piece-
wise linear systems identification is that the data basis which
is used may often be incomplete so that some functioning
mode would be ignored. The scheme proposed here allows
to discard this problem but requires unfortunately a certain
dwell time. Future work will include testing the proposed
method on actual application and providing solutions to its
underlined weakness.
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