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Phospholipidic bilayers are the basic structural element of most biological membranes. In water these bilayers 

can form closed vesicles also called liposomes. Due to this analogy with cells, liposomes are commonly used in 

biophysical studies. In spite of the obvious simplification it implies, artificial liposomes are used to mimic some 

biological phenomena in well defined, low component environments [1]. For example, analogies have been 

found between shapes of red blood cells (discocytes, stomatocytes, echinocytes, spherical ghosts) and shapes of 

synthetic liposomes. Most shapes have a spherical topology and an axis of rotational symmetry: spheres, prolate 

ellipsoids, dumbells, pear shapes, oblate ellipsoids, discocytes, stomacytes. Other shapes have a symmetry axis of 

finite order (starfishes), no symmetry axis (3 axed ellipsoids), or another topology (torus). The transformations 

between those shapes can be triggered by an external parameter: temperature [2, 3], gravity [4], a pH gradient [5, 

6] or a photochemical reaction [7]. The area-differential-elasticity model (ADE) enables the attribution of all 

morphologies to domains in a single phase diagram [8]. The two control parameters are: (i) the spontaneous 

curvature c0 which reflects the asymmetry between the two sides of the bilayer ; (ii) the ‘reduced volume’ v which 

quantifies the ratio of volume to area (high v for an inflated vesicle, low v for a flaccid one). It was shown in [9] 

that a vesicle can move from one equilibrium shape to another by subtle changes of c0, i.e. by perfusion of 

different sugars (in osmotic equilibrium). In reference [10] the authors theoretically consider asymmetric bilayers 

in contact with colloids, but they do not include any angular anisotropy. 

In this article, we describe an anisotropic spontaneous curvature due to magnetic nanoparticles placed in the 

interior of giant liposomes. An aqueous solution of those particles is an ionic ferrofluid [11]. The liposomes 

filled with such a ferrofluid are called ‘magnetoliposomes’. Here, we observe magnetoliposome shapes under a 

magnetic field of low intensity (400 Oe). In some cases liposomes elongate in the direction of the magnetic field 

(Fig. 1(a)), while in others they are compressed at their poles (Fig. 1(b)). In the following, we describe the 

relevant experimental parameters determining the shape: the concentration of magnetic nanoparticles inside the 

liposome (Cp), the salt concentration of the medium (Cs), the radius of the liposome (R0) when spherical (with no 

field) and its axes a and b under deformation. Qualitatively, oblate deformations occur for small, weakly 

magnetized liposomes, at low ionic strengths. On the other hand, prolate deformations are observed for large, 

highly magnetized liposomes in salty media. In the last section we propose a model to explain this transition 

between prolate and oblate shapes. 

http://dx.doi.org/10.1103/PhysRevE.62.3865
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Preparation of the magnetoliposomes 

The phospholipid constituting the membrane is 1-2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) purchased 

as powder from Avanti Polar Lipids. The process used to encapsulate the ferrofluid inside the liposomes with 

maximal efficiency differs slightly from usual ones: the first step is to pre-hydrate the phospholipid film with the 

colloidal solution of ferrofluid, and then swell it with pure water. A small amount of perfectly dry powder 

(around 1mg) of DOPC is mixed with 10µL of the aqueous dispersion (pH 7) of magnetic nanoparticles (γFe2O3) 

and spread and sheared with a glove finger on a glass support (Petri dish) to obtain an oily orange film. This film 

is presumably a lamellar phase swelled with charged particles. Immediately following the shearing, 1 mL of 

distilled water is poured onto the film of fat to start the spontaneous swelling of liposomes. Samples are placed in 

a water bath at 45°C and observed after half an hour with an optical microscope (Leica 40x, NA 0.65). Pictures 

from a CCD camera are digitized with a frame-grabber (LG-3, Scion Corp., Frederick MD). Most of the 

liposomes prepared this way are quasi-spherical with diameters ranging from 10 to 100 µm. Their interiors are 

orange-colored and their membranes exhibit thermal fluctuations. 

Measurement methods 

There is heterogeneity in the colloid entrapment yields of different liposomes. First, the film pre-hydrated 

with the colloid is mixed manually and hence the particles are not dispersed homogeneously. In addition, 

liposomes in the same sample can also differ in their ‘histories’: their membranes close at different times during 

the swelling process, which competes with the simple diffusion of the ferrofluid by water (without entrapment in 

a closed membrane). Thus, the concentration Cp of magnetic nanoparticles encapsulated in a given liposome must 

be measured independently. Therefore we make magnetophoresis experiments. Briefly, the method consists in 

applying a controlled magnetic field gradient. The intensity of the field gradient is 100 Oe cm-1, and the geometry 

of the field lines is described in detail in [12, 13]. Because magnetoliposomes have a higher magnetic 

susceptibility χ than the surrounding liquid, they move towards increasing field intensity. Their velocity is 

constant and corresponds to the balance of the magnetic force and the drag force exerted by the outer fluid. For 

ellipsoidal shapes the two forces have analytical expressions, which allows a precise measurement of χ. To get 

the particle concentration Cp, we use the ferrofluid property of superparamagnetism: the susceptibility is the 

product of Cp and the susceptibility per particle kT
mV sp

p 3

22

=χ . The magnetization at saturation of γFe2O3, 

ms=360 Oe, and the average volume of a nanoparticle Vp are known from former studies [14]. 

http://dx.doi.org/10.1103/PhysRevE.62.3865
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Maghemite particles have diameters of the order of 10 nm. Their surface is coated by citrate ligands so that 

they bear negative charges at pH 7: this is essential for the colloidal stability of the ferrofluid. With no 

precaution, the concentration of tri-sodium citrate in ferrofluids is rather high (Cs
0≈90 mM) because of the non 

adsorbed citrate species in solution in equilibrium with the citrate ligands. This can be decreased by dialysis 

through a cellulose membrane (Spectra/Por MWCO 12-14000, ROTH, France). With this method, the salt 

concentration Cs
0 is reduced to 3 to 80 mM as obtained from the measured conductivity of the ferrofluid. In the 

same way as the nanoparticles, the electrolyte is also diluted in the vesicles compared to the initial ferrofluid. We 

make the assumption that the sodium citrate salt and the nanoparticles have identical entrapment yields: 

00
p

p

s

s

C
C

C
C

= . By contrast, if the sodium and citrate ions were not entrapped as efficiently as the particles (e.g. due 

to their faster diffusion before the bilayers close), then the electrolyte would be homogeneously diluted when 

adding pure water. For instance, starting with a ferrofluid of Cs
0=80 mM would lead to magnetoliposomes in a 

liquid bath with a salt concentration Cs=0.8 mM. The suspension of magnetoliposomes would then have a 

moderate electrical conductivity (≈1mS cm-1 predicted). This is not observed experimentally, as the measured 

conductivity is less than 40 µS cm-1. Therefore we conclude that the electrolyte is indeed co-encapsulated with 

the magnetic colloid in the liposome interiors. 

Dimensions of magnetoliposomes are measured by optical bright field microscopy using image analysis 

software (Image, NIH). It is well known that the projected area of giant liposomes is smaller than the true surface 

of the membrane [15], the difference being absorbed by thermal undulations. The effect of a moderate tension is 

to flatten the fluctuations. Quasi-spherical vesicles can change their shape at constant volume by using the excess 

area hidden in the fluctuating membrane. In our case, tension originates from magnetic polarization forces acting 

on the magnetoliposomes. The shape of a liposome submitted to a magnetic field can be described by an ellipsoid 

with axial symmetry around the field direction. A slight deviation from the rotational symmetry is observed by 

confocal microscopy (Fig. 2). Giant liposomes filled with a ferrofluid have indeed a higher mass density than the 

suspending bath: 
-334 cm g10510 -- ×-≈ρ∆ . Thus they are somehow flattened by gravity 0g  in the z 

direction. In the next section we develop a simple theory that ignores gravity by considering only axisymmetric 

ellipsoids. In a standard approximation, shapes are predicted in the zero gravity limit, and gravitational 

corrections are considered afterward [8, 16]. The dimensionless number 
bK
Rgg

4
00 ρ∆

=  has been introduced in 

http://dx.doi.org/10.1103/PhysRevE.62.3865
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[4] to predict deformations of vesicles due to gravity (Kb is the membrane bending modulus). Magnetoliposomes 

have g values between 10-3 and 1. This is why the largest ones are not perfectly axisymmetric. Nevertheless, we 

can clearly distinguish between prolate and oblate shapes, either elongated or flattened in the y direction (parallel 

to the applied magnetic field). We also point out here the discrepancy of our case with spontaneous transitions 

between a prolate and an oblate shape reported in [16]. In the latter case, the axis of rotational symmetry also 

flickers from parallel to perpendicular to the bottom surface of the observation chamber. In the shape transition 

triggered by a magnetic field, both prolate and oblate ellipsoids keep their axis parallel to 


H . Let a be the semi-

axis parallel to the magnetic field 


H  and b the value of the two other semi-axes perpendicular to 


H . The two 

types of deformations and their amplitudes are characterized by a single parameter of ellipticity: 2

2
2 1

a
be −≡ . 

This parameter is positive for an elongated liposome (prolate ellipsoid) and negative for a compressed one 

(oblate ellipsoid). 

In summary, the following experiments have been performed. First, we synthesize different ferrofluids with 

fixed particle concentration Cp
0, and varying ionic concentrations Cs

0. Then we encapsulate these ferrofluids in 

giant vesicles, thereafter characterized by optical microscopy. We measure their radius R0 in the quasi-spherical 

state. Then we use a home built setup of magnetophoresis to simultaneously measure the ellipsoidal deformation 

under a magnetic field (value of e2 and its sign), and the velocity under the field gradient (perpendicular to the 

field direction). As explained above, with these measurements we can calculate the concentrations Cp and Cs in 

individual liposomes. 

Theory 

The overall shape of a liposome subjected to a field H0 must minimize the total free energy, which is the sum 

of the magnetic energy Em, the bending energy Eb, and the surface energy of the vesicle ( )τ πS R− 4 0
2

, where τ 

is the membrane tension, and S the surface area of the vesicle. The idea is to calculate the free energy of an 

initially spherical liposome deformed at constant enclosed volume into an axisymmetric ellipsoid. In the 

expansion of the free energy as a function of the ellipticity, the terms of order higher than e2 are neglected. The 

surface energy thus disappears since it varies as e4. 

 The magnetic term is proportional to the liposome volume. It is related to the shape through the 

demagnetizing factor D(e): 

http://dx.doi.org/10.1103/PhysRevE.62.3865
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3
0

2
0

413
2 R

)e(D
HEm πχ

χπ
+

−=  (1) 

where χ is the magnetic susceptibility of the encapsulated liquid. Using a standard expansion of D as a function 

of e [17], one obtains the approximate expression: 

 
( ) 2

3
0

2
0

45
4constant eRHEm
πc

−≈  (2) 

This magnetic energy is decreased by positive values of e2, and thus it favors a prolate deformation. 

In the following we show that the prolate/oblate transition under magnetic field is driven by a competition 

between the magnetic energy Em and the bending energy Eb. The strong influence of the ionic strength on the 

deformation suggests that electrostatic interactions are involved between the charged nanoparticles and the 

slightly charged membrane. We make here the assumption that some charges exist on the DOPC phospholipidic 

bilayers. This assumption is supported by previous studies which report: i) the existence of a weak negative ζ-

potential of a few mV for vesicles made of natural egg lecithin [18] or synthetic phosphatidylcholine lipids [19]; 

and ii) the evidence of electrostatic repulsion between pure phosphatidylcholine bilayers, measured with a 

Surface Force Apparatus [20]. 

The behavior of charged membranes has been studied extensively in theoretical papers [21, 22, 23]. The 

electrostatic contributions to the bending modulus Kb and to the spontaneous curvature c0 have been considered 

in [24] in the Debye-Hückel approximation of the electrostatic potential and in the case of electrically uncoupled 

leaflets. It appears that electrostatic repulsion produces an enhancement of the bending modulus compared to the 

uncharged case: surface charges make the bilayer stiffer. The spontaneous curvature c0 characterizes the bilayer 

asymmetry [25]. It has been derived in reference [24] for a bilayer bearing different surface charge densities on 

its two sides. In that case the salt concentrations were identical inside and outside the vesicle, and hence the 

Debye lengths as well. Here we develop another model that fits better to the case of magnetoliposomes: 

asymmetry comes from two different screening lengths κi
−1

and κo
−1

, inside and outside respectively. 

In a suspension of magnetoliposomes, the outer phase is a usual salt solution, while the inner phase is a 

complex colloidal system combining the salt and the charged magnetic nanoparticles. In order to obtain a simple 

solution of this problem, we describe this inner phase as a mixture of electrolytes: – the particles (concentration 

Cp), identified as magnetic polyions with an effective charge Z – the other ions (charge Zi for type i) having the 

same concentration Cs
i
 as in the suspending bath. In the outer phase, electrostatic interactions are screened by 

http://dx.doi.org/10.1103/PhysRevE.62.3865
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the ions (in practice sodium and citrate, but no particles) above a standard isotropic Debye length 

2
1

22
1

4 














=

∑
−

i
ii

w
o eZC

kT
π

e
k , where ew is the dielectric constant of water (ew=78.5). Inside the liposomes, the 

decay length of electrostatic interactions is denoted κi
−1

 and takes into account all the charged species, salt ions 

and nanoparticles. The modifications on the bending modulus and on the spontaneous curvature are estimated 

using the same approach as in [24]. At first we calculate the electrostatic energy Eel of a simple body – an infinite 

cylinder with radius R – then we expand it as a function of R. Finally we identify the terms with the standard 

expression of the bending energy, supposing that these expressions remain the same for a body of general 

geometry: 
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0232322

2 1
2
1

8
3

8
3

2
1

2
1114

2
1

2 




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
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


++−++≈ c

R
K

RRRRR
E el

b
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el

κκκκκκe
πσ

π  (3) 

The elastic constants are derived in the assumption of a slight difference between κi and κo. The bending modulus 

is then  3
3

2

ow

el
b

K
κe

πσ
≅  and the spontaneous curvature becomes: 

 







−= 22

3

0
11

3 io

oc
κκ

κ
 (4) 

Here σ denotes the surface charge density. It is inferred that σ is the same on both monolayers, because the pH is 

buffered inside and outside by the citrate salt. The asymmetry between the two sides of the membrane arises from 

different electrolyte compositions inside and outside the vesicle. This small difference has a negligible effect on 

the modulus, but it is dominant for the spontaneous curvature. 

In the model of a liposome filled with a ferrofluid, we make an additional approximation. We suppose that the 

difference between κi and κo is due only to the presence of nanoparticles inside, and their absence outside. In 

other words, we neglect the difference of salt concentrations inside and outside, responsible for a classical 

isotropic c0. The model focuses on the field dependence of the inner Debye length κi
−1

. The concentration 

profile of nanoparticles near the inner leaflet of the membrane is indeed sensible to 


H . Thus, a magnetic term 

has to be added in the linearized Poisson-Boltzmann equation. Due to that the calculation of the electrostatic 

energy of the membrane in the presence of the magnetic field turns out to be rather complicated problem since 

http://dx.doi.org/10.1103/PhysRevE.62.3865
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simultaneous solution of the electrostatic and magnetic field equations is involved. As result at the curvature 

expansion of the electrostatic energy of the membrane its anisotropy arising due to the magnetic interactions 

appears. This electrostatic energy curvature expansion is carried out in the forthcoming publication [27]. Its 

results confirm the conclusions of much simpler model described below. The simple model is based on the 

assumption of the locally flat membrane and the reduction of the solution of the coupled electrostatic and 

magnetostatic field equations to 1D approximation. Obtained in such way screening constants are substituted in 

the expressions of the bending elasticity constant and spontaneous curvature leading to the anisotropic curvature 

elasticity energy of the membrane. Further consideration is carried out in the frame of the simple model. We 

begin by solving the magnetostatic problem in a flat membrane geometry, with a magnetic field at an angle α 

with the normal to the plane of the membrane. Let x be the coordinate in the direction normal to the membrane. 

Because the vesicle radius is three orders of magnitude larger than the particles sizes, we can neglect the 

membrane curvature and the finite size of the nanoparticles. Thus we denote the nanoparticle concentration Cp(x) 

at a distance x from the membrane, the x component of the field Hx(x), and the electric potential ψ(x). Far away 

from the membrane those variables tend respectively towards Cp, H0cos(α) and zero. The solution of Maxwell 

equation 04 =+ )MH(div
dd

π  is: 

 
pp

pp
x )x(C

C
)cos(H)x(H

cp
cp

α
41

41
0 +

+
=  (5) 

The net flux of nanoparticles in the x direction is then calculated using their mobility u under an osmotic, an 

electrophoretic and a magnetophoretic force: 

 x
HH)x(uC

x
)x(C

ukT
x

Z)x(uCJ x
xpp

p
px ∂

∂χ
∂

∂
∂
∂ψ

+−−=  (6) 

At equilibrium, Jx=0 and: 

 
( )
( ) x

Z)x(C
x

)x(C
)x(CkT

)(cosHC)x(C
kT p

p

pp

ppp p

∂
∂ψ

∂
∂

cp

αcpc
p −=















+

+
+ 3

22
0

22

41

41
41  (7) 

In the Poisson-Boltzmann theory and the Debye Hückel approximation, a solution is found for a small variation 

of nanoparticle concentration around the bulk value (δC x C x Cp p p( ) ( )= − , δC x Cp p( ) << ). Then the 

linear dependence of δCp(x) with the electrostatic potential ψ(x) becomes anisotropic, 

http://dx.doi.org/10.1103/PhysRevE.62.3865
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[ ] 121 −
+

−
= )(cos

kT
)x(ZC)x(C pp αλψδ  where )41(

4 2
0

2

πχ
πχ

λ
+

=
TkC

H

Bπ
 compares the two pressures 

acting on the membrane: the magnetic pressure calculated at the liposome poles ( 2 2
0
2πχ H ) and the osmotic 

pressure exerted by the nanoparticles (CpkT). Numerical values of λ range from 10-3 to 5×10-2 , as seen in Table 

1. Looking back to the electrostatic potential ψ(x), an anisotropic decay factor can be defined, including the 

screening by all the charged species: 

 
2
1

21
1 








+

+=
)(cos

d)( oi αλ
κακ  (8) 

It depends through d
Z C

Z C
p

i s
i

i

=
∑

2

2  on the ionic strength of the dispersion and through λ on its magnetic 

characteristics. The anisotropic part of κi is negligible as long as the screening is dominated by the salt ions, i.e. 

for high ionic strengths (small d). In the opposite case, the angular dependence of the distribution of particles 

induces an angular dependence of )(i ακ , and hence of      c0 (α ) . The largest screening length turns out to be on 

the poles. The reason for that is rather simple. Since the magnetic pressure acting near the poles pushes the 

magnetic polyions to the membrane it augments near it the concentration of the charges having the same sign as 

on the membrane and thus diminishes the ecranization of charges on it. An increase of the screening length near 

the magnetic poles (α=0 and α=π) decreases locally the spontaneous curvature: qualitatively, the oblate shape is 

favored because it has a lower curvature at the poles than at the equator. Equations (4) and (8) enable one to 

derive the spontaneous curvature at any angle α: 

 ( ) 





+
−

+
≈ )(cos

dd
d)(c o αλκα 2

0 1
1

13
  (9) 

We can now calculate precisely the bending energy of the membrane, 

( )∫ 







−++= dS)(c

RR
KKE el

bbb

2

0
21

11
2
1 α . It involves the two local principal radii of curvature R1 and 

R2 of the bilayer [25]. Due to the dependence of the bending elasticity modulus on the screening constant and its 

anisotropy described by the relation (8) anisotropic under the action of the magnetic field, the bending elasticity 

modulus of the membrane is also anisotropic. Nevertheless its account is not necessary at the calculation of the 

curvature elasticity energy of the vesicle up to the first order terms in 
2e  since the direct calculation shows that 

http://dx.doi.org/10.1103/PhysRevE.62.3865
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its contribution in that approximation disappears exactly. That is why for the bending elasticity modulus the 

expression 3
0

23
χε

πσ

w

εl
bK =  is assumed, what does not reflect the dependence of the modulus on the magnetic 

field strength and its direction. As before, we look at an ellipsoidal deformation of a quasi-spherical vesicle. 

Integration leads to: 

 
( ) ( ) ( ) 22

0
32 1

405
32

eRdd
KK

E o

el
bb

b κl
π −+

+
≈  (10) 

Exact treatment of the electrostatic energy of the vesicle under the action of the magnetic field carried out in [27] 

shows that besides the anisotropies of the elastic modulus discussed above, there is specific 3D efect leading to 

the anisotropy of the bending modulus depending on the tangential component of the magnetic field strength. 

Howewer its contribution to the electrostatic energy is negligible since it does not contain – in comparison with 

the expression (10) – a multiplier 
2

00 )( Rχ  which, as it follows from data in Table 1, is very large. 

Eb enters in the expansion of the total free energy with the same order in e2 as the magnetic energy Em, but 

with the opposite sign. Indeed it is possible to explain a prolate deformation or an oblate one depending whether 

Em or Eb is predominant. 

Results and discussion 

The experimental measurements of R0 and χ on given liposomes are computed in Eq. (1) to get the slopes in 

the expansion of Em as a function of e2. Then we convert the values of χ into particle concentrations Cp, inferring 

a mean value for the nanoparticles diameters D=12×10-7 cm, or equivalently a magnetic susceptibility per particle 

χp=8.6×10-19 cm3. The salt concentration is deduced by Cs=Cs
0Cp/Cp

0. From stoichiometry it follows that Z1=3 

and C1=Cs for the citrate anions, Z2=1 and C2=3Cs for the sodium cations. Then we calculate the electrostatic 

decay factor κo caused by the salt ions only. The two parameters λ and d appearing in the anisotropic term of 

)(i ακ  are computed from the values of χ, Cp, Cs and Z=25, a reasonable estimate of the net charge per particle 

(including the adsorbed counterions). The surface charge density of the bilayer is inferred to be σ=800 ues cm-2. 

It represents about 1% of negatively charged lipids. Finally we compute Eb/e2 from Eq. (10). The ratio of the two 

competing terms Eb/Em is plotted vs. Cs on Fig.3. For the higher ionic strengths where the screening of charges is 

the strongest, the magnetic term dominates the electrostatic contribution to the bending energy: the deformation is 

indeed prolate. The field dependent elongation has been analyzed in a former work in order to determine the 
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bending modulus of the DOPC bilayer, Kb=(8.6±0.8)×10-13 dyn cm [26]. But a dilution of the ions in the bulk by 

two orders of magnitude is sufficient to reverse the ratio of Eb and Em, thus explaining the oblate shape. The 

critical value for this ratio is 1, and it clearly separates the graph into domains of prolates and oblates. The scatter 

of Fig. 3 is due to two parameters, other than Cs, that vary in a polydisperse suspension of magnetoliposomes: the 

vesicle radius R0 and the encapsulated particle concentration Cp (or equivalently the λ-parameter). For example 

the magnetic energy Em varies like 
3
0R  and the anisotropic bending energy Eb like 2

0R . The scatter of the data 

has been reduced by plotting on Fig. 3 the ratio 1
0b −∝ RE/E m . The error bars estimate the uncertainty in our 

measurements (shape analysis, magnetophoresis and conductimetry). It is impossible to fit all the data with a 

single simulation of Eqs. (1) and (10) because of the polydispersities of R0 and λ. This gives the residual scatter 

in the data. However the sensitivity on Cs is fully established: Cs is varied over two orders of magnitude, and this 

inverts the weights of Eb and Em in the total energy. The set of values for the guessed parameters – Z, χp (or 

equivalently D) and σ – is reasonable. The point that needs to be further discussed in our model is the 

approximation of a flat interface to derive the magnetic field Hx(x) as given by Eq. (5). Complete treatment of the 

problem based on the curvature expansion of the electrostatic energy of the membrane of the arbitrary shape is 

carried out in [27]. Results obtained completely confirms qualitative picture considered above. It should be 

remarked that results obtained for the anisotropy of the spontaneous curvature in the frame of the complete 

treatment shows the coincidence with qualitative simple model even up to the numerical coefficient. Therefore 

current model is sufficient to point out that the electrostatic double layer of membrane is deformed by the 

magnetic field via its effect on the charged magnetic nanoparticles. 
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We have reported an original shape transition of giant magnetic liposomes triggered by the ionic strength. 

The transition between prolate and oblate ellipsoids has already been observed under an applied ac electric field 

[28]: the vesicles are prolate in the ‘conductive regime’ (low frequency) and oblate in the ‘dielectric regime’ 

(high frequency). It has also been predicted for an applied magnetic field: Helfrich showed that the sign of 

magnetic anisotropy of the lipid molecules themselves leads either to prolate or oblate deformations [25, 29]. 

However the magnetically induced ellipticity has been far too small to be detected experimentally, even in a 

strong field H0=104 Oe (1 Tesla). Here we have taken advantage of the magnetic properties of the encapsulated 

solution to improve the coupling between the magnetic field and the bending energy of the vesicles. The main 

result of our theoretical description is an anisotropic distribution of particles at the neighborhood of the 

membrane when a field is applied. Both the Debye screening length at the inner monolayer and the spontaneous 

curvature of the bilayer maintain this anisotropy. This model corresponds to the regime of electrostatic 

interaction between a weakly charged phospholipid bilayer and ionic encapsulated species. This might be an 

important point for the description of biological membranes which are surrounded by charged mesoscopic 

objects and embedded in salty media. 

Acknowledgments 

We thank J. Mertz and E. Karatekin for reading the manuscript and M. Blanchard-Desce for the gift of Di-6-

ASPBS. 

http://dx.doi.org/10.1103/PhysRevE.62.3865


O. Sandre, C. Ménager, J. Prost, V. Cabuil, J.-C. Bacri, and A. Cebers, Phys. Rev. E 62, 3865 (2000) 
Author manuscript DOI: 10.1103/PhysRevE.62.3865 

 13 

 

Fig. 1: The two competing shapes of magnetoliposomes subjected to a magnetic field (amplitude H0=400 Oe, 

field direction along the arrow); (a) prolate ellipsoid for a high ionic strength ferrofluid (Cs
0=85 mM); (b) oblate 

when the ionic strength has been lowered by dialysis (Cs
0=7.75 mM). Length of the bar is 10 µm. 
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Fig. 2: Cross-sections of an oblate magnetoliposome in the three principal planes xy, xz and yz. A stack of 150 

pictures in the sample plane (xy) is taken every 0.5µm along the z axis with a confocal microscope (TCS4D, 

Leica). The lipid bilayer is labelled with the fluorescent dye Di-6-ASPBS (N-(4-sulfobutyl)-4-(4-

(dihexylamino)styryl)pyridinium). Excitation is provided by the 488nm line of an Argon laser, and fluorescence 

is collected through a fluorescein filter set. The ellipsoid semi-axes are a=19µm and b=32.5µm. The ferrofluid 

has a low ionic strength (Cs
0=5 mM). The white arrow indicates the magnetic field (intensity H0=200 Oe). 

Gravity is along the z axis. The hot spots are lipid-particle aggregates that either settle at the bottom of the cell or 

make chains attracted by the strongly magnetized giant liposome. 
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Fig. 3: Ratio of the two competing terms Eb/Em in the expansion of the free energy as a function of ellipticity. 

They are calculated for oblate (open markers) and for prolate (filled markers) liposomes using both experimental 

data (Cp, Cs, R0) and assumed parameters (see text). Solid line is plotted from Eqs. (1) and (10) for typical values 

R0=15 µm and λ =5×10-3. 
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R0 (µm) 
2

2
2 1

a
be −=  

d λ κo
-1 (nm) 

b
el
b KK  

c0
-1 (nm) 

25.2 -0.397 0.96 3.0×10-3 45 8.4 280 

13.3 -0.596 0.62 4.8×10-3 29 2.2 230 

21.4 -1.17 0.62 3.2×10-3 36 4.0 280 

24.6 -0.845 0.19 3.1×10-3 20 0.73 380 

22.5 0.496 0.19 5.3×10-3 15 0.32 290 

50.4 0.343 0.19 2.8×10-3 21 0.85 400 

21.1 -1.31 0.14 1.5×10-3 24 1.3 600 

31.6 0.466 0.11 2.3×10-3 17 0.45 540 

14.1 0.536 0.074 4.5×10-2 3.2 3.1×10-3 150 

13.0 0.586 0.056 6.1×10-3 7.8 4.2×10-2 440 

 

Table 1: Examples of numerical data for oblates (clear cells) and prolates (shadowed cells). R0 and e2 are 

measured by optical microscopy. The parameters d and λ are calculated from experimental measurements of the 

concentrations Cs and Cp. The last three columns contain important features of the model: the screening length κo
-

1 due to the salt ions only, the ratio of the electrostatic contribution to the bending modulus of membrane, and the 

local value of the spontaneous curvature radius at the magnetic poles (α=0 and α=π). 
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