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Abstract— This paper is concerned with the identification in a noise-free context (see also [5]). It is also possible to
of piecewise linear MIMO state space systems in a recursive cluster in a suboptimal way the generated data by resorting

way. The proposed method summons up benefits of recursive 4 payesian inference, the system order and the number of
parameters estimation, on-line switching times detectiorand - -
modes being known a priori [6].

on-line order estimation. A structured identification scheme L
which applied on-line, allows to track both the extended ob- ~ Some common characteristics of these methods are that

servability matrix range space and its dimension. This metbd  they are mostly iterative, difficult to apply on-line and pro
is used on-line to blindly identify switching systems and tdabel  vide just input-output models with more or less guarantee of
the different submodels. Since subspace identification mebdds optimality. They rely on data partitioning either to comgut

rely on batch data block matrices, a minimum dwell time in letel . f th . d th th
each discrete state is necessary to achieve good performasc completely regions o € regression space an en the

Simulation results comfort this point and illustrate the abilities ~ related parameters [6], [3], [13] or to estimate first the
and the benefits of the proposed approach. parameters so as to derive the switching times [17].

Input-ouput models certainly describe systems well but
|. INTRODUCTION there may be inappropriate for many practical analyses of
A great number of complex industrial applications in-systems especially multivariable systems. Therefore,esom
cludes more or less hybrid systems. Hybrid systems are comuthors [12], [2] addressed recently the problem of sulespac
monly thought of as systems which include both discretgdentification of switching systems in an off-line context.
events and continuous phenomena. And yet, the black-bax this case, as the state is generally unkown, there is
identification of such systems is a still developing researcno available regression vector so that partitioning of the
area. The domain is relatively young but since a few yeargegression space becomes harder. Detection of the swtchin
it has been attracting an increasing research activity. Thignes seems to be an alternative to deal with switching
problem of retrieving both the discrete state and the comMIMO systems using subspace methods. Owing to the fact
responding dynamical part from only the input-output datghat subspace methods operate on batches of successive
measurements is a rather challenging problem. measurements, a minimum dwell time assumption in each
A large majority of the contributions published in thediscrete state is required.
literature deals with the subclass of Piecewise ARX models. Switching systems may also be regarded as time varying
Inspired by pattern recognition techniques, [3] proposes ystems. Generally, the data basis used off-line for the
partition the regressors space into regions on which eagffentification of such systems may cover only some modes
linear local model is valid and then, estimate each modef the systems and not the whole. This situation is probably
by standard LS regression. The solution in addition tghe weak spot of off-line switching systems identification
requiring a knowledge of the system order is suboptimahethods.
since the convergence depends strongly on the initiadizati  |n this paper we follow the idea of detection and propose a
step. In [13], an optimal solution to the global problenyecursive algorithm which realizes online the multiplek&as
is presented, converting the identification problem into &f estimation, detection and decision. Firstly, a struedur
linear or quadratic mixed integer programming one as thegibspace identification scheme is presented which differs
exist efficient and powerful tools in this area to solve it infrom the standard approaches in that it does not require any
an optimal way. Conversely this algorithm suffers from aingular values computation. Furthermore, an extension of
very high complexity. [17] presents an algebraic approadat method to both rank and subspace adaptive tracking
in which homogenous polynomials are used to realize ig straight. The designed method is then applied for online
segmentation of the regression space into regions whigistimation of the submodels of an hybrid MIMO system.
corresponds to the discrete states. This method is idegl orfor this kind of system, each submodel may be slowly time-
, _ __varying and from a submodel to another, the order may also
This research was supported by EC and Regional funded prbjec . . . .
tégration des Modéles multiples pour la Supervision deésyes Non change. For this reason, the order is continuously estinate
Stationnaires( IMS-NS, ARCIR 2004-2007) The paper is organized as follows. Section Il gives the



problem formulation. The background of the structured sutsVD alternative algorithms to apply the subspace concept in
space identification strategy is developed in section llie T a recursive framework. Several reliable algorithms havenbe
section IV presents the application of the new identificatiodeveloped. For example, the IV-PAST method [4], borrowed
scheme to the on-line switching systems identification anflom [18], have been introduced to track the observability
provides simulation results to demonstrate the effecégsn subspace in a coloured noisy framework. More recently,
of the scheme. the paper [10] have suggested an identification version of
the Propagator Method [11] ordinarily used for subspace
tracking in signal array processing. The main advantage of
Consider a system represented by the following discretis approach over the previous conception lies in the use of
state space model linear operator and quadratic criteria which lead to reears
{ Zi41 = Az, + Buy least squares implementations for the algorithms. Thisrlat
(1) method will be discussed more deeply.
Yyr = Coy + Duy + v The next section tries to provide a better solution for a
whereu; € R, y, € R™ andz, € R" are the input, More general application of the Propagator Method in MIMO

zero-mean white gaussian noise vector. It is also suppos@@ efficient tool of deriving the system order and finally a
that £ [uvf] = 0V4,j and E [vo!] = 026;;1,, where complete structured scheme for identification of switching
E[] denotes the expected value andis the Kronecker SYystems.

delta. Further, the model (1) is assumed to be observable
and asymptotically stable. Given a collection of the input-
output data of such a system, we are interested in estimating
the matriceg A, B, C, D) of the model (1). It is well known A. Propagator Method for system identification
that these matrices are not uniquely determined since for an

) ; 71 o :
nonsingular matrixl’, (TAT ™", TB,CT™", D) explains 4y ced in [10] in a recursive identification framework.

the input-output behaviour of the system in (1) as well. |+ ¢ongjsts in the adaptation of the Propagator Method to
Subspace based identification methods (SIM) are nowgs.rsive system identification. For brevity, only its gexte

days considered as good alternatives to the more tradlltlorgtheme is presented. Focusing on the data equation (2), the

prediction error or maximum likelihood approaches for dig,_.51led observation matri€, sy = Yi sn—H Uy sy iS

rectly estimating a state space realization from iNpupout . estimated using for example a QR decomposition. Then,

data. They more precisely rely on the following embeddeq )55 of the observability matrix range space is computed
data equation: from

Yiin=T;Xen+HiU sn+Vign (2) Zypn =T Xe v+ Vign (3)

Il. PROBLEM FORMULATION

Ill. ADAPTATION OF THE PROPAGATORMETHOD TO
MIMO SYSTEM IDENTIFICATION

The technique presented hereafter has been firstly in-

whereI'; is the extended observability matrikl ; the block by making a strong use of the observability assumption. It
lower triangular Toeplitz matrix: follows indeed from the observability of the system in (1)
that rankT,,,) = rank(T'y) = n,. SinceIl'; € R"v/f*ne

c CP 0 0 andny f > n,, one can find a permutation matr& which
CA CA% C% 8 rearranges the rows df s ip such.a Way.t_hahx linearly
Ty = :  Hy = , . , , independant rows appear in the firsf positions.
cart CA'2B CA/3B ... D g FE})
Iy = 2
Xen=[2 - wgn-1 |, f>ngandVipn, Yign I‘;)
andU, ; y are the block Hankel matrices defined in a similar a
way as : with I‘f) a square matrix of dimensiom,. As the rows of
Ut U1 e Ut N—1 (1) . . .
I’ span the row space df there exists a unique matrix
Ut+1 Ut4+2 .- Ut+N
U fn = _ _ . _ Py [11] such that
: : . : e .
U f—1 U U N—2 - _ N (1)
| t+f t+f t+f+. I ST = [ {_‘(1) = [ P }I‘f
There exist many works on subspace identification of f !

systems in the literature [14]. Most of the SIM are imple-_. (1 _ - . . .
mented using Singular Values Decomposition (SVD) of hug inceI;,’ is invertible, it is possible to obtain an expression

. ) . of the observability matrix in a particular basis by determi
matrices blocks (MOESP, N4SID). The SVD is essentlall)ﬁ]g the propagator. If one partitions the whole equation (3)

used to determine the system order and then to compyi§ing the same permutation, the following is obtained :
I's. The main drawback of such methods is that the SVD is

known to be too computationally demanding and difficult to Zi}},N _ { L, }I‘“)Xt - Vt(})w
update recursively [8]. Hence, it has been necessary to find Zf} N Py £ thfC?N



Then, an estimate aP; can be obtained in a noiseless set The matricesT’; and H; are defined fromA, B,C, D
(V = 0) by minimizing the following least square criterion where C and D correspond to the matrice® and D in
@) W 2 which the respec;ive first rows have been replaced’ﬁyand
HZt,f,N - Pth,f,NHF DT. In the remainder of the paper we will adopt whenever
@ ] ] possible, simplified notations &8 := Y; yn, I' := L'y,
whereZMN isa submatr|x constructed fro; ; v in the r .— f‘gg) . Then, (5) becomes
same manner aB'” is from L.
The interested reader is referred to [10] or [9] for more Y=TX+HU-+V (7)
details on that method.
The permutation is applied to this equation in the objective

B. D|scu.35|on on permutayon matr.|x slelectlon . to put the sub-matrixy in the first f rows of ST';. S may
Selecting the permutation matri$ introduced in the be chosen as :

previous subsection is a rather challenging task. Siige

is unknown, there is a great problem in recognizing which I I(f(lir% ) 1

rows are linearly independent. In [10], the firs} rows of v

I'y have implicitly been assumed to be linearly independent. :

But, this assumption is accurate only for the MISO class of g — I((J;(—Ql)ny JS 1)
DNy,

systems.

To find S, it is sufficient to characterize:, linearly
independent rows iT's. For an observable MISO system, :
the observability matriT',,, is square and invertible so that L Z((f=Dny +2: fny,:)
S is chosen to be the identity matrix. For a general MIMO ] ) ) )
system, the problem is slightly complicated. Let denote invhereZ is the identity matrix of orderfn,.
this case,

T(ny +2:2ny,:)

C. Propagator estimation

cy
_: CjA @) In this subsection, the problem of the propagator described
v : earlier is considered. By being inspired by the MOESP
cra/—t class of subspace methods, the first step of the propagator

estimation consists in eliminating the terBiU in the data
equation, projecting the whole equation onto the orthogona
complement subspace of the row spacdofln this objec-
gye, let follow the QR implementation method [16]

whereCjT refers to thejth row of C. If all the poles are
observable from the outpuy;, (as it is for MISO systems)
then~; is necessarily of rank,. But that is far from being
always the case for general MIMO systems since the oth

outputs may introduce dynamics in the state vector which U R 0 Q
would not be visible byy;. Consider an auxiliary output =| M ! (8)
: Y Ry1 Ry Q>
defined as .
y=y1+ Zaj Yj Premultiplying by S and postmultiplying byQ7', one gets
Jj=2 _
with «; real numbers. The objective of this manipulation SRy = SYQL = 11731‘ }F“)XQ;“rSVQQT 9)

is to replace one of the outputs (for examplg by this

auxiliary output from which all the poles of the system may 4,4 then
be observable. It is possible to find the numbagssuch

thaty = v, + >."%, a;7; is of full rank n,. An important 1 I, 11 v, 17
condition is th%tjy ?nujstjbe sensitive to all the observabIeNSR22R2T2ST - { P |N <F<1)X) Q (F(I)X) { P }
dynamics of the system, whatever output they are acting on. — 0

The choice of these coefficients must be so as to guarantee 1 - 1 ’ AN\
the observability of all the system polesjnAn easy way  + SVeV § +5+ (FXQV + (FXQV ) ) S

to choose them consists in generating them randomly as

. . (In
nonzero real numbers. Finally, the data equation (2) can be i (10)
rewritten as follows
Yisn =T Xin+HiU sn+Vign (5) whereQ=Q7Q,=I1-U" (UUT)_1 U

with The equation (10) can be simplified as follows:

[V w2 ... yny]T — [ ... yny]T (6) « Using the independence and ergodicity properties of the

} ny 3 ny sequencev;} and the fact that it is statistically uncor-

Cl —ci+> a;cf, DY —D{+> a,D] related with {u;}, one can easily show thaffl) —

j=2 j=2 o2lf,, asN — ooc.



« On the other hand, by developing/I) using the D. Order estimation
expression ofQ and writing
To estimate conveniently the mattR by (13), an estimate

N
iXVT _ L me“T of the system order., is essential. Under some mild as-
N N — ‘ sumptions, an order estimation procedure is suggestedsin th
N ' subsection. Generally from subspace identification sckeme
_ % Atzoo?l + Z Ai-1 ButfjﬁtT g?it%teorn \g;er\ll;/( It%he ior:d(gr) rfi?ueltfa?rl]mlost always from an SVD
P} = 22 ple. To that purpose, [1]
r defines the information criteria NIC and SVC similarly to
U = [vtT vtTJrf_l] , and recalling thatd is the Akaike’s criterion and based indeed on singular values.
stable, it is straightforward to see thgtIl) — 0 as Here, we would like to characterize the order without resort
N — . to the very computationally expensive SVD so that an on-line
« Similarly, whenN — oo, (I) reduces to application becomes possible. For that, assume the order of
1or i the system (1) has an available upper bound, which is anyway
() =22 wih Z=T"X the basic requirement for any subspace identification naetho

(f has to be set greater than). Then, the main idea behind
this method relies on exploiting the particularly intenegt
ﬁ;[ructure of the matriX. Firstly, two versions of our method
a deterministic framework are introduced. The stochasti
case will be dealt in the last paragraph of this section.

SinceT'™ is invertible, one realizes a similar transfor-
mation by settingZ = I'¥ X . It is important to notice that
assigning a value t& amounts to set a basis of the searche
state space representation in (1). D&t = %ZZT be the
covariance matrix of.

Therefore we have : 1) Deterministic contextWithout noise,c21 from equa-
1 tion (11) does not exist. The underlying idea in the strategy
%= NSR22R§25T followed is to consider sequentially a submatrix Bf in
3, »,PT 2T 0 (11) of the formA, = 3(1: r,1:r), r running fromr,,;,
= [ Py, Px,PT ] + { 0 oI ] (11)  towardsrmas With rmin < na < rmee (See fig. 1 for an
o S0, v illustration).
[ T X2 ] Assumption 1 The covariance matri¥, = +ZZ" of the

wherec? denotes the variance ¢f;}. Then the propagator vectorz = 'z is positive definite, which is equivalent to
can be estimated by minimising the following cost functiorsay rankX) = n, that is, all the modes are sufficiently

S0 — PSS ”2 (12) excited. Consequen'FIy any square supmatrix of the form
= Lip> A, =X.(1:71:7)is also positive definite.
since
P =337 (13) o g fny. s
It should be noticed that the estimate obtained here for ‘?nn,@\: I
P may be biased in the presence of noise. An interesting 0 N
way to suppress this inconvenient may be for example to g |===--- > S
use the instrumental variable method [8] which provides a ANy
theoretical satisfaction. Unfortunately, introducingiastru-
mental variable would probably not suffice to remove the
noise effect and will particularly complicate the choice of f”y, ;
the order detecting threshold as we will see in subsection v
HI-D. Fig. 1. Sequential slicing of matri¥

Once the propagator is estimated, the extended observabil-

ity matrix can be obtained as ) ) . )
In reference to this assumption,. is invertible as long

T = ST[ I, } (14) asr < n, but becomes non invertible as soonsas- n,.
P These arguments justify the rank pursuit algorithm desctib
The matricesA and C of the system (1) are immediately below in two equivalent versions. In each version, a specific
extracted as follows decision criteriom,.;.; associated to every value pfallows

N\l to check whether is the order or not.
A= (I‘f) Iy, C=Ty(1:ny,:), ) i o L )
: Version 1: A first possibility may consist in computing

with I‘} =Tp(1:(f=1)ny,:), I‘} =Ty(n,+1: fn,,:). recursively the inverse o\, extracted from% going from
B and D can then be estimated by a linear regression frot = rmin towardsr = ry,q, until the order is detected.

C and A, assuming the system is asymptotically stable (see If A, is invertible, A;jl may be computed using the
[8] for more detalils). matrix blocks inversion lemma (see appendix A in [7]) in



the following way : related to the system we wish to identify and hence, has to be
computed or adapted somehow, particularly in the piecewise

-1
Arjl = { ATT Wit ] systems case (see section V).
Yrir  Sr+d The presence of noise tends to increase all the quantities
_ [ hpp1 AT +‘pr+1‘ﬁr+1 Pty (15) h, but a gap is still observable in their values when the
-l T iteration process reaches the rank ¥f unless the noise
r41 . . . .
. is dominant compared to the signal. Note that, owing to
with the assumption land the Schur complement theorem (the
P = —AL ’w7+1 S parameterh,. ., is indeed the Schur complement Af,. in
Bpi1 = Spi1 + wr+1£7~+1 cR (16) A1), all b, are positive scalar for < n,. It follows from

(11) that
The partition (15) is possible thanks to the symmetric

structure ofX. The underlined elements refer to column h,,; = s, + o2

vectors. Then, it follows from the formula (15) thatX,. is T 1 9 A —1y—1

nonsingular, so i\, if and only if k.1 # 0. — W A (I 0y AT T wr (19)
Admitting A7 is known, an initial value for is taken |f we make the hypothesis that all the eigenvaluesofare

asr = rmin. ONE proceeds to the computation/of; if  significantly greater than the noise variance, then thetsgec

hri1 =0, thenA,, is singular and the conclusion, = radius ofc2A ! is in the unit circle. Therefore, expanding

is drawn; conversely, i1 # 0, the recursion is pursued by the term in brackets at the first order we get the following
computingA,;, and thenh,» and so on. The procedure gpproximation

is stopped when it becomes evident tl®t ., is singular.

At the end of this loop hrg1 = (841 — Wl AT w, )
Sl=t=A0 (17) + (02 4+ o2wl A w,41)  (20)
is known andP is computed as in equation (13). which is composed of the useful signal part and the noise

Version 2: Another recursion option may be led by fo-contribution. Forr = n,, the first term becomes null so that
cusing on the value of? in (13). It presents notably the h,, 1 ~ o2 (1 + @Zﬁﬁpnwﬂ) where p; is defined as in
advantage of providing directly the value @ once the (16). Taking in account these remarks, a threshold can be
order is detected. Having, we would like to estimatd®,,;. chosen as
These matrices take the forms

Thresr) = To (1 + X\ 1or11) (21)
p—|Y A-l=| 2
! w r II, whereTy denotes a constant, supposed to be slightly greater
-1 than the noise variancg?. When the order is detected, we
A, w 41 . Lo . . . .
Po=|W k| o s can estimate posteriorithe noise variance in the following
=r+l o Srtl way sinceh,, 1 has been computed.
= [ Qi1 Wy } h
~2 naz+1
whereW =3(r+2: fn,,1:r), wl , =3(r+1,1:7), v =T o on
E=%(+2: fng,r+1), s,41 = Z(r+1,7+1), pI refers _ nat i
to the first row of P, andIl,., to the remaining part. E. Recursive update of the matix

Whenr is incremented ofl, P, loses a row and gains a |n the previous parts, a complete off-line identification
column. Using the matrix identity (15), it is easy to reachscheme has been investigated. From now on, we are inter-
the following adaptations laws: ested in working out an on-line version of that procedure

W = (ﬁ_ HT%H) Jhes1, (18) in _ord(_ar (as we will see in the last section) to apply it to
hu switching systems estimation.
Qry1 =1, — Yr1b, The on-line version of our algorithms relies on the recur-

The parameter of interest is noWw..1 = s,.1 — p’w, sive adaptation of the matriX (see eq. (11)) through the

=r+

It is important to notice that, despite the beneﬁts t¢rew captured information. At each time instaktjs updated

compute directlyP, given the dimensions of the matricesfirst and then, the procedure described above is run.

involved, this second version may be sometimes costly in ASsume that a QR factorization as in (8) is known at the
terms of computational time. instantz. Then, att + 1, a new data column is stacked as

2) Stochastic contextin a stochastic context, the term follows

oI from equation (11) is no longer null. Then, in practice, Ry (7) 0 up(t+1)
hn,+1 Will probably be greater than zero, but the method VA Ry (1) Ryoa(?) yr(t+1)
could be efficiently performed using a convenient threshold

comparison. Naturally, this threshold may depend on theith y;(t+1)=[ y"(t—f+2) ... y"(+1) }T and
level of the noise acting on the process. It needs also to be< 1 a forgetting factor. It has been shown in [8] that the



last data column can be zeroed out applying a sequenceTdie embedded data equation in (5) still holds as long as all

Givens rotations as the data involved are generated by the same submodel. But
Ry (1) 0 up(t+1) _ when the system switches between two local models (from a
Ry (1) Ry(t) +1) modeli to a model;j for example), this equation is no longer

acceptable in this form as there will be in the matriéés

Ry (t+1 0 0
= [ R“Et_I 13 VB §(F+1) } and Y data stemming from two different submodels. The
2 2208 Ys figure below gives an illustration of the changes affecfihg
Then, during the transition fromi to ;.

Ry(t+1) = [VARn() gr(@+1)]

and Ry, RY, is updated as -1 T Tl
Rgg(f+ 1)R22(f+ 1)T C; C; C;
_ _ CiA; CiA; CiA;
= ARy ())Roa (D) + g (T + s (t+1)" _ . :
Ea(Et1) c.Al coAl? c Al |
and ) . c, Al c,A/! C,A;Al2
S(E+1)=A2(f) + S®r(E+1)ST (22)
I '(r) '(r+1)

As already mentioned, it is not of great interest to adapt
entirely the matrix3. If the order might vary then, assuming where matrices ilrRoman correspond to the model before
S is suitably set, it is essential to adapt all the firsl,,  the switching timer and matrices incript to the model after
columns or rows. After that, the order searching procedut@e switch.
is to be triggered on. Two choices are possible : either In the neighborhooft— , 7 + k|, k < f of a commutation
it is known that the order will always be greater than ahe QR factorization of the data matrix similarly as in (8) is
certain number,,;, and thenA ! s recursively adapted as follows

rmin

(using the matrix inversion lemma) together whh or this i mix i miz
information is not available and the procedure is startechfr voourTT_ (Bu 0 Q1 Qi ;
.o 1 Y’L YﬂLlfI: R21 R22 Q’L2 Q’gﬂ,l.’])

From r = 7., the order searching recursion is therwhere the superscriphix andi refer respectively to mixed
turning on up to the ordet,. TheAlgorithm 1 below sums data and pure data generated by thé& submodel. Then,
up the whole on-line procedure described previously. since

Algorithm 1 On-line subspace tracking algorithm

e Initialising: set A To, f, = AL v
e FORt=1,...,00
1) Update the QR factorization of the data

one gets after some straightforward manipulations

matrix as in subsection I11-E i i T T
2) Update 3 using (22) Ry, =I'"X' (Q3) +VQ;
3) Update A~ . using the matrix inversion . ) . ) T
| emma + (I\;nw: + H:an _ HlUmzw) ( gna:) (24)
4) FOR T = Tmin,---5Tmax X
— Conpute h,41 and Thres(r) mixed data
— IF hpry1 <Thres(r) where
Ng < T,
— Once the order is known, conpute the miz __ miz, miz . . miT . miT
propagator using the formula (13) H;"" = [H{""uf Hi e |
— Deduce the systemmatrices as in e — [I‘{””x{”” I‘Z”sznw]
subsection Il1-C r ; ;
~ EfgéK? As long as only data from one submodel are present in the
Conpute A_l, by the formula (15); window, we have
r—r+1, i iNT i
- ENDIF rank(I"'Xz (Q3) ) = rankRy2) = n},
5) ENDFOR _ _
e ENDFOR Hence, theAlgorithm 1 keeps tracking the rank of the cur-

rent active submodel until a switch occurs. From equation

V. APPLICATION TO SWITCHING SYSTEMS ESTIMATION . o .
(24) the presence of mixed data is likely to increase the

A. Description of the procedure rank of the matrixRs,. Hence, any change in the dynamics
Consider now a piecewise linear system described by thg in the zeroes of the system will be visible by the order
following state space representatign; estimation algorithmt since it induces a rank increase in the
v Zoi1 = Asy + Biug 3 matrix I' (see also [2]).
. yr = Cizy + Djug + vy leven if it is not necessarily followed by an order change



Managing the transition period is a rather challengin@therwise, it is saved as being a novel submodel and labelled
problem essentially due to the recursive nature of the aps different from all the others.
proach followed. One problem related to this period is foB. Simulation
example the risk of a state space basis change underlined inn orger to illustrate the procedure presented above let us
[15]. At each commutation, the state was to be computed iy, nsider a numerical simulation. Four linear submodells

order to bring all submodels in the same basis. Applying thg/t% Ms, M, respectively of order 2, 2, 4, 3 are switching
propagator method in the switching systems identiﬁcaﬂo@ontinuously.

context allows to get rid of this problem since the system
matrices obtained remain in the same basis (as long as Al:[ 1.23  —0.49 } B :{ 2 ]
the permutation does not change as well as the order). We My { 1 0 0
propose to use a procedure in two steps.

« Firstly, the detection of the switch is achieved. The
Mo : {

Cy=[ 0864 0.755 | Di=1

parameters of the previous submodel are memorised and
a new model created.
« Secondly, after the estimates have converged, a classi-

e [88 ) me ]3]
=

C 162 0.1 ] Dy =2

fication task tests whether the new captured model is 0-5163 _0631 0516 —00314 é

already known or not. Me:d A2 0 1 0 0 Ba=1 9

The switches detection strategy is based on the assumption 0 0 ! 0 0
C3=[0 0 01 1]D3=0

that the switching times are separated by a certain minimum

delayT; called the dwell time. This dwell time is supposed

to be large enough to include the width of the data ] Al=
window and to allow the convergence of the estimation '
procedure. The commutations could be state-driven, time-

driven or event-driven provided that the minimum dwell The input signal is chosen as a white gaussian zero-mean
time requirement is satisfied. In practice, when startingoise of variance 1.5. The simulation is run with an additive
the algorithm with random values, a dwell time of abouputput white noise such that SNR = 35 dB. The switching
T, = (2—X\) f/ (1 —\) samples is generally sufficient for times are 300, 700, 1200, 1500 etc. We get 7, A = 0.9
achieving good convergence. and we apply thelgorithm 1.

When the system enters the zone of transition, pursuing theFigure 2 presents the order estimate and the evolution
update (with mixed data) will corrupt the obtained model foPf system poles modulus. At each switching time we can
the submodel. So, once the detection is done, the learning dfiotice that the order estimate increases suddenly yp-ta
the submodel has to be immediately stopped, the final valugven if there is no change in the order. This phenomenon is
(just before the switching occurs) of the submodel obtainegftributable to the presence of mixed data coming from two
to be recorded and thalgorithm 1 to be reinitialised with different submodels. The switching times are estimated wit
a new model. As, there may exist some defapetween a relatively small delay (about 4 samples). On the other hand
the actual switching instant and the detected oné)( the since any transition lasts at legstsamples the convergence
parameters obtained at— § are memorised instead. delay of the order estimation algorithm after a switching

Instead of creating continuously new models as nefccurs is necessarily higher thgn(see fig. 2 ).
dynamics appear, it seems more convenient to classify theFigure 3 compares the two first to the two first singular
different submodels in order to recognise their upcomingalues of the matrixRz, from (8). There is manifestly a
occurrences. To that purpose, a classifier based on an &peat similarity between them since the plots are in phase

propriate metric (measure of similarity) may be used. Let and seem to differ just by a scaling factor and a bias term.
On the figure 4, we represent the evolution of the threshold

o(t) = Vec({ F(Jtt;(é)(t) D in (21). That clearly demonstrates the necessity of chgosin
a model-dependent threshold. To further test the efficieficy

where ve¢) is the vectorization operatofi(t) is a vector the switches detection algorithm, a Monte-Carlo simutatio
of dimension(f + 1)n,n, and characterises at each timeof size 100 has been carried out. Without no additive noise
the current submodel. The current submodel is compared %€ get100 % of success in the detection and in the presence
the already known submodels which have the same order bfnoise (SNR=35dB) the performance changes slightly to be
analyzing the similarity of)(¢) with known parameters. Let about98 %.
consider for simplicity the euclidean distance as a sintylar
measure

0.1725 —0.032 —0.65 2

1 0 0 By=|0

0 1 0 0
Ci=[125 5 0] Ds=0

V. CONCLUSION
di(t)? = e, (t)Tei(t) (25) This yvork dgmongtrates the pqssibility to _identify on_—line
MIMO linear piecewise systems in a recursive way using a
with e;(t) = 0(t) — 6, and g, is the parameter of some detection approach. The method proposed may be applied
recorded model. When the new submodel is close enougtas well to time invariant systems as to slowly time varying
to some existing submodel, the two submodels are mergeystems.
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Fig. 4. Evolution of the threshold used for determining the order

A structured identification scheme known as propagator
method has been conveniently prepared to be applied for
bindly identifying online the submodels orders and param-
eters. The switching times are easily recognized since they
are followed by an increase in the estimated order.

A noteworthy drawback of the off-line methods for piece-
wise linear systems identification is that the data basiskvhi
is used may often be incomplete so that some functioning
mode would be ignored. The scheme proposed here allows
to discard this problem but requires unfortunately a certai
dwell time. Future work will include testing the proposed
method on actual application and providing solutions to its
underlined weakness.
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