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Parametrization of MIMO multi-controller schemes for bumpless
switching

Joseph Yamé, Michel Kinnaert* and Thomas Delwiche

Abstract— In this paper the realization and implementation
of a multi-controller scheme made of a finite set of linear
multiple-input-multiple-output controllers, possibly having dif-
ferent state dimensions, is considered. The problem of bumpless
switching between the active controller acting in closed-loop and
another controller in the set of controllers waiting to take over
the control loop is addressed. A non minimal parametrization
of the set of controllers such that all controllers share the
same state variables is presented, and it is shown that such
a parametrization guarantees bumpless switching between any
two controllers within the controller set.

I. INTRODUCTION

In order to deal with changing operating environments,
advanced control systems often consist of hybrid dynamical
systems which mix continuous-time behavior with a discrete
event based decision mechanism. In such control systems,
it is common that the output issued by the controller is
temporarily different from the input of the controlled process.
This difference is caused by a substitution due to the instanta-
neous switching between two different control laws. Typical
instances of input substitution occur in reconfigurable control
or multi-controller schemes such as found in flight control
for widening aircraft performance envelope, fault-tolerant
systems, multi-mode systems, mode switching from manual
to automatic industrial controllers, etc... The discrepancy
between the process input and the controller output might
lead to performance degradation and even instability of the
closed-loop system. In order to alleviate this problem, so-
called bumpless transfer techniques have been developed.

Bumpless transfer has often been regarded as similar to
the anti-windup problem which has attracted a tremendous
research activity for many years (see [1], [3], [6], [8] and
references therein). In a simple mode switching, where the
aim is to switch from manual control to an ultimate controller
in the loop, bumpless transfer is usually unidirectional and
it is obtained by adding an anti-windup mechanism to the
controller to be switched on. In reference [4], the authors
pointed out the need to consider bidirectional bumpless
transfer between two controllers in modern industrial control
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systems where it is often the case that a newly designed
controller should be temporarily installed and tested during
normal process operation. They derived a bumpless transition
scheme by recasting the problem into a tracking problem. In
that framework, the output of the standby controller achieves
tracking of the online control signal by means of a two-
degrees-of-freedom controller. Bidirectionality of the bump-
less transfer scheme is obtained by adding a symmetrical
tracking loop for the other controller. A direct approach to
bumpless transfer in a two-controller configuration is also
considered in [9] where an optimal linear quadratic control
problem aimed at minimizing the discrepancy between the
two controller inputs and outputs is formulated. It results
in a feedback gain which acts as a ”subcontroller” for
the standby controller. Bidirectionality is not considered in
that reference, but it should be achievable by symmetry.
For multi-controller schemes such as found in hybrid or
switched mode systems, multidirectional bumpless transfer
should be mandatory, and, to achieve this, the common
approach consist in appending an anti-windup mechanism
to each controller (see for instance [5] and [11]). In [5],
this mechanism consists of high gain feedback loops around
all idle controllers, which forces the controller outputs to
track the process input, whilst, in [11], each controller is
augmented with a dynamics identical to that of the plant in
order to allow the controller state to evolve in an appropriate
way when the controller is not connected to the plant input.
Such bumpless transfer schemes become cumbersome and
hard to implement when the number of controllers is large.
Besides, in the high gain approach, the unstable zeros of
the controllers limit the increase of the gain. Moreover,
the technique presented in [11] might fail if a sufficiently
accurate model of the plant is not available.

Quite surprisingly in all the above mentioned references
the concept of bumpless transfer itself has never been pre-
cisely formalized. This gap is addressed in [10] and [12]
where the concepts of ideal or target state, input and output
responses are introduced. However, the considered bumpless
transfer problems are different. In [12], the minimization of
the gain from the plant state mismatch (namely the deviation
from the ideal state) at the switching instant to the L2-norm
of the plant output mismatch is achieved. This requires a
bumpless transfer filter involving a model of the plant. In
[10] the objective is to find a realization of multi-controller
scheme so that the plant state mismatch at the switching
instant vanishes in specific conditions. No model of the
plant is involved in the latter case. The contributions of the
present paper are to further formalize the work of [10] and



to generalize it to multiple-input-multiple-output controllers.
Notice that the problem of switching between linear time-

invariant (LTI) controllers within a multi-controller scheme,
in such a way that the stability of the closed-loop system
is assured for any switching sequence, has also been solved
by resorting to specific realizations for the controller family
in [7]. However, the problem addressed in this paper is
different and the resulting realization of the controller family
has no link with that of [7]. Indeed, the realization of the
latter paper involves the process model, while the realization
proposed in this paper exclusively relies on the controller
transfer functions. Besides, the equilibrium state of the
controller depends of the active controller in the loop in
[7], a situation which is avoided here, in order to achieve
bumpless switching between the controllers.

The paper is organized as follows. In section II, a discus-
sion and a formal definition of bumpless switching within
a multi-controller scheme are given. In section III, a state-
space parametrization of the multi-controller is presented
and it is proved that it achieves bumpless switching under
specific circumstances. In section IV, the proposed controller
parametrization is implemented in a simulation in order to
illustrate its effectiveness.

II. PROBLEM STATEMENT

The linear time invariant process described by the follow-
ing state space model is considered{

ẋP = AP xP + BP u xP (t0) = xP0

y = CP xP
(1)

where xP ∈ IRnx is the plant state, u ∈ IRm is the control
input and y ∈ IRp is the measured plant output.

It is controlled by the multi-controller scheme depicted in
Figure 1, in which each controller is described as

Fig. 1. Switching from controller 1 to controller 2

{
ẋi = Fixi + Gi(r − y) ; xi(t0) = xi0

ui = Hixi + Ji(r − y) (2)

where xi denotes the state of the ith controller (i = 1, 2)
and r ∈ IRp is the reference signal. It is assumed that both
controllers stabilize the process (1), namely the closed-loop
systems of Figure 2 (a) and (b) are asymptotically stable.

The control signal u of this switched-mode system is equal
either to u1 or to u2, depending on the position of the switch.
In this section, a switching from controller C1 to controller

Fig. 2. Closed-loop systems with (a) controller 1 and (b) controller 2

C2 is considered, without loss of generality. It is supposed
to occur at an arbitrary time instant ts > t0.

The design methodologies for the controllers of such a
switched-mode system are usually based on the synthesis
of the closed-loop systems composed of the individual con-
trollers as depicted in figure 2, with the desire that the plant
output y of the switched-mode system in figure 1 be given
by the ideal signal yid obtained by concatenating y1 on
[t0, ts) with signal y2 on [ts,∞). To define such an ideal
or target response uniquely, it is further assumed that, at
time ts, system (a) and system (b) in figure 2 have reached
their steady state response, namely that any effect of initial
state has vanished and that the equilibrium input associated
to the reference trajectory is applied since t → −∞. The
corresponding outputs for each loop will be denotes y1,id

and y2,id. Thus yid is defined as:

yid(t) ≡
{

y1,id(t) for t ∈ [t0, ts)
y2,id(t) for t ≥ ts

(3)

Such a concept of ideal or target response was introduced in
[10], [12]. It requires to consider choices of reference signals
r(t), t ∈ (−∞,∞) such that the solution of the closed-loop
system (1),(2) is unique, both for i = 1 and i = 2.

If P denotes the transfer operator of the plant, then the
output signal (3) is achieved in the switched-mode system of
figure 1 through the following ideal input signal to the plant

u(t) = uid(t) ≡
{

u1,id(t) for t ∈ [t0, ts)
u2,id(t) for t ≥ ts

(4)

where yj,id = Puj,id, j = 1, 2. A key feature of the
ideal signal uid is that its segment on [ts,∞), i.e. signal
u2,id from ts to ∞ is issued from the controller C2 which
has been constantly connected to the plant in closed-loop.
However, due to the very structure of the switched-mode
system of figure 1, the output of controller C2 can only be
connected to the plant from time ts, and consequently its



state trajectory on [t0, ts) has no effect on the evolution of
the state of the plant in that time interval. The resulting lack
of dynamical consistency between the two state trajectories
up to the switching instant turns out to be the main cause
of the switching transients which impair the performance
of the closed-loop system when controller C2 becomes
active. Bumpless switching should aim at guaranteeing such
dynamical consistency.

The actual input signal to the plant of the switched-mode
system of figure 1 can be written as a perturbation to the
ideal input signal, that is ,

u(t) = uid(t) + utr(t) for t ∈ [t0,∞) (5)

where utr is the transient signal induced by the switching at
time ts. It is obviously given by utr(t) = 0 for t < ts and
utr(t) = u(t)− uid(t) otherwise. To see how this switching
transient arises, let us consider a state space formalism.

The ideal or target response for t ≥ ts is the response of
the closed-loop system with controller C2 constantly in the
loop, namely,(

ẋ2

ẋP

)
=

(
F2 −G2CP

BP H2 AP −BP J2CP

) (
x2

xP

)

+
(

G2

BP J2

)
r (6)

y =
(

0 CP

) (
x2

xP

)
(7)

which is obtained by combining (1) and (2) and substituting
u2 given by the following expression for u in (1)

u = u2 =
(

H2 −J2CP

) (
x2

xP

)
+ J2r (8)

Let ξ =
(

xT
2 xT

P

)T
denote the state vector of system

(6),(7). The equilibrium state trajectory of the closed-loop
system with controller C2 constantly in the loop, is given by

ξid(t) =
∫ t

−∞
Φ(t, τ)r(τ)dτ ≡ Θ(t,−∞)r(t) (9)

where Φ(t, τ) is the state transition matrix of system (6), and
Θ(t,−∞) denotes the integral operator with kernel Φ(t, τ).
It coı̈ncides with the ideal state trajectory for t ≥ ts. The
ideal control and output signals for t ≥ ts are obtained by
substituting (9) for the state vector in (8) and (7).

Let us now turn to the scenario where controller C1 is in
the loop for t ∈ [t0, ts) and C2 for t ≥ ts. When controller
C1 is in the loop, the evolution of the state vectors x2 and xP

is obtained from (1) and (2) by concatenating the state of the
process and the multi-controller and imposing that u = u1,
which yields:

 ẋ2

ẋP

ẋ1

 =

 F2 −G2CP 0
0 AP −BP J1CP BP H1

0 −G1CP F1

  x2

xP

x1



+

 G2

BP J1

G1

 r (10)

Indeed, setting η =
(

ξT xT
1

)T
and solving (10) for

the initial condition η(t0) =
(

ξT
0 , xT

10

)T
yields the state

trajectory

η(t) = η(t; t0, η0, r) t ∈ [t0, ts) (11)

from which the trajectory of ξ for t ∈ [t0, ts) when controller
C1 is in the loop can be extracted. This yields ξ(t−s )as the
left limit of ξ(t) at t = ts.

Now, for t ≥ ts, controller C2 stands in the loop, and
the evolution of ξ is obtained from (6) with initial condition
ξ(t−s ) at time ts, namely

ξ(t) = Φ(t, ts)ξ(t−s ) + Θ(t, ts)r(t) t ≥ ts (12)

This is to be compared with the evolution of ξ when
controller C2 is constantly connected to the plant

ξid(t) = Φ(t, ts)ξid(ts) + Θ(t, ts)r(t) t ≥ ts (13)

The switching transient is thus the free motion given by the
difference ξtr(t) between trajectories (12) and (13), that is

ξtr(t) = Φ(t, ts)(∆ξ)ts
t ≥ ts (14)

where (∆ξ)ts
= ξid(ts)−ξ(t−s ), and the associated transient

in the input signal to the plant is directly deduced from (8),
namely

utr(t) =
(

H2 −J2CP

)
ξtr(t) (15)

It is now clear that no switching transient will occur if
(∆ξ)ts

, the mismatch between the ideal and the actual state
vector ξ at time ts is zero. This holds true, even if the
input experiences a jump (∆u)ts

= u2(t+s ) − u1(t−s ) 6= 0
at the switching instant (the arguments t+s and t−s stand
respectively for the right and left limit at ts of the corre-
sponding signal). The switching transient results from an
inconsistency between the state of the plant xP and the
state of the controller x2. Consistency is assured when the
controller C2 is constantly connected to the plant and it is
characterized by vector ξid(t), in which case xP depends on
x2 (see (6)). When C1 is in the loop however, the plant state
evolves independently from the state of the idle controller,
as can be seen from the zeroed (2,1) entry of the state
matrix in equation (10). Since in a switched-mode system,
only one controller can be effectively connected to the plant
at each time instant, a solution to the bumpless switching
problem inspired from the above analysis is to realize a
virtual constant connection of all idle controllers to the plant
so as to assure the consistency between the state of the plant
and the states of all controllers. This approach is the object
of the next section.

Based on the above discussion, a formal problem statement
for bumpless switching in a switched-mode control system
can be stated as follows.

Problem statement: Bumpless switching



Fig. 3. Switched-mode control system

Consider plant (1) and the set of controllers (2), with i =
1, · · · , N , corresponding to the switched-mode control sys-
tem of figure 3. Assume that each of the controllers stabilizes
the plant and that there is a unique equilibrium state trajec-
tory associated to the reference trajectory r(t), t ∈ (−∞,∞)
for each of the N controllers. This scheme achieves bumpless
switching if the following statement holds for any pair of
controllers say (j, k), j 6= k, j, k ∈ {1, · · · , N}:

Consider an arbitrary time instant ts at which the closed-
loop system with controller j as the active controller has
reached the equilibrium state trajectory. Upon switching
to controller k at time instant ts, the state trajectory of
the closed-loop system coı̈ncides, for t ≥ ts, with the
equilibrium state trajectory for the closed-loop system with
the active controller k.

In the next section, a shared-state parametrization of
a switched-mode controller is presented and the resulting
switched-mode control system is shown to achieve bumpless
switching.

III. PARAMETRIZATION

Let us rewrite the N control laws in terms of transfer
matrices:

ui(s) = Ci(s)e(s) =
B̃i(s)
ãi(s)

e(s) i = 1, · · · , N (16)

where e(s) stands for the control error r(s)− y(s), Ci(s) is
a m×p transfer matrix, B̃i(s) is a m×p polynomial matrix
and ãi(s) is a monic polynomial constructed as the smallest
common multiple of all the denominators of the elements
of Ci(s). Set n = maxi=1,N deg(ãi(s)) where deg(ãi(s))
denotes the degree of polynomial ãi(s). Then all transfer
matrices Ci(s) can always be written in the form

Ci(s) =
Bi(s)
ai(s)

where the denominator polynomials ai(s), i = 1, · · · , N are
monic polynomials of degree n, namely

ai(s) = sn + ai,1s
n−1 + · · ·+ ai,n−1s + ai,n

and the numerator polynomial matrix can be written

Bi(s) = Bi,0s
n + Bi,1s

n−1 + · · ·+ Bi,n.

All additional roots of ai(s) with respect to the roots of ãi

should be placed in the open-left half plane. These axtra
roots are needed to obtain a shared-state parametrization for
all controllers, as will be seen below. They do not play any
role on the input-output dynamics of the closed-loop system.

Each controller transfer matrix can be separated in a direct
feedthrough part Bi,0 and a strictly proper part C ′

i(s):

Ci(s) = C ′
i(s) + Bi,0

The ith controller output can be written as

ui(s) = u′i(s) + Bi,0e(s) (17)

where u′i(s) is defined by

u′i(s) = Bi(s)−Bi,0ai(s)
ai(s)

e(s) = B′
i(s)

ai(s)
e(s)

= B′
i,1sn−1+···+B′

i,n

sn+ai,1sn−1+···+ai,n−1s+ai,n
e(s)

(18)

Let λ(s) be a Hurwitz monic polynomial of order n such
that λ(s) 6= ai(s), i = 1, · · · , N . Then (18) can be rewritten
in a feedback form (see Figure 4) as follows

u′i(s) =
B′

i(s)
λ(s)

e(s) +
λ(s)− ai(s)

λ(s)
u′i(s) (19)

Fig. 4. Feedback loop described by (19)

For notation convenience, define

di(s) = λ(s)− ai(s)
= (λ1 − ai,1)sn−1 + (λ2 − ai,2)sn−2

+ · · ·+ (λn − ai,n)
= di,1s

n−1 + · · ·+ di,n

and introduce the constant matrices

Ei = (B′
i,n B′

i,n−1 · · ·B′
i,1)

and
Di = (di,nIm di,n−1Im · · · di,1Im).

Equation (19) can be expressed as:

u′i(s) = (B′
i,n B′

i,n−1 · · ·B′
i,1)


Ip

s Ip

...
sn−1Ip

 1
λ(s)e(s)

+(di,nIm di,n−1Im · · · di,1Im)


Im

s Im

...
sn−1Im

 1
λ(s)u

′
i(s)

= EiFp(s)e(s) +DiFm(s)u′i(s) (20)



where Im is the m×m identity matrix,

Fm(s) =


Im

sIm

...
sn−1Im

 1
λ(s)

(21)

and a similar definition holds for Fp(s).
It is straightforward to prove (see e.g. [2]) that the transfer

matrix Fm(s) can be expressed in state space form as

Fm(s) = (sI −Am)−1Bm (22)

where Am is in the following block companion form

Am =


0 Im 0 · · · · · · 0
0 0 Im 0 · · · 0
...

...
. . . . . .

...
0 0 · · · · · · 0 Im

−λnIm −λn−1Im · · · · · · · · · −λ1Im


and

Bm =


0
...
0

Im


Introducing (20) into (17) yields the following expression

for the ith control law:

ui(s) = EiFp(s)e(s) +DiFm(s)u′i(s) + Bi,0e(s) (23)

Now, let us define the state variables ζ1(s) = Fp(s)e(s)
and ζ2(s) = Fm(s)u′i(s). By resorting to (22) a state space
representation of the control law (23) is obtained:

(
ζ̇1(t)
ζ̇2(t)

)
=

(
Ap 0
0 Am

) (
ζ1(t)
ζ2(t)

)
(24)

+
(
Bp 0
0 Bm

) (
e(t)
u′i(t)

)
ui(t) = Eiζ1(t) +Diζ2(t) + Bi,0e(t) (25)

The desired parametrization is obtained by substituting
ui(t) − Bi,0e(t) for u′i(t) in the state equation, and then
substituting u(t) for ui(t). The latter substitution does not
change the control law if the ith controller is the active
controller (σ(t) = i). However, if this is not the case,
it modifies the controller state in such a way that it only
depends on the active controller at each time instant. This is
actually one of the keys to achieve bumpless switching. The
final parametrization for the ith controller is described by(

ζ̇1(t)
ζ̇2(t)

)
=

(
Ap 0
0 Am

) (
ζ1(t)
ζ2(t)

)
(26)

+
(

Bp 0
−BmB0,σ(t) Bm

) (
e(t)
u(t)

)
ui(t) = Eiζ1(t) +Diζ2(t) + Bi,0e(t) (27)

where σ(t) indicates the controller which is presently active
in the loop.

Notice that the multi-controller itself can now be viewed
as a system with input e and output u described by ζ̇(t) = Aζ(t) + Buu(t) + Bee(t)

ui(t) = Ciζ(t) + Bi,0e(t) i = 1, 2, · · · , N
u(t) = uσ(t)(t)

(28)
where ζ(t) =

(
ζT
1 (t) ζT

2 (t)
)T

and

A =
(
Ap 0
0 Am

)
Be =

(
Bp

−BmB0,σ(t)

)
Bu =

(
0
Bm

)
Ci =

(
Ei Di

)
The main property of this parametrization is summarized

in the following theorem.
Theorem 1: Consider the switched-mode system of figure

3. If
1) each controller is a stabilizing controller for plant (1),
2) perfect tracking of the reference is achieved asymptot-

ically for each controller,
3) for the given plant, there is a unique control trajectory

associated to the reference trajectory at equilibrium,
then the parametrization (28) achieves bumpless switching.

Proof 1: Let us consider an arbitrary controller pair
(j, k), j 6= k, j, k ∈ {1, 2, · · ·N}. Our aim is to show that,
starting from an equilibrium situation in which controller j
is in the loop, upon switching to controller k the closed-loop
system instantaneously follows the ideal trajectory associated
to that controller. Given hypothesis 2, the ideal (equilibrium)
trajectory of the plant output coı̈ncides with the reference
signal r which yields a zero tracking error e. The equilibrium
state and control signal with controller k in the loop thus
fulfill

ζ̇id = Aζid + Buuid (29)
uid = Ckζid (30)

ẋP,id = AP xP,id + BP uid (31)
r = CP xP,id (32)

Due to hypothesis 3, uid is uniquely defined by the last two
equations. This input trajectory is associated to a unique tra-
jectory for the state of the controller at equilibrium obtained
by solving (29):

ζid(t) =
∫ t

−∞
eA(t−τ)Buuid(τ)dτ (33)

This state trajectory is independent of the particular con-
troller which lies in the loop, since A and Bu are common
to all controllers. Therefore ζid(t) is also the state trajectory
reached at equilibrium when any controller, and in particular
the jth’s one, lies in the closed-loop. Since all controllers
reach the same ideal state at equilibrium, bumpless switching
is achieved.

Remark 1: Hypothesis 2 can be fulfilled by resorting to
the internal model principle in the design of each controller

Remark 2: A common particular case is the tracking of a
piece-wise constant reference signal for a square (m = p)



process with a non-singular steady state gain. In this situation
the ideal process input is directly computed from

uid = P (0)−1r,

and the ideal state trajectory for the controller results from
(29) by setting the derivative to zero

ζid = −A−1Buuid

Remark 3: The parametrization of the set of controllers
obtained in continuous time extends mutatis mutandis to
the discrete time setting, and the statement of the bumpless
switching problem remains valid in that setting.

IV. EXAMPLE

As a simple example illustrating the bumpless switch-
ing property of the proposed parametrization for a multi-
controller scheme, consider a fluid mixing plant depicted
in figure 5. This plant is made of three tanks. A first one
contains colored water (coloring concentration denoted by
Cc(t)) and a second one contains clear water. These two
tanks are connected to a third one (the mixer) where the
mixing of the clear and colored water takes place. The aim
is to achieve a specific level h(t) and concentration Co(t)
in the mixer by acting on the flows of colored and clear
water (denoted by Q1(t) and Q2(t) respectively). Mixing
is supposed to be perfect and to take place instantaneously.
Besides, the output flow Qo(t) and input concentration Cc(t)
are assumed to be fixed at known nominal values Q∗

o and
C∗

c . Here, the asterisk indicates values corresponding to the
nominal operating point, for which the numerical values
are given in table I. A state-space model of the mixer is
easily deduced from material conservation laws. Linearizing
the resulting equations around the indicated operating point
yields expressions (34) and (35) where S denotes the section
of the cylindrical mixer (equal to 0.01 m2). By an abuse of
notation, the same symbols are used to denote the original
variables and their deviation with respect to the operating
point.

Fig. 5. Fluid mixing plant.

(
ḣ(t)
Ċo(t)

)
=

(
0 0
0 − Q∗

o

Sh∗

) (
h(t)
Co(t)

)
(34)

+
( 1

S
1
S

C∗
c−C∗

o

Sh∗
−C∗

o

Sh∗

) (
Q1(t)
Q2(t)

)

Q∗
o 0.015 l/s

h∗ 0.15 m
Q∗

1 0.0075 l/s
Q∗

2 0.0075 l/s
C∗

c 0.3
C∗

o 0.15

TABLE I
NUMERICAL VALUES ASSOCIATED TO THE OPERATING POINT.

(
h(t)
Co(t)

)
=

(
1 0
0 1

) (
h(t)
Co(t)

)
(35)

Two decoupling controllers were designed for this system.
They are characterized by the following discrete transfer
matrices (sampling period 0.02 s)

C1(z) =
(

0.005 0.0025z−0.0024995
z−1

0.005 −0.0025z+0.0024995
z−1

)
(36)

C2(z) =
( 0.019595z−0.019205

z−1
0.00275z−0.00225

z−1
0.019595z−0.019205

z−1
−0.00275z+0.00225

z−1

)
(37)

After parametrization, the state equations of these two
controllers are given in discrete time by expressions (38) if
controller C1 is connected in the loop and (39) if controller
C2 is connected in the loop. The output of controllers C1

and C2 are given respectively by expressions (40) and (41).

(
ζ1(k + 1)
ζ2(k + 1)

)
=


0.5 0 0 0
0 0.5 0 0
0 0 0.5 0
0 0 0 0.5

 (
ζ1(k)
ζ2(k)

)
(38)

+


1 0 0 0
0 1 0 0

−0.005 −0.0025 1 0
−0.005 0.0025 0 1

 (
e(k)
u(k)

)

(
ζ1(k + 1)
ζ2(k + 1)

)
=


0.5 0 0 0
0 0.5 0 0
0 0 0.5 0
0 0 0 0.5

 (
ζ1(k)
ζ2(k)

)
(39)

+


1 0 0 0
0 1 0 0

−0.019595 −0.00275 1 0
−0.019595 0.00275 0 1

 (
e(k)
u(k)

)

u1(k) =
(

0 0.0000005
0 −0.0000005

)
ζ1(k)+

(
0.5 0
0 0.5

)
ζ2(k)

(40)

+
(

0.005 0.0025
0.005 −0.0025

)
e(k)



Fig. 6. Inputs and outputs of the plant without parametrization. In the first
two figures of this column, the interrupted line represents the reference step.
In the remaining figures, the full line represents the output of C1 and the
dotted line the output of C2.

Fig. 7. Inputs and outputs of the plant with parametrization. In the first
two figures of this column, the interrupted line represents the reference step.
In the remaining figures, the full line represents the output of C1 and the
dotted line the output of C2.



u2(k) =
(

0.00039 0.0005
0.00039 −0.0005

)
ζ1(k)+

(
0.5 0
0 0.5

)
ζ2(k)

(41)

+
(

0.019595 0.00275
0.019595 −0.00275

)
e(k)

Figures 6 and 7 show the process inputs and outputs
during a simulation. The reference is initially equal to zero.
At t = 1s, a reference step of magnitude 0.01 is imposed
to both outputs. First, controller C1 is in the loop, then at
t = 20s, it is replaced by controller C2 (u(t) = u1(t) for
t < 20s and u(t) = u2(t) for t ≥ 20s). Note that without
parametrization (figure 6), the control system experiences
an undesirable transient which significantly deteriorates the
tracking performance after switching. With the proposed
controller parametrization (figure 7), the multi-controller
shows successful bumpless switching without any transients
after switching and it is worth noticing how the pending
controller output tracks the actual process input.

V. CONCLUSIONS

In this paper, bumpless switching in the case of multi-
controllers schemes was achieved by using a specific state-
space parametrization of the set of controllers.
First, bumpless switching was defined formally in terms of a
given response of the system. This response corresponds to
the ideal response that would be obtained if all controllers
were physically and constantly connected to the plant in
closed-loop, providing dynamical consistency between the
state trajectory of the controllers and the state trajectory of
the plant. Based on this analysis, a solution to the bumpless
switching appeared to be a constant virtual connection be-
tween all idle controllers and the physical plant.
Next, a state-space parametrization of the set of controller
assuring this virtual connection was obtained. It was demon-
strated that this parametrization achieves bumpless switching
under the following hypothesis:

1) each controller is a stabilizing controller for the plant
2) perfect tracking of reference is achieved asymptotically

for each controller
3) for the given plant, there is a unique control trajectory

associated to the reference trajectory at equilibrium
Finally, an example was presented in order to illustrate the
effectiveness of the proposed method for bumpless switching.
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