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“Good-Walker” + QCD dipoles = Hard Diffraction®

R. Peschanski

Service de Physique Théoriqgue, CEA, CE-Saclay
F-91191 Gif-sur-Yvette Cedezx, France

The Good-Walker mechanism for diffraction is shown to provide a link between
total and diffractive structure functions and to be relevant for QCD calculations
at small 2 ;. For Deep-Inelastic scattering on a small-size target (cf. an onium)
the réle of Good-Walker “diffractive eigenstates” is played by the QCD dipoles
appearing in the 1/N¢ limit of QCD. Hard diffraction is thus related to the QCD
tripe-dipole vertex which has been recently identified (and calculated) as being
a conformal invariant correlator and/or a closed-string amplitude. An extension
to hard diffraction at HERA via kp—factorisation of the proton vertices leads to
interesting phenomenology.

1 The Good-Walker mechanism:

The Good-Walker mechanism ' is known to provide a simple explanation of
the link between two phenomena of high-energy (soft) scattering: absorption
and diffractive dissociation. Our aim is to show that the mechanism can be
used in QCD calculations of hard scattering at small zp; providing a simple
connection between total and diffractive structure functions.

Let us consider the diffraction of a set of quantum states on a potential.
Absorption describes the absorption of a given initial state due to the presence
of inelastic channels. Diffractive dissociation is the observation that there ex-
ists transition between different such states, i.e. the transition matrix between
initial and final diffractive states is not diagonal a priori. The Good-Walker
mechanism ' shows that the two phenomena are related through the fluctu-
ations of the absorption factors. Let <i|t|i> be the diffractive amplitude of
a given initial state and consider a orthonormal diagonal basis |m > of the
transition matrix we can write :

<iftli>= )" <ilm><mltin><nli>=>" |<ilm>|*<mft|m>= 1,

m,n m (1)
where t is the average absorption factor. With the same notations, we may
write diffraction-dissociation cross-sections in term of:

Y <ilm><m| tth [m><mli> - <iltli><iftlli>=t 1T -1 1. (2)

m
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From formulae (1,2) it becomes clear that the total contribution of diffrac-
tive dissociated states is related to the dispersion over absorptive factors. In
the case of “soft” diffraction, these formulae relate total and diffractive cross-
sections (actually for each impact parameter or partial wave). As we shall
now see in “hard diffraction”, it is a convenient way to relate total and d-
iffractive structure functions and apply QCD calculations at small p; to both
observables. .

2 Hard diffraction off a hard target

In the past, there were interesting attempts 2 to identify the diagonal basis, or
diffractive eigenstates with free partons. However, the applications to “soft”
reactions prevent from the use of perturbative QCD calculations. On the
other hand, partons (gluons) are not necessarily diffractive eigenstates in high-
energy (small zp;) processes. In a recent approach®?, it was suggested to use
the QCD dipole states as the diagonal basis of diffractive eigenstates in a hard
scattering process, see fig.1. QCD dipole states appear ° in the 1/N¢ limit
of QCD at high energy. The key observation is that the QCD dipole states
interact purely elastically by the exchange of two gluons. On the other hand,
the wave function of initial hard ¢ (onium) states in terms of interacting
dipoles is known from QCD calculations in the infinite momentum frame 5.
Thus both the matrix elements < m|t|m > and the coefficients < i|lm > in
formulae (1,2) are determined in a suitable perturbative QCD framework.

In order to apply these properties to structure functions, let us consid-
er the (theoretical) process of Deep Inelastic Scattering (DIS) on an onium
target. In the same spirit as the Good-Walker derivation, two different com-
ponents to hard diffraction happen to be relevant, the elastic and inelastic
components corresponding to, respectively, the elastic and dissociative diffrac-
tion previously considered in soft processes. The virtual photon is represented
by a well-defined  set of ¢g initial states which give rise to a collection of
QCD interacting dipoles following ®. The interaction of QCD dipoles from
the photon with those from the onium give rise to a total structure function
given by BFKL dynamics 7. In the QCD dipole picture of the Good-Walker
mechanism, it amounts to compute the distribution of absorptive factors as a
function of the QCD dipoles, in practice as a function of their transverse sizes.
Considering the inelastic component, one investigates the simultaneous inter-
action of fwo dipoles from the photon, see Fig.la, to compute the dispersion
of dipole sizes, and thus to generate a significant contribution to diffractive
dissociation 3.

There is however a distinct component ¢ which is analoguous to elastic d-
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iffraction in soft reactions. In this process, see Fig.1b, the photon ¢g states in-
teract elastically with the target. The calculation of this component with QCD
dipoles has been performed # and requires a novel quantum-mechanical aspect
of QCD dipole calculations lying beyond the original Good-Walker description.
Indeed, while the derivation has been made for the total cross-sections (even-
tually for each impact-parameter), it cannot be used for a given mass M of
the diffracted state (neither for a given rapidity gap ~ Y —log M? between the
diffractive state and the target). In fact one cannot diagonalize the momentum
operator and thus the mass of the diffractive state on the QCD dipole basis
since ® the QCD dipole basis requires kinematics to be described in a mixed
representation using transverse coordinates and rapidity and not full momen-
tum space. The correct implementation of this effect leads to interference
terms in the final formulae *.

Interestingly enough, diffractive processes happen to be related to some
quite fundamental theoretical aspects of (resummed) perturbative QCD. The
inelastic component has been shown 2 related to the 1 — 2 dipole transition
vertex which, in turn, has a string theory interpretation ° in terms of a closed
string amplitude with 6 legs. It is possible to explicitely compute the triple-
dipole vertex which appears to be quite large '°. The computation of the
same quantity can be done also in the framework of conformal field theory
11 The stringy character of any 1 — n dipole transition vertex ° may lead
to interesting theoretical developments. The other (elastic) component can
also be exactly computed 12 with the help of a derivation ™ of the conformal
coupling of a BFKL Pomeron to a general qq state.

3 Hard diffraction off a soft target

The application of the QCD dipole formalism to a more realistic target, e.g.
a proton of the HERA ring, requires some care and simplifying assumptions.
Indeed there exists large theoretical uncertainties in the use of perturbative
QCD for hard scattering on a “soft” target. Let us briefly mention some of
them. kp-diffusion of the intermediate gluons '* lead to a excursion inside
the strong coupling domain of QCD near the proton vertex. More recently, a
rather stringent upper limitin zp; due to the breaking of the Operator Product
Expansion has been reported '®. At the present conference were reported for
the first time calculations of large next-to-leading BFKL corrections ¢ which
may invalidate predictions for proton structure functions. It is tempting to
relate these theoretical objections to an old idea of Bjorken 7. From the
calculation of the photon wave function © it appears that the effective virtuality
of the photon ¢7 state is not Q% but Q% = 2(1—2)Q?, where z is the momentum
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fraction of the photon beared by the quark. Thus, if the probability of z (or
1 — z) being small is sizeable, the effective virtuality may be of the same order
of that of the target. In that case, the process may indeed be soft and thus
not governed by perturbative calculations.

However, some arguments may be opposed to such a skepticism from both
theoretical and phenomenological sides. It has been argued at this confer-
ence '8 that the same quantum state configurations which may invalidate a
perturbative treatment of diffractive scattering may be washed out by the in-
clusive QCD resummation of structure functions. Moreover the “soft” part
of the cross-section may be eaten out by the strong absorption expected from
soft diffractive components. On a more phenomenological ground, there are
hints that QCD dipole descriptions of proton structure functions do agree
with present data using a small number of parameters describing the non-
perturbative proton input '®. Indeed, the kp-factorization property of high-
energy QCD 2% may be invoked to relate different structure functions of the
proton 2!. Extending this factorization property to diffraction dissociation at
the photon vertex, it is possible to find a convenient and economical (in terms
of parameters) description of diffractive structure functions %2,
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Figure 1: the two diffractive components (a) Inelastic (b) Elastic
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