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Abstract—This paper defines and implements a non-Bayesian to the probabilistic paradigm of the Proportional Conflict
fusion rule for combining densities of probabilities estinated redistribution rule no.5 (PCR5) which has been proposed
by local (non-linear) filters for tracking a moving target by in [E] for combining basic belief assignments. p-PCR5 is

passive sensors. This rule is the restriction to a strict prbabilistic | tensi f di te PCR5 ion to it fi
paradigm of the recent and efficient Proportional Conflict Redis- also an extension ot discrete version to Its continuous

tribution rule no 5 (PCRS5) developed in the DSmT framework Probabilistic counterpart.

for fusing basic belief assignments. A sampling method for ) . - . .
probabilistic PCR5 (p-PCRS) is defined. It is shown that p- PCRS5 has been first established for combining evidences (i.e

PCR5 is more robust to an erroneous modeling and allows to discrete belief assignments) in the DSmT framework. Inipart
keep the modes of local densities and preserve as much adilar, it has been designed in order to cope with highly carflic
possible the whole information inherent to each densitiesot ing and uncertain information. This rule could be considere

ﬁombir?e' '“/ pa&“"”'a‘;’t p'F;CRS is aﬁ'e thmari]”tai”;]r‘g multiple i 3 new probabilistic paradigm by restricting the basidedel
ypotheses/modes after fusion, when the hypotheses are too,_..: : e . .
distant in regards to their deviations. This new p-PCR5 rulehas assigment involved to onlyprobabilistic belief assignmeht

been tested on a simple example of distributed non-linear fitring  @nd directly extended to densities of probabilities. Thiker
application to show the interest of such approach for future in non-Bayesian by nature. Although Bayesian techniques ar
developments. The non-linear distributed filter is implemaited widely well known and used in target tracking community
through a basic particles filtering technique. The results otained (including authors works in tracking), it is interesting see

in our simulations show the ability of this p-PCR5-based filer : .
to track the target even when the models are not well consistg how such new approach can perform to estimate its real

in regards to the initialization and real cinematic. interest and potentiality. Surprisingly, it turns out thgh our
Keywords: Filtering, Robust estimation, non-Bayesian fu- WOrks, that such approach is robust to an erroneous modeling
sion rule, PCRS5, Particle filtering. in particular, it is able of maintaining multiple hypothese
when they are too distanfor fusion. The resulting p-PCR5-
|. INTRODUCTION based filter happens to be essentially non-linear, and hers be

Bayesian inference is a powerful principle for modelingmplemented in our simulation using particle filtering tech
and manipulating probabilistic information. In many case&iques. In particular, the p-PCR5 multisensor filter depetb
Bayesian inference is considered as an optimal and legiim&ere is based on a quite simple and direct implementation in
rule for inferring such information. Bayesian filters argity terms of particles drawing and resampling. We will show the
cally regarded as optimal ﬁ|terE| [1]D [5]] [2]. robustness of such elementary version of p-PCR5 filter, even

. . in case of poor initialization of the filter.
However, Bayesian methods need strong hypotheses, in par- P

ticular about the information prior. A degradation of the ; - Lo . . :

. . . . . The denominatiorprobabilistic belief assignmeris prefered toBayesian
performanc_? (_)f Bayesian f”ter_ occurs if the filter is NOfelief assignmentgenerally used in the literature, since we consider that
correctly initialized or updated, in accordance to the ni@deProbability and Bayesian inference are distinguishabléons.
in use. Being given a model of the system kinematic and A rigorous definition the notion of ‘distance’ here is not sasg to

f th h Do . d stablish. This distance is essentially characterizedhdylistance between the
of the measurement process, the main issue IS to deve, ns of the laws in regards to the deviations. But we als® itath account

filtering methods which are sufficiently robust against thesb the direction of the deviation. For example, let be given turertainty
at the initialization as well as error in modeling. In thisppa, ellipses with high eccentricity and orthogonal orientasio If these ellipses

. . [ . intersect at their extremities (the union forms a corner of énstead of a
a non-Bayesian rule for fusmg the prObab'“St'C inforroati cross), we will consider that the laws tend to be distants Hefinition is not
is proposed. This rule, denoted p-PCR5, is the restrictionestigated further in the paper.



Section|]| introduces the PCRS5 rules, and establishes sobréefly aforementioned led to the following PCR5 combinatio
results about probabilistic PCR5. A sampling method is dedle. Being given two bbasi; andms, the fused bbanacgs
duced. Sectiorﬂll compares the results of the Bayesian r@ecording to PCR5 is defined by:

and of probabilistic PCR5 on a simple example. On the basis

of this comparison, some arguments about the robustness ofipcrs( X) = mi2(X)

PCR5 are given. Sectidn]lV implements PCR5 on small track- mi(X)2ma(Y)  ma(X)2ma(Y)
ing applications (only the filtering aspects are considered + Z [ml(X)erg(Y) + m2(X) +m1(Y)] 1)
Distributed filtering on bearing-only sensors is considere YEP(O)

. XNYy=0
Section[{ concludes.

wherem () corresponds to the conjunctive consensus:
II. PCR5FORMULA FOR DENSITIES 12() P J

A. Definition and justification of PCR5 mia(X) 2 Z m(X1)ma(Xs) .

The Proportional Conflict Redistribution rule no. 5 (PCR5) X;{yﬁz}{ez@
of combination comes from the necessity to manage precisely b
and efficiently the partial conflicts when combining conitigt N.B. If a denominator in|]1) is zero, the fraction is discarded.
and uncertain information expressed in terms of (quaiviat
discrete belief assignments. It has been proved useful dhdDefinition of probabilistic PCR5 (p-PCRS)

powerful in several applications where it has been ufed [8]. | [B], Dezert and Smarandache proposed also a probabilis-

Let be given an universe of even®. A distribution of tic version of the PCRS rl{'?ﬂ(l) by restricting the bbas
evidence ove® is characterized by means of a basic beligghd m. to discrete probabilities” and P, \ﬁICh are called
a

assignment (bbay. : P(©) — IR* such that: then probabilistic belief assignments/masse$robabilistic
belief masses are bbas, which focal elenfemsnsist only
m@ =0 and Y mX)=1, in elements of the fram®, i.e. the singletons only. When
Xce dealing with probabilistic belief assignments; = P, and
Where’P(@) is the set of subset .3 mo = Py, the PCR5 formulaﬂl) reduces to:
A bba typically represents the knowledge, which can be both
_uncerta?ln and imprecise, that a sensor provides aboutlisfbe p __(x) = p,(X) Z _AX)RY)
in the true state of the universe. The question then arisng i P (X)+ P(Y)
How to fuse the bba’s related to multiple sensor responses? Yeo
The main idea is to corroborate the information of each senso Py (X)P(Y)
in a conjunctive way. _ + P(X) Z B(X) + Pi(Y) (2)
Example.Let A, B C © and let's assume two sources with veo © 2 1
basic belief assignments); and ms such thatm;(A) = ) . .
0.6, m1(AUB) = 0.4 andmy(B) = 0.3, ma(AUB) =0.7. 1) Extension of p-PCR5 on continuous propositiofigie
The fused bba is then characterized in a conjunctive way Ipytevious discrete p-PCR5 formula is now extended to dessiti
m12(AN B) = m1(A)mz(B) = 0.18 , of probabilities of random variables. Formul (2) is thus
mi2(A) = m1(A)m2(AU B) = 0.42 , adapted for the fusion of continuous densitigsand p,:
mlg(B) =ma (A U B)mQ(B) =0.12,
77’I12(AUB) :m1(AUB)m2(AUB) =0.28 . A pl(x)pQ(y)
e | P12(0) £ prenle) = () [ L2
The conjunctive consensus works well when there is no o p1(x) + p2(y)
possibility of conflict. Now, make the hypothestsn B = (). ( )/ pa(z)p1(y) ®)
Then, it is obtainedn(f)) = 0.18, which is not an acceptable D2 o P2(2) + p1(y)

result for a conventional interpretation (bfas a contradiction.

Most existing rules solve this issue by redistributing the 2) Properties: In this paragraph, some properties of the

conflict m12(()) over the other propositions. In PCR5, thdcontinuous) p-PCR5 are derived, which are useful for prac-

partial conflicting massn;(A)mz(B) is redistributed toA tical manipulations. In particular, it is proved that theséd

and B only with the respective proportions, = 0.12 and densityp;, is a true density of probability.

xp = 0.06, according to the proportionalization principle: a) Expectation:The expectation of a function according
oA - m1(A)yma(B) 0.18 to the _f.u.sed probabilityp;» is expressed from the initial

= =02. probabilitiesp; and ps:

mi(A)  ma(B)  mi(A) +m2(B) 0.9
Basically, the idea of PCRS5 is to transfer the conflicting snas / (W) f(y, 2) dy = // p1(y1)p2(y2)
only to the elements involved in the conflict and proportigna  Je " ez

to their individual .
o their individual masses y pl(yl)f(yl’z)+p2(y2)f(y2’z)dy1dy2

Some theoretical considerations and justifications ajread p1(y1) + p2(y2) @)
3In the general case, bba could also be defined over hyperepsete

(Dedekind’s lattice) |[8]. “Focal elements are elementsB{©) having a strictly positive mass.




Proof. 1) General case:In Bayesian filter, the estimator is ex-
) plained by means of the posterior probabilipfz|z:, 22)
/p12( (y,2)dy = // < Py (y2 fly1,2) conditionally to the observation; and z,. Notice that this
e o2

p1(y1) +p2(y2) posterior estimation should not be confounded with the true
p3(y1)p1(12) state of the system. Now, our purpose here is to derive
——————"—f(y1,2) | dy1dy2 Y= !
p2(y1) + p1(y2) a rule for deriving the global estimatop(z|z1,22) from

the partial estimators(z|z1) and p(z|z2). Applying Bayes’

// Piy)pa(y2) yl )p2(y2) _PP2) gy dy, rule, one getsp(z|z1, 22) o p(z1,22|7)p(x) .5 To go fur-
o2 P1(y1) + p2(y2) o ther in the derivation, it is assumed here the conditional
P2(y1)p1(2) independence between the two probabilistic sourceshies)si
//02 o) £ pu y2)f(y1,z)dy1,dy2 i.e. p(z1,22)r) = p(z1|z)p(z2|z). As a consequence,
p(x|z1, 22) x p(z1|x)p(22|x)p(x) , and then:
yl )p2(y2)
//@2 p1(y1) + pa( yQ)f(yl,Z)dmdyg p(z|21, 22) x YW . (6)

// p2 y2 D1 yl) f(yQ,Z)ddeyl .
©

2 p2a(y2) + p1(y1) So, in order to computg(z|z1, z2), it is needed botlp(z|z ),
000 p(x|z2) and the priorp(z) . If one assumes uniform prior for
p(x), and using notationgi2payes = p(+|21, 22), p1 = p(+|21)
Corollary. The densityp;2 is actually probabilitic, since it is andps = p(-|22), the Bayes’ fusion formula[[G) becomes:
derived [ p12(y) dy = 1 by taking f = 1.
b) Alternative rule definition:Let §[y = z] be the dirac P12Bayes(¥) o p1(x)p2() . (7)
of variabley over z. Then:
2) Gaussian subcaseWe investigate here the solution
p12(z // p1(y1)p2(y2)7(2|y1, y2) dy1dys of the problem wherp; and p, are Gaussian distributions.
®2 So let's suppose for simplicityp;(x) and ps(x) mono-
p1(¥1)d[y1 = 2] + p2(y2)dly2 = 2] dimensional Gaussian distributions given by:
p1(y1) + p2(y2) '

where 7(z|y1,y2) =

(5) (2) 1 _1ma? dpa() = _1 (z—a2)
€Tr) = e o1 an o
Proof. . S D1 V2n po(x -
Apply lemma 1 to the dirac distributioffi(y, z) = d[y = z]. V2
00O In absence of prior information, one assumes as ug(al

uniform. The Bayesian rule requires to complﬂe (7). Then, it

Corollary [Monte-Carlo method]Being able to sample; and g easily shown thapyopayes is Gaussian:

p2, then it is possible to sampjg, by means of the following
process (let: be the sample to be generated): 1 ) e Fpayes)?

1) Generatey; according top; and y» according tops, P12Bayes(¥) = 7\/2—6 P oBayest

together with their evaluationg; and ps, TBayesV 4T

2) Generatd < [0, 1] according to the uniform law,

with o2 = and zp = o2 T4 Lz
3) If 0 < — W) then setr = y; else set = y» . Bayes oi+o3 ayes Bayes (02 )
) p1(y1)+p2(y2) y_1 . Y2 Wheno, = 03 = o, it is implied then: '
It is seen subsequently that p-PCR5 is not a linear process.

As a consequence, its manipulation is essentially addiesse ) o2 - Ty + To
by means of Monte-Carlo method, and the previous sampling O Bayes(T) = o andZpayes = 5
method is widely implemented in the applications.

01‘72

e theoretical plots and those obtained with Monte Carlo
ulation are given in figurd$ f} 2 afld 3. These figures make
the comparison with the p-PCR5 fused densities. This com-

lIl. BAYES VERSUS PPCR5:WHITENED P-PCR5RULE parison will be discussed subsequently. While the Bayesian

) ) estimator is optimal (it minimizes the variance of the error

A. Bayesian fusion rule estimation), it appears also that it replaces the originadies

In this section, we are interested in the fusion of two indén p; andp- by a ynique mode ip124ycs - When the original
pendent estimators by means of the Bayesian inference. Sutbdes are dist chke in figureﬂ (for example, owing to a
fusion has to take into account the prior about the stateef thad initialization of the filters), it may be interesting tedp
system. Subsequently, this prior will be chosen to be umifor the original modes in the fused density until it is possilde t
Although this is just a particular case of application, ilwi decide. This is what p-PCR5 does.
be sufficient for our purpose.e. the illustration of essential
differences between the Bayesian and PCR5 approaches. 5p(«|8) « v means p(«|B) is proportional toy for 3 fixed”.

The next section is devoted to a comparison of p-PCR5 Qan
Bayesian rules on very simple examples.



densites theoriques
T T

B. Fusion based on PCR5 for Gaussian distributions 02

p,()
p,()
py,0)
0.16 plZBayes(') il

The same Gaussian distributign, and py, are considered, oasf
but are now fused by p-PCR5 ru@ (3), thus resulting in dgnsit
p12. The fused densities are both computed, figlites 1[and 2,
and sampled, f|gurﬂ 3. Direct computations are expensivk, an °#r

are obtained in two steps: o012
(z)ps
« Computely(z) = [ % fp(z’;)dy, wheres € {1,2} and ol
se{1,2}\ {s}

o Then computeys(x) = p1(z) 11 (z) + p2(x)I2(z) . o8
It appears clearly that computed and sampled densitieshmatc %
well, thus confirming the rigthness of our sampling method. .|
Now, contrariwise to the Bayesian rule, it is noticed two
different behaviors (which are foreseeable mathemayicall

0.02-

« When the densitiep; and p, are closg, p12 act as an D T T ——
amplifier of the information by reducing the variance.
However, this phenomena is weaker than Ri&Bayes- Figure 1. p-PCR5 fusion versus Bayesian fusion (theofgtica
p-PCRS5 is thus able to amplify the fused information, but
is less powerful than the Bayesian rule IE this task. o densites theoriques

« When the densitiep; and p, are distard, p;o keeps 000
both modes present in each density and preserves the °*r — )
richness of information by not merging both densities . Prosayest) | |

into only one (unimodal) Gaussian density. This is a very
interesting and new property from a theoretical point of
view, which presents advantages for practical application o
as shown in the following simple tracking example.

In regards to these differences, it is thus foreseeablettieat
p-PCR5 should be more robust to potential errors.

0.14-

2k

e

0.1r
0.08-

0.06 -

C. Whitened p-PCRS5 rule

It has been seen that the p-PCRS5 fusion of the same densitie
p1 = p2 Will result in an amplified density,,. Of course,

0.04-

this is not practicable when the densitigsandp, are related e e e
to correlated variables. Consider for example that theestat
y are measured by' and z2. The (distributed) posterior Figure 2. p-PCR5 fusion versus Bayesian fusion (theoilgtica

probabilities arens(y) = p(y|z®) x p(y)p(2°|y) for s = 1,2.
It happens that the variables estimated jy and p, are
correlated, so that p-PCRS should not be applied directliyy A pisTRIBUTED SEQUENTIAL FILTERING APPLICATION
In particular, the fusion op; and p, by means of p-PCR5
results in a density;o stronger than the prigs overy, even
when there is no informative measuigg. p(z°|y) = p(z*)! A target is moving according to a known Markov prior law.
In order to handle this difficulty, we proposeweitenedp- Lety: be the state of the target at timelt is assumed:
PCRS5 rule, producing a fused density;.-crsfrom the updated
information only:

A. Theoretical setting

p(yl:t-H) = P(yt+1|yt)p(y1:t) .

In order to estimate the state of the target= 2 sensors are

Puniercrd Y) = // p1(y1)p2(y2)T(Yly1, y2) dy1dys | providing some measurements. Dengtée the measurement
02 . .
of the statey; by sensok. The measure is characterized by the
”(yﬂf) pWil=) 51, = o] 4+ ”(y(";';) p2l=) 51y — o] law p(z;|y:), which is known. It is assumed that the measure
wherem(ylys, y2) = P L pwele?) - are made independently, conditionally to a given state:
“p(y1) + Tp(y2) )
In (f). the proportlonp(y‘z) should be considered as the M HP zf|ye)

information intrinsically o%tamed from senser It happens

that the whitened p-PCR5 does not change the prior wh@ur purpose is to derive or approximate the optimal estimato
there is no informative measureg. puuercedy) = p(y) when p(yt+1|z};tsﬂ), from the distributed retroacted estimators,
p(2%|y) = p(2%) for s =1,2. p(ye1|21id, 25, 1), related to sensors. There is a Bayesian



densites approximees par les particules
T T

02 ‘ ‘ ‘ ‘ and p(y;,1|21i7 s 2£41) is an instance ob(yer1|21iy, 2511),

oasl — g;g | obtained by just replacing; 1 by v, ; .

o It is noticed that this filter is necessary suboptimal, siitce
016 by makes use of the p-PCRS5 rule on correlated variables. More
014l ] precisely, the outputg;,, of the local filters are in fact

related to the same prior estimation at time 1. The fusion
without correction by p-PCR5 implies a redundancy of the
1 prior estimation. The whitened p-PCRS5 filter will resolvésth
difficulty. By the way, it is seen that the p-PCRS5 filter still

works experimentally on the considered examples.
] 3) Whitened p-PCRS filtertt is derived from [p), [(110) and:
S

1 P(yes1l21ivi) 2/145(1_[ p(nyIZ%ff,zz“'ﬂ))?r(ytﬂlytlﬁ)dytlﬁ
yH»l s

0 5 10 15 20 25 30 35 40 45 50

1
1:5
ZS P(yiy1lziiy »2i41)
s=

L g o) Wt = Wil

densites approximees par les particules
0.2 T T T T T

1:S
00 wheren (yit1]y:41) = 5 .15 o0
(- s Pz 280)
018 — R0 ] ZS:1W
— P00 t4+11%1:t

Piasayed) | | (13)
Again, y¢, , is just an instance of;; for sensors .

0.16

0.14 1

These filters have been implemented by means of particles.
o2y | The sampling of p-PCR5 has been explained yet, but it is not
oaf 1 the purpose of this paper to explain all the theory of paaticl
filtering; a consultation of the Iiterature,g.[lﬂ], is expected.

B. Scenario and tests

1) Scenario and simulation results for passive multi-senso
target tracking: In order to test the p-PCRS5 fusion rule, we
simulate the following scenario: in a 2-dimensional space,

N ) \ two independent passive sensors are located in (0,100) and
T — i = (100,0) in Cartesian coordinates. These sensors providsya n
azimuth measuremen.01 rad.normal noise) on the position
of a moving target. We associate a tracking particle filter to
each sensor. The motion model is the following :

C.Ct+1 = i’t + 0.1 % .Z\/v(O7 1)
:i}t+1 = i‘t + 01 * JV(O7 1)

Figure 3. p-PCR5 fusion versus Bayesian fusion (based ofQL6@mples)

approach to this problem, and we propose some comparison Tep1 = x¢ +dt x 3¢ + 0.3 x N(0,1) (14)
with a p-PCRS approach and a whitened p-PCR5 approach. Yer1 =ye +dt e + 0.3 N(0, 1)
1) Distributed Bayesian filterit is derived from: where dt = 1 time unit and N(0,1) is the normal distribution.

1S 15 In our simulations, each local particle filter is implemehtsy means
: P = : 9) - ; i
p(yeiralzie ) = p(yeraly)p(yelziie) - ( of 200 particles. At every time step, we proceed to the fusibthe
1S s s 1:5 local posterior densities and then re-inject the fusede stensity
. ; . ; 10) . . . .
Pyttt z0) o p(zalyer)p(yeelzi) - (10) into each local filter (feedback loop). Three different pigens are
s 1:S s considered for the fusion: Bayesian, p-PCR5 and whiten&LCR5
. 218, % . . ) ! ) oy

P(yeslztiog) o (l | p—(yt(ﬂ| 1'|;1:St)+1))p(yt;t+1|zi:ts)- (11)  rules. These filters try to estimate both the mobile positioml

s=1 PWerilzig speed of the target which is assumed to follow a quasi-cohsta

Thi hi tabl h ts of elocity model. It is noticed that we are dealing directlyttwboth
IS approach I1s unstable, when some components o observable and non-observable components of the tatgeet

target state are non-observable; for example, adaptaifthe  (each sensor is concerned). In particular, notice thatitifers an
method are necessalﬂ [2] for bearing only sensors. Howevadtditional perturbation to the basic particle Bayesiarerileven if
the method will be applied as it is here to bearing only ses)sothere is a feedback.

in order to compare to the robustness of the PCR5 approactf)l.A;iEnple gxampleln th(ijs fitrstt.example,dthe (fjilters .?r_e}hwell
i e [t ; . initialized (we give them good starting speed and positior)e
2) p-PCRS filter: It is derived from [b), @)) and: mobile follows a non-linear trajectory (figurﬂ 4), in order show

s the capability of this distributed filter to converge. Onstleixample,
R s )W LSy 1,5 the Bayesian filter manages to track the target with someculifies
(1_[10(%+1| s ) [Tl Jdye during the last curve in figurﬂ 4. On the same example, p-PCR5 a
s s 1 1S s s whitened p-PCR5 rules have been tested with success. Waile b
Yooy PYEr ]2t 2641)0[yer1 = yiyal filters have to reestimate the speed direction at each tueppears
S a2 25) ’ that this reestimation is more difficult for p-PCR5. Thisfeliénce is
(12) also particularly apparent during the last curve. Fid]:résﬁldys the

p(ytﬂlzi}sﬂ) :/
1:5

ytjrl s=1

where (yei1yii) =



particle cloud of the whitened PCR-5 filter during and aftes tast
curve. The variance rises during the curve, resulting inctioss-like
cloud of sub-figur), which is characteristic to the pRBGusion:
the branches correspond to the direction the sensors arkirgo
at. Then, the p-PCR5, by amplifying the zone where the filters are
according to see the object, allows the process to convegge a
toward the object real position in an expansion-contractiattern
(figure [5(b)). In more difficult cases, with poor initializ@ for
instance (see figurﬁ 6), both p-PCR5 and whitened p-PCR5gnana
to follow the target, while the Bayesian filter diverges imab33
percent of the cases.

Next sections investigate more thoroughly the propertieshe
whitened p-PCRS5 filtering.

3) Whitened p-PCRS5 robustness against poor initialization
In order to test the capability of (whitened) p-PCR5 to rexovom
erroneous measurements of the local estimations, we eesidwo
scenarios in which the filters are differently and badlyiaized. In
these scenarios, the real trajectory of the object is theesérstarts
at (200, 0) and moves towar@200, 150) at a constant speed, 1).

Table |
INITIALIZATION DATA

X y | x speed| y speed
First Filter 1 | 190 | 10 0 0
example | Filter 2 | 210 | 10 0 0
Second | Filter 1 | 190 | 10 0.1 -1
example | Filter 2 | 210 | 10 0.5 15

In the first scenario (figunﬂ 7), the first filter, which senssr i
placed at(0, 100), is initialized at position(190, 10) and at speed
(0,0). The second filter, which sensor is @00, 0), is initialized
at position (210, 10) and at the same speed (fig(a)). As the
estimated positions are far from the real one (in regardhémbise
models) and both sensors are looking at the object from_ateemo
position, the particle cloud quickly spread horizontalfiigre ).
Then the (whitened) PCR5 begins to find zones where bothsfilter
estimate a non-negligible probability of presence and dmplthem
until convergence (figuc)). Though the particle clotill seems
to be fairly spread (because of sensors remote positioa)glibbal
estimate is very close from the real position and speed, aifid w
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(b) Timestep 170

remain so until the last time step (fig(d)).
Our second example (figu
is quite worse (see tab

100

Particle clouds for whitened p-PCRS in the lasteur

8) is a limit case: the initiai@at
1), since our motion model assuraagyn

r constant speed and therefore makes it hard to recover fram su

erroneous and contradictory speed initialization. Anregéng point

o is that, for a tight prediction noise, p-PCR5 sometimes does

converge on this example, while whitened p-PCR5 usuallysdoe

o Artificially raising the prediction noise solves this prebi for

100 FTrue trajectory
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a0 p-FCRS ——
L L

=
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=
= }
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=
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—40 -20 80 100

‘standard’ p-PCR5, showing its trend to over-concentrhgefarticle
cloud.

4) Whitened p-PCR5 versus meaXs seen before, the PCR5-
fusion of two probabilistic densities amplifies the areasmhboth
densities have a non-negligible value. Otherwise, it uguabrks
like just averaging the two densities. In order to measueeirtpact

of the amplification, we reprocessed the first example of ipusv

Figure 4. Averaged trajectories using different trackingtimods.

subsection while using the meapy,, = "“2”’2, instead of p-PCR5.

The result (figurel]g) is self explanatory: the same expanagwith




PCR5 occurs (figurEl 7), but contraction never appears.

5) Conclusions:The results presented here have clearly shown
that p-PCR5, and especially whitened p-PCRS5, filters areemmisust &
than the basic Bayesian filter. However, it is clear that Baye
filters are the best, when the priors are correctly defined thed
variables are locally observable (notice that there argtatians of w0
the basic Bayesian filter to non-observable variabl]és [Phe real
interest of p-PCRS5 is that it does not need prior knowleddesug
the antedating local particle filters: just apply the method obtain P
consistent results!

V. CONCLUSIONS i

0 FTrue trajectory

This paper has investigated a new fusion rule, p-PCR5, f&infu e
probabilistic densities. This rule is derived from the PCRE for o e - = o
fusing evidences. It has a simple interpretation from a $isugpoint

of view. p-PRC5 has been compared to the Bayesian rule ongesim ]
fusion example. Then, it has been shown that p-PCR5 was able (a) Timestep 1
to take into account multiple hypotheses in the fusion pscéy

generating multiple modes. Thus, more robustness of p-PE@&B

foreseeable in comparison to Bayes’ rule. This robustnassbeen

tested successfully on examples of distributed targekimgc It is =
expected that this new rule will have many applications,artipular

in case of filtering with incomplete models.
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Figure 9. Using mean instead of p-PCR5. Red dots are theigrosibf
- the particles after fusion. The real mobile starts in (2p@jtime step 0 and
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