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Abstract—In this paper, we present a recursive method for the
optimization of humanoid robot motions. The method is based
on an efficient dynamics algorithm, which allows the calculation
of the gradient function with respect to the control parameters
analytically. The algorithm makes use of the theory of Lie
groups and Lie algebra. The main objective of this method is
to smooth the pre-calculated humanoid motions by minimizing
the efforts, and at the same time improving the stability of
the humanoid robot during the execution of the planned tasks.
Experimental results using HRP-2 platform are provided to
validate the proposed method.

Index Terms—Humanoid robot; Motion planning; Recursive
dynamics; Optimization

I. INTRODUCTION

Few years ago, talking about humanoid robots was some-
kind of science fiction. The recent technological advancement
has made this dream a reality. Actually the ability of humanoid
robots to execute complex tasks increases rapidly.

The latest trends in humanoid research are to increase their
autonomous behavior as well as improving the stability and
smoothness of the planned motions.

Optimizing motions to improve their performance was an
active research subject in recent years. In virtual reality, Lo
and Metaxas [1] have proposed a method based on optimal
control theory within a recursive dynamics framework. The
objective of their work is to simulate a dynamically-correct
astronaut motions by minimizing joint torques.

In humanoid research, Ruchanurucks et al [2] have proposed
a method to optimize upper body motion of humanoid robot in
order to imitate a recored human motion. Their optimization
objective function preserves the salient characteristics of the
original motion, and at the same time it respects the physical
constraints of the humanoid robot. However, the notion of
minimizing an energy function is not introduced because the
objective is only to guarantee the feasibility of the motions.
Furthermore, the authors have mentioned that the resulting
trajectories would meet the latter limits while the former limits
are often violated. This is because their method consider the
velocity and force constraints separately,

Safonova et al [3] use also a pre-recorded human motion to
generate optimal motion of the upper body of Sarcos humanoid
robot. The objective is also to imitate human motions, so

the function to be minimized is the difference between the
recorded and the executed motion by the robot. Guilamo et
al [4] consider the optimization of manipulability trajectories.
The optimal solution is in kinematic sense and does not take
into account the dynamic constraints.

Sentis and Khatib [5] have proposed a whole-body control
framework for humanoids. This framework integrates task-
oriented dynamic control while complying with humanoid
physical constraints. The controllers are calculated in the
operational space [6] at multiple levels. As it is known, these
controllers provide the torques which should be applied on
each joint, that means the humanoid robot should be controlled
by joint torques. On the contrary, HRP-2 platform and many
humanoid robots are controlled by joint positions. Although
the use of inverse dynamics methods can give the associated
joint positions with the calculated joint torques, this method
is time consuming and is not numerically efficient.

In this paper, our objective is to smooth pre-calcuted hu-
manoid motions. These motions can be provided by kinematic
planning methods, which can take into account the limits of
joint angles. On the other hand, they can not guarantee that
the calculated motions do not violate the torques limits.

Studying human movements [7], [8] has brought out a
connection between minimizing energy dissipation and forces,
and the smoothness of human movements. On account of the
complexity of calculating the energy dissipation, one can use
an approximative prediction of it. A good predictor of human’s
metabolic energy is proven to be the joint torques [9]. As the
humanoid robot is supposed to realize human-like motions,
our goal can be achieved by minimizing the joints torques
during the planned motion.

The contributions of this paper are:

¢ Developing an optimization framework for humanoid
robot motions. This framework takes as input a pre-
calculated motions, which are provided by motion plan-
ning techniques. The output is an optimized and stable
motions.

o The proposed method uses the forward dynamic formu-
lation and the quantities to be optimized are the joint
positions. As a consequence, the humanoid robot can be
controlled directly in the joint space and not in torque



control space. Therefore the method is well adapted for
a position controlled humanoid like HRP-2 platform.

o By using an efficient dynamic algorithm, we can calcu-
late the derivative of joint torques with respect to joint
position, velocity and acceleration (gq,q,¢) analytically.
This procedure is similar to the procedure used in [1].
However, the problem of virtual human stability and
ground reaction forces modeling are not considered in
[1].

« The validation of the proposed method pointed out that
the optimized motion is smoother than the pre-calculted
one.

The remainder of this paper is organized as follows. In
Section II the kinematic structure of HRP-2 humanoid robot,
and the definition of active and passive parts are introduced.
An overview of the algorithm of recursive multibody dynamics
is given in Section III. In Section IV the optimization problem
is formulated. In Section V the discretization of configuration
space and solving the optimization problem are pointed out.
Experimental results are given in Section VI and Section VII
concludes the paper.

II. HUMANOID ROBOT: KINEMATIC STRUCTURE

The kinematic structure of the humanoid robot HRP-2 [10]
is given in the Fig. 1. In this structure the degree of freedoms
are presented by cylinders. The structure contains 30 degree
of freedoms.

Fig. 1.

Description of HRP2 kinematic structure.

Our objective is to optimize pre-calculated humanoid mo-
tions and improve their stability. The pre-calculated motions
are the output of motion planning algorithms [11], [12]. These
motions are generally complex, e.g. transporting an object
and guaranteeing the collision avoidance [13]. Such motions
usually use the upper part of humanoid robot to execute the
desired task and the lower part is mainly responsible of the
locomotion and maintaining the stability of humanoid robot.

For that, we divide the kinematic structure into two parts.
The first part is the active part, which is the lower part. The
upper body is regarded as passive part.

In order to achieve our objective, we optimize only the values
of the degree of freedoms of the active part. The passive part

will be taken into account in the calculation of the dynamic
equations without modifying their angular values. The active
part consists of 12 degree of freedoms.

III. RECURSIVE MULTIBODY DYNAMICS

Park et al [14] have proposed to write the recursive multi-
body dynamics for serial open or branched kinematic chains
using Lie group and Lie algebra. The main advantage of this
formulation is to relate the joint torques and joint angles
explicitly. Therefore the differentiation of joint torques with
respect to joint angles can be done analytically.

Let us define the Lie groups SO(3) and SE(3), which denote
the orthonormal matrix ® in R**3 and the homogeneous trans-
formation group respectively. The Lie algebra of SO(3) and
SE(3) are denoted so(3) and se(3) respectively. The operators
defined on these groups are: skew, matrix exponential, adjoint
map Adg(.), dual adjoint Ad(.), Lie bracket ad,(.) and dual
Lie bracket adg(.). For more details on Lie group, Lie algebra
and the operators definitions see Appendix.

A. Forward Kinematics

The kinematics of an open chain can be modeled as a
sequence of homogeneous transformation between consecutive
joint frames. Let T;_; ; € SE(3) be the transformation matrix
between the frame of link i and the frame of link i — 1.

The matrix 7;_;; can be written using matrix exponential
notation as follows

Ti1i = M (1)
where S; € se(3) is the joint screw written in the coordinate
of link i — 1, g; is the current position of joint i and M; is the
coordinate transformation between link i and link i — 1.
Using the above definition of transformation matrix, the end-
effector of a kinematic chain can be calculated by the product

Ton=ToaTi2 Ta1p
=M, S MgeSm .. _Mneann
Note that by expressing the matrix of transformation in expo-

nential form, we can calculate its derivative with respect to ¢;
analytically.
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B. Recursive inverse dynamics of branched chains

Branched chains are serial open chains with two or more
branches leading to two or more tip links [14], [15]. In the
branched chains two definitions arise :

e Parent link: the link inward (towards the base) from a

given link.

o Child link: the link or links which are outward (towards

the tips) from a given link.

Spatial velocity of branched chains:

« Initialization: Given Vj.

« Outward recursion: loop over all links in depth manner:

Tpi = M
V= AdTPTil (Vp) + Sigi 3
a; = —ads,g; (Vi)

bi = —ady, (J;V;)



where the index P denotes the parent link of link i, 7p; designs
the mapping from the link i to its parent P and Vp denotes the
spatial velocity of link P.

Applied torques on the branched chains: In order to
calculate the inward recursion of forces and torques, we define
the external forces applied on a link j by I:“]

« Initialization: Given the external applied forces on each
link £}, Vp and J; = 0 for each tip link.
« Inward recursion: loop over all links in reversed breadth

V; :AdTpfil (Vp) + Sigi +a;
Ji=Ji+Y Ady_JAd

77
jec I
Bi=bi+ Y Ad_z;
jec @)
zi =J; (Sidi+ai) +Bi+ Y, Ady\Fj

jec h
F=J; Adr,;‘ (Vp) +zi
7, =S'F;
where C denotes the child links for link i, and 7; is the torque

applied on the joint i.
The matrix J; is called the spatial inertia and it is defined as

follows : [ }2 .
i — mg\r; mir;
Ji= { —m|ri] m.l} )

where [; is the inertia of the link i about its centre of mass and
m is its mass. r; is the vector from the point of application of
the force and the centre of mass of the link i. Recall that [r;]
is the skew operator see Appendix for more details.

C. Ground reaction forces

Centre
of mass

(a) Single support.

(b) Double support.

Fig. 2. Ground reaction forces represented by the yellow arrows.

In the absence of external forces applied on the robot, the
only forces are the ground reactions forces. In order to estimate
the ground reaction forces, we distinguish two cases

1) Single support: The ground reaction force is applied on

the support foot and its magnitude is equal to (Mg — ag),
where M is the total mass of the humanoid robot, g is

the gravitational acceleration, and a¢ is the acceleration
of the humanoid robot centre of mass.

2) Double support: The ground reaction forces are applied
on the two feet. Their magnitudes are proportional to
the distance from the projection of the center of mass
on the floor and the centers of the support feet.

A demonstration of the ground reaction forces in single and
double support is shown in Fig. 2.

IV. OPTIMIZATION PROBLEM FORMULATION

The cost function to be minimized is the integral of the
Euclidean norm of joint torques.The stability of the humanoid
robot can be assured by guaranteeing that the foot, which is
in contact with the ground, will be immobile. Such condition
can be satisfied by assuring that the spacial velocity and
acceleration of the support foot are null.

Let 2, be the vector of angular values of joints in the
configuration space defined as follows

[y

= [‘]1.1 q2.

. (6)
qg,,.,z]
where q¢ and q{’ denote the vectors of angular values of active

and passive joints respectively.
The optimization problem can be formulated as follows

1y
min /
qt,qt,qt J 1o

STFt =T

qt, = Yo, qto = 07 qto =0
qtf = qf, fItf = 07 iitf =0
<t <t

qg <q<q"

qn qf,r qg,r

7 1dt

subject to

Permanent constraints

Vsupp()rt foot = 0

Temporary constraints Vsupport foot = 0

g4f{)0t = g}'z.(/; Tty tep

(7N
where 7;, F; and S are defined as follows
Tl Fi, S 0 - 0
T4 Py 0 $ - 0
Tt = : 9 E = : 9 = : . .. : (8)
Tnt Fay 0 0 S,

T, and F; are the vectors of the applied torques and forces
on the joints of active part respectively. 7;; and F;; denote the
value of the applied torque and force on the joint i respectively.
x~ and x* denote the minimal and the maximal values of
vector x respectively.

Ytoor denotes the configuration of the foot in the euclidean
space as shown in Fig. 3

gf oot = |:P05from:| C))



Back-end

Front-end
N

N
\
\

\
A

Foot Frame

Fig. 3. Front and back-ends of the support foot.

where Posfron; and Pospaq are the positions of the front
and back ends of the foot respectively, and {4;5]02 is the
planned reference configuration. 7 denotes the instant of foot
contact with the ground. Note that assuring %,,; guarantees
the orientation of the rigid foot as well.
Using Eq. (2), the ¥, can be written as a function of q¢ as

follows

-

gfoot = (10)

TO, foot |:pb1a Ck:|

where Ty foor = M) eS19 Mo e5292 ... M, €579 denotes the trans-
formation matrix of the foot expressed in the global fixed
frame, and ¢ is the angular value of the ankle associated to the
immobile support foot. psron and ppeqr denote the positions
of the front and back ends of the foot in its frame.

In order to transform this optimization problem into a
classical optimization problem, let us define

t

X=[a" & &) Lx)= /If o' ndt
0
[ 5 —STE T
dt, — o
A,
75—t G, (a1
T+ T qt; — qf
G(Xt) = q _q+ ) H(Xt) = Qtf
—qt+q G,
Ympport foot
Vsupport foot
_gf oot — gfﬁf;_

Thus the optimization problem (7) can be transformed to the

following classical form
in L(X,
n}gn (Xt)
subject to (12)
G(X;) <0

The above optimization problem has been extremely studied in
the literature of optimization theory. To solve this optimization
problem, one can use the augmented Lagrange multiplier
method, which is a very efficient and reliable method [16], [1].
Using the augmented Lagrange multiplier method transforms
the optimization problem (12) to the minimization of the
following function

r)?iii(x,,m =L(X,)+ A, ¥+ %GWTVH—)%H—I— %GHTH
' (13)
where A = [, /I,E]T, v =max {G(X;), 5 Ay }. Then there
exist A* such that X" is an unconstrained local minimum of
L(X;,A*) for all & smaller than some finite 6.
To solve the unconstrained optimization problem of L(X;,A)
with respect to X;, one can use Gauss-Newton method. Note
that the function L(X;,7) is differentiable in X; if and only if
L(X;), H(X;) and G(X;) are differentiable in X;, and in this
case we can write

JL(X;,A) IL(X,) r 9H(X:)
oX,  ox, + (Ag +0oH) Fya "
 9G(X,)

max {0, Ay +0G(X;) } X,

As A* is unknown, an update rule is used

At = Ay + oH (X[)

Ak-‘rl _ lk +0 k (15)
v = Ay toy(Xy)

where XX is the unconstrained minimum of Z(X;,A%). Such

updating rule will generate a sequence A* converges to A*

[17]. In practice, a good schedule is to choose a moderate oY,

and increase it as follows

ot = ok (16)

where « is between 5 and 10. A threshold & is chosen and
the update rule of ¢ stops when ¢* becomes higher than &.

For more details on the algorithm of augmented Lagrange
multiplier method see [18], [16], [17].

Approximating the gradient function %}51) by a numerical
difference method is usually used in practice. However, this
approach not only a time consuming method on account of
the evaluation of the gradient calculation, but also may not
converge well because of the approximation.

As we have mentioned the main advantage of using the
recursive dynamic algorithm explained in Section III-B is
calculating the gradient function analytically in a recursive
way.



A. Gradient calculation

The objective is to calculate the gradient of the dynamic
quantities, such as 7, V; and V.
By considerin the vector of parameters X, =
[th q’ ijT] , let us start by calculating the derivatives of
the operators with respect to an element x of X;

aTO n
B =To.; i (S O q,)
0Ad, 1 (Y) o
i—1,i — Ix
ox g ) Sideq) T Ay ( 3x>
9Ad; ., (¥)
T ox 7adAdM+1( i+15x‘f1i+1> (AdTi.iJlrl <Y)> * 17
aY
Ad zl+1 < a‘x)
dadz (Y) or
PG =ty 1)+t ()
dady(Y) L [ 0Y
PG atiy ) (1)

where 6y, r, is the Kronecker’s delta function defined as
follows

if x; =xp

1
Ociy = { 0 otherwise (18)

The calculation of the gradient with respect to X; can be
done in a recursive way analogously to the recursive dynamic
calculation.

Forward recursion:
MWy

o Initialization: Given -

« loop over all links in depth manner:

v, 8AdTEil (Vp) ddi

X, 09X, Sigx, "X,

da; _ dadsg (Vi) (19)
2X; X,

8b,» aad\z (JIVZ)

ox, ox,

Backward recursion:

cpe e e . oF; v,
. ] 0
« Initialization: Given X 9%, -

« loop over all links in reversed breadth

av; _BAdT};il (Vp) +S~% s da;
X,  IX "X, 9X,
A 0Ad*
8],' ,71
— = J Ad
X Jezé X,
dAd* -
oJ;
* z] * J
AdTi;]JJ X, +Ad, - aXtAdlel
dB; _db; n Z 8Ad7{jlzj
aX[ aXt ]€C aX[ (20)
dz; 8J dj; da;
X ~ox. (Sigi +a;) +J; (S, X, + 8X,) +
OB ‘Y oAdy i
aXt ]GC aXt
, dAd, 1 (Vp) _
OF; 8]Ad ( ) oy 9z
X,  0X, X, X,
T T JoF;
X, ' dX;

where as we mentioned, earlier, C denotes the child links for
link i.

V. DISCRETIZATION OF CONFIGURATION SPACE

It is well known that the space of the admissible solutions
of the minimization problem (7) is very large. In order to
transform this infinite dimensional space to a finite one, we
can use a basis of shape functions.

Let us consider a basis of shape functions B; that is defined
as follows
8"

B, =[B! B} (1)

where B denotes the value of shape function number i at the
instant ¢, the dimension of B, is [ defines the dimension of the
basis of shape functions.

The projection of the vector of angular values q; into the
basis of shape functions B, can be given by the following
formula

qt = OpB; (22)
where Qp is a constant matrix.
The derivative ¢ and {¢ can be written as follows
P B
?t OB "t (23)
Gt =0sb;

In this case, the derivative with respect to each element
Qg (i, j) of the matrix Qp can be computed using the following
formula

Y, _ Y, " 2.0
20g(i,j) dX,  90p(i,))
o B C4)
= ox, x|le® B{
B



where e; € %",

= [0 ... 0 1 0 o)’

and ® denotes Kronecker’s product operator.

By using the discretization of the configuration space, the
optimization problem transforms into the problem of finding
the optimal matrix Qp, which minimizes the function L(X;, 1)
in Eq. (13).

It remains to define the shape functions Bi. In our case, the
shape functions should verify the following properties:

1) They are continuous.
2) Their first and second derivatives are continuous.

Therefore, we use the guartic B-spline functions.

VI. EXPERIMENTAL RESULTS

The experimental scenario that we have tested to validate
the proposed method is the following

1) The robot carries a bar with its right hand.

2) The robot starts walking and depressing the vertical
position of its pelvis. At the same time, it lifts up the
carried bar.

The characteristics of the carried bar are: length= 2 m, weight=
0.7 Kg, cylindric form with uniform density distribution. The
robot grasps the bar at 0.35 m from its end.

Snapshots of the conducted motion' are presented in Fig. 4.
Note that the objective of using the carried bar is to generate a
non-symmetry in the kinematic structure, and also to perturb
dynamically the motion by the movement of the bar.

To compare the obtained results with the results obtained

by the method presented in [19], we use the real quantities
measured by the sensors of the humanoid robot HRP-2.
Fig. 5 shows the x coordinate of the Zero Moment Point
(ZMP). The ground reaction force applied on the left foot
are presented in Fig. 6. Fig. 7 shows the applied torque on the
left knee.

From Figures 5, 6 and 7 we conclude that

1) The optimization method smoothes the shape of ZMP,
and the oscillations have been avoided. Note that the
ZMP trajectory of the optimized motion does not follow
the designed ZMP trajectory. This is because the opti-
mization method assures the stability of humanoid robot
by guaranteeing that the spacial velocity and acceleration
of the support foot are null, and it does not consider the
trajectory of ZMP.

2) Using the optimization method avoids the surges in the
ground reaction forces applied on the foot.

3) Using the optimization method not only minimizes the
joint torques, but also it avoids the surges.

Videos of experimental results are available at
http://www.laas.fr/~suleiman/HumanoidsO7/index.htm

i
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(a) Before optimization.

6 61 62 63 64 65 66 67 68 69 7
second
(b) After Optimization.

Fig. 5. x coordinate of ZMP: the solid blue line is the measured ZM P, the red
dash-dotted lines design the safe stability zone and the magenta dashed line
denotes the designed reference. The oscillations around 6.1 and 6.8 seconds
disappear after optimization as well as the surge at 6.81 second.

VII. CONCLUSION

In this paper, we have presented an optimization method
for humanoid robot motions. The objective of this method is
to smooth and improve the stability of the humanoid motions.
To achieve this goal, the integral of Euclidean norm of the
applied torques on the joints is minimized, and the dynamical
stability conditions are transformed into guaranteeing that the
spatial velocity and accelerations of the support foot are null.

The experimental results have pointed out that the proposed
method not only smoothes the motion but also yields a
dynamically stable motion. Future work will focus on the
improvement of the proposed method to take into account
all degree of freedoms of the humanoid robot. In this case
deforming the planned trajectory is required, therefore a


http://www.laas.fr/~suleiman/Humanoids07/index.htm

Fig. 4. Snapshots of the conducted motion.
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Fig. 6. Applied ground reaction forces on the left foot: solid line for the
optimization method and dashed line for the classical method. The surge at
13.3 second disappears after optimization.
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Fig. 7. Applied torques on the left knee: solid line for the optimization
method and dashed line for the classical method. The surges at 11.2 and
12.35 seconds disappear after optimization.

function to calculate the distance between the robot and the
obstacles should be developed and considered as an additional
constraint.

APPENDIX

A Lie group is a differentiable manifold. An example of Lie
group is the orthonormal matrix ® in R3*3, which is called
SO(3). Note that this group consists of the rotation matrices in
Euclidean space. Another example of Lie group is the group
of homogeneous transformation which is the special Euclidean
group or SE(3). Given a rotation ® € SO(3) and translation
b e R3, the homogeneous matrix is defined as follows

0 b

i

An important concept associated with each Lie group is

the notation of Lie algebra. The tangent space at the identity

element of a Lie group is called the Lie algebra for that group.

The Lie algebra of SO(3) and SE(3) are denoted so(3) and
se(3) respectively.

Let us define some notations and operations on Lie groups
and Lie algebra:

(A-1)

1) Skew operator:

[]: @ e R — s0(3)
0 - o

0] =| o 0 —o (A-2)
-0y Oy 0
2) (.,.) operator:
(,.): {@,v} € R® — se(3)
(A-3)

wn-[8 ]

3) Matrix exponential:

- [[i;’] (v)] _ [equw]) Av] "

(0



4)

5)

6)

7)

[1]

[2]

[3]

[4]

[6]

[7]
[8]

[9]

[10]

where

. -
exp(]) = 1+ 20 0]+ == 0, 0 = 0]
Amitl _;fs"’ o]+ 2 _¢S3i“¢ (@]

(A-5)

Adjoint map on SE(3):

Adg(h) : se(3) — se(3)
(A-6)

- ]

where G € SE(3) is defined as in (A-1), and h =
(hew,hy) € se(3).
Dual adjoint operator:

Adg(hY) :se(3)" — se(3)"

. el o'’ M (A7)
where G € SE(3), and h* = (M, F) € se(3)*.
Lie bracket operator:
0] 0 he
adg(h) = [g,h} = [[[i’v]] [gm}] [hv] (A-8)

where g,h € se(3). h= (hy,h,) and g = (8w, 8w)-
Dual Lie bracket operator:

.

where g = (g, 8v) € se(3) and h* = (M,F) € se(3)*.
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