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Abstract— In this paper, we present a recursive optimization
method of humanoid motions. The method is based on an efficient
dynamics algorithm, which allows the calculation of the gradient
function with respect to the control parameters analytically. The
algorithm makes use of the theory of Lie groups and Lie algebra.
The main objective of this method is to smooth the pre-calculated
humanoid motions by minimizing the efforts, and at the same
time improving the stability of the humanoid robot during the
execution of the planned tasks. Experimental results using HRP-2
platform are provided to validate the proposed method.

Index Terms— Humanoid; Motion planning; Recursive dynam-
ics; Optimization

I. INTRODUCTION

Few years ago, talking about humanoid robots was some-

kind of science fiction. The recent technological advancement

has made this dream a reality. Actually the ability of humanoid

robots to execute complex tasks increases rapidly.

The latest trends in humanoid research are to increase

their autonomous behavior as well as improving stability and

smoothness of the planned motions.

Optimizing motions to improve their performance was an

active research subject in recent years. In virtual reality, Lo

and Metaxas [1] have proposed a method based on optimal

control theory within a recursive dynamics framework. The

objective of their work is to simulate a dynamically-correct

astronaut motions by minimizing joint torques.

In humanoid research, Ruchanurucks et al [2] have proposed

a method to optimize upper body motion of humanoid robot in

order to imitate a recored human motion. Their optimization

objective function preserves the salient characteristics of the

original motion, and at the same time it respects the physical

constraints of the humanoid robot. However, the notion of

minimizing an energy function is not introduced because the

objective is only to guarantee the feasibility of the motions.

Furthermore, the authors have mentioned that as their method

consider the velocity and force constraints separately, the

resulting trajectories would meet the latter limits while the

former limits are often violated.

Safonova et al [3] use also a pre-recorded human motion to

generate optimal motions of the upper body of Sarcos hu-

manoid robot. The objective is also to imitate human motions,

so the function to be minimized is the difference between the

recorded and executed motion by the robot. Guilamo et al [4]

consider the optimization of manipulability trajectories. The

optimal solution is in kinematic sense and does not take into

account the dynamic constraints.

Sentis and Khatib [5] have proposed a whole-body control

framework for humanoids. This framework integrates task-

oriented dynamic control while complying with humanoid

physical constraints. The controllers are calculated in the

operational space [6] at multiple levels. As it is known, these

controllers provide the torques which should be applied on

each joint, that means the humanoid robot should be controlled

by joint torques. On the contrary, HRP-2 platform and many

humanoid robots are controlled by joint positions. Although

the use of inverse dynamics methods can give the associated

joint positions with the calculated joint torques, this method

is time consuming and is not numerically efficient.

In this paper, our objective is to smooth pre-calcuted hu-

manoid motions. These motions can be provided by kinematic

planning methods, which can take into account the limits of

joint angles. On the other hand, they can not guarantee that

the calculated motions do not violate the torques limits.

Studying human movements [7], [8] has brought out a

connection between minimizing energy dissipation and forces,

and the smoothness of human movements. On account of the

complexity of calculating the energy dissipation, one can use

an approximative prediction of it. A good predictor of human’s

metabolic energy is proven to be the joint torques [9]. As the

humanoid robot is supposed to realize human-like motions,

our goal can be achieved by minimizing the joints torques

during the planned motion.

The contributions of this paper are:

• Developing an optimization framework of humanoid

robot motions. This framework takes as input a pre-

calculated motions, which are provided by motion plan-

ning techniques. The output is an optimized and stable

motion.

• The proposed method uses the forward dynamic formu-

lation and the quantities to be optimized are the joint

positions. As a consequence, the humanoid robot can be

controlled directly in the joint space and not in torque

control space. Therefore the method is well adapted for



a position controlled humanoid like HRP-2 platform.

• By using an efficient dynamic algorithm, we can calcu-

late the derivative of joint torques with respect to joint

position, velocity and acceleration (q, q̇, q̈) analytically.

This procedure is similar to the procedure used in [1].

However, the problem of virtual human stability and

ground reaction forces modeling are not considered in

[1].

• The validation of the proposed method pointed out that

the optimized motion is smoother than the pre-calculted

one.

The remainder of this paper is organized as follows. In

Section II the kinematic structure of HRP-2 humanoid robot,

and the definition of active and passive parts are introduced.

An overview of the algorithm of recursive multibody dynamics

is given in Section III. In Section IV the optimization problem

is formulated. In Section V the discretization of configuration

space and solving the optimization problem are pointed out.

Experimental results are given in Section VI and Section VII

concludes the paper.

II. HUMANOID ROBOT: KINEMATIC STRUCTURE

The kinematic structure of the humanoid robot HRP-2 [10]

is given in the Fig. 1. In this structure the degree of freedoms

are presented by cylinders. The structure contains 30 degree

of freedoms.

Active part  

Fig. 1. Description of HRP2 kinematic structure.

Our objective is to optimize pre-calculated humanoid mo-

tions and improve their stability. The pre-calculated motions

are the output of motion planning algorithms [11], [12]. These

motions are generally complex, e.g. transporting an object

and guaranteeing the collision avoidance [13]. Such motions

usually use the upper part of humanoid robot to execute the

desired task and the lower part is mainly responsible of the

locomotion and maintaining the stability of humanoid robot.

For that, we divide the kinematic structure into two parts.

The first part is the active part, which is the lower part. The

upper body regarded as passive part.

In order to achieve our objective, we optimize only the values

of the degree of freedoms of the active part. The passive part

will be taken into account in the calculation of the dynamic

equations without modifying their angular values. The active

part consists of 12 degree of freedoms.

III. RECURSIVE MULTIBODY DYNAMICS

Park et al [14] have proposed to write the recursive multi-

body dynamics for serial open or branched kinematic chains

using Lie group and Lie algebra. The main advantage of this

formulation is to relate the joint torques and joint angles

explicitly. Therefore the differentiation of joint torques with

respect to joint angles can be done analytically.

Let us define the Lie groups SO(3) and SE(3), which denote

the orthonormal matrix Θ in R3×3 and the homogeneous trans-

formation group respectively. The Lie algebra of SO(3) and

SE(3) are denoted so(3) and se(3) respectively. The operators

defined on these groups are: skew, matrix exponential, adjoint

map AdG(.), dual adjoint Ad∗
G(.), Lie bracket adg(.) and dual

Lie bracket ad∗
g(.). For more details on Lie group, Lie algebra

and the operators definitions see Appendix.

A. Forward Kinematics

The kinematics of an open chain can be modeled as a

sequence of homogeneous transformation between consecutive

joint frames. Let Ti−1,i ∈ SE(3) be the transformation matrix

between the frame of link i and the frame of link i−1.

The matrix Ti−1,i can be written using matrix exponential

notation as follows

Ti−1,i = Mie
Siqi (1)

where Si ∈ se(3) is the joint screw written in the coordinate

of link i−1, qi is the current position of joint i and Mi is the

coordinate transformation between link i and link i−1.

Using the above definition of transformation matrix, the end-

effector of a kinematic chain can be calculated by the product

T0,n = T0,1T1,2 · · ·Tn−1,n

= M1eS1q1 M2eS2q2 · · ·MneSnqn
(2)

Note that by expressing the matrix of transformation in expo-

nential form, we can calculate its derivative with respect to qi

analytically.

B. Recursive inverse dynamics of branched chains

Branched chains are serial open chains with two or more

branches leading to two or more tip links [14], [15]. In the

branched chains two definitions arise :

• Parent link: the link inward (towards the base) from a

given link.

• Child link: the link or links which are outward (towards

the tips) from a given link.

Spatial velocity of branched chains:

• Initialization: Given V0.

• Outward recursion: loop over all links in depth manner:

TP,i = Mie
Siqi

Vi = Ad
T−1

P,i
(VP)+Siq̇i

ai = −adSiq̇i
(Vi)

bi = −ad∗
Vi

(JiVi)

(3)



where the index P denotes the parent link of link i, TP,i designs

the mapping from the link i to its parent P and VP denotes the

spatial velocity of link P.

Applied torques on the branched chains: In order to

calculate the inward recursion of forces and torques, we define

the external forces applied on a link j by F̂j.

• Initialization: Given the external applied forces on each

link F̂j, V̇0 and Ĵ j = 0 for each tip link.

• Inward recursion: loop over all links in reversed breadth

V̇i =Ad
T−1

P,i

(

V̇P

)

+Siq̈i +ai

Ĵi =Ji + ∑
j∈C

Ad∗
T−1

i, j

Ĵ jAd
T−1

i, j

Bi =bi + ∑
j∈C

Ad∗
T−1

i, j

z j

zi =Ĵi (Siq̈i +ai)+Bi + ∑
j∈C

Ad∗
T−1

i, j

F̂j

Fi =ĴiAd
T−1

P,i

(

V̇P

)

+ zi

τi =ST
i Fi

(4)

where C denotes the child links for link i, and τi is the torque

applied on the joint i.

IV. OPTIMIZATION PROBLEM FORMULATION

The cost function to be minimized is the integral of the

Euclidean norm of joint torques.The stability of the humanoid

robot should be assured by guaranteeing that the foot, which is

in contact with the ground, will still immobile. Such condition

can be satisfied by assuring that the spacial velocity and

acceleration of the support foot are null.

Let Qt is the vector of angular values of joints in the

configuration space defined as follows

Qt =

[

qt

q
p
t

]

=
[

q1,t q2,t · · · qn,t q
p
1,t q

p
2,t · · · q

p
np,t

]T

(5)

where qt and q
p
t denote the vectors of angular values of active

and passive joints respectively.

The optimization problem can be formulated as follows

min
qt,q̇t,q̈t

∫ t f

t0

τt
T τtdt

subject to

Permanent constraints































ST Ft = τt

qt0
= q0, q̇t0

= 0, q̈t0
= 0

qtf
= qf, q̇tf

= 0, q̈tf
= 0

τ− ≤ τt ≤ τ+

q− ≤ qt ≤ q+

Temporary constraints











Vsupport f oot = 0

V̇support f oot = 0

G f oot = G
re f
f oot : tc1 , · · · , tcp

(6)

where τt , Ft and S are defined as follows

τt =











τ1,t

τ2,t

...

τn
,
t











, Ft =











F1,t

F2,t

...

Fn,t











, S =











S1 0 · · · 0

0 S2 · · · 0
...

. . .
. . .

...

0 · · · 0 Sn











(7)

τt and Ft are the vectors of the applied torques and forces on

the joints of active part respectively. τi,t and Fi,t denote the

value of the applied torque and applied force on the joint i

respectively.

x− and x+ denote the minimal and the maximal values of

vector x respectively.

G f oot denotes the configuration of the foot in the euclidean

space as shown in Fig. 2

G f oot =

[

Pos f ront

Posback

]

(8)

Foot Frame

Back-end
Front-end

Fig. 2. Front and back-ends of the support foot.

where Pos f ront and Posback are the positions of the front

and back ends of the foot respectively, and G
re f
f oot is the

planned reference configuration. tck denotes the instant of foot

contact with the ground. Note that assuring G f oot guarantees

the orientation of the rigid foot as well.

Using Eq. (2), the G f oot can be written as a function of qt as

follows

G f oot =













T0, f oot

[

p f ront

1

]

T0, f oot

[

pback

1

]













(9)

where T0, f oot = M1eS1q1M2eS2q2 · · ·MneSnqn denotes the trans-

formation matrix of the foot expressed in the global fixed

frame, and q1 is the angular value of the ankle associated to the

immobile support foot. p f ront and pback denote the positions

of the front and back ends of the foot in its frame.

In order to transform this optimization problem into a



classical optimization problem, let us define

Xt =
[

qt
T q̇T

t q̈T
t

]T
, L(Xt) =

∫ t f

t0

τt
T τtdt

G(Xt) =









τt − τ+

−τt + τ−

qt −q+

−qt +q−









, H(Xt) =

































τt −ST Ft

qt0
−q0

q̇t0

q̈t0

qtf
−qf

q̇tf

q̈tf

Vsupport f oot

V̇support f oot

G f oot −G
re f
f oot

































(10)

Thus the optimization problem (6) can be transformed to the

following classical form

min
Xt

L(Xt)

subject to

H(Xt) = 0

G(Xt) ≤ 0

(11)

The above optimization problem has been extremely studied in

the literature of optimization theory. To solve this optimization

problem, one can use the augmented Lagrange multiplier

method, which is a very efficient and reliable method [16], [1].

Using the Augmented Lagrange Multiplier method transforms

the optimization problem (11) to the minimization of the

following function

min
Xt ,λ

L̃(Xt ,λ ) = L(Xt)+λ T
ψ ψ +

1

2
σψT ψ +λ T

H H +
1

2
σHT H

(12)

where λ =
[

λ T
ψ λ T

H

]T
, ψ = max

{

G(Xt),
−1
σ λψ

}

. Then there

exist λ ∗ such that X∗
t is an unconstrained local minimum of

L̃(Xt ,λ
∗) for all σ larger than some finite σ̄ .

To solve the unconstrained optimization problem of L̃(Xt ,λ )
with respect to Xt , one can use Gauss-Newton method. Note

that the function L̃(Xt ,λ ) is differentiable in Xt if and only if

L(Xt), H(Xt) and G(Xt) are differentiable in Xt , and in this

case we can write

∂ L̃(Xt ,λ )

∂Xt

=
∂L(Xt)

∂Xt

+(λH +σH)T ∂H(Xt)

∂Xt

+

max
{

0,λψ +σG(Xt)
}T ∂G(Xt)

∂Xt

(13)

As λ ∗ is unknown, an update rule is used

λ k+1
H = λ k

H +σH(Xk
t )

λ k+1
ψ = λ k

ψ +σψ(Xk
t )

(14)

where Xk
t is the unconstrained minimum of L̃(Xt ,λ

k). Such

updating rule will generate a sequence λ k converges to λ ∗

[18]. In practice, a good schedule is to choose a moderate σ0,

and increase it as follows

σ k+1 = ασ k (15)

where α is between 5 and 10. A threshold σ̄ is chosen and

the update rule of σ stops when σ k becomes higher than σ̄ .

For more details on the algorithm of augmented multiplier

Lagrange method see [17], [16], [18].

Approximating the gradient function
∂ L̃(Xt ,λ )

∂Xt
by a numerical

difference method is usually used in practice. However, this

approach not only a time consuming method on account of

the evaluation of the gradient calculation, but also may not

converge well because of the approximation.

As we have mentioned the main advantage of using the

recursive dynamic algorithm explained in Section III-B is

calculating the gradient function analytically in a recursive

way.

A. Gradient calculation

The objective is to calculate the gradient of the dynamic

quantities, such as τt , Vt and V̇t .

By considering the vector of parameters Xt =
[

qt
T q̇T q̈T

]T
, let us start by calculating the derivatives of

the operators with respect to x ∈ Xt

∂T0,n

∂x
=T0,i (Siδx,qi

)Ti,n

∂Ad
T−1

i−1,i
(Y )

∂x
=adAd

T−1
i−1,i

(Y ) (Siδx,qi
)+Ad

T−1
i−1,i

(

∂Y

∂x

)

∂Ad∗
T−1

i,i+1

(Y )

∂x
=ad∗

AdMi+1(Si+1δx,qi+1)

(

Ad∗
T−1

i,i+1

(Y )

)

+ · · ·

Ad∗
T−1

i,i+1

(

∂Y

∂x

)

∂adZ (Y )

∂x
=ad ∂Z

∂x

(Y )+adZ

(

∂Y

∂x

)

∂ad∗
Z (Y )

∂x
=ad∗

∂Z
∂x

(Y )+ad∗
Z

(

∂Y

∂x

)

(16)

where δx1,x2
is the Kronecker delta defined as follows

δx1,x2
=

{

1 if x1 = x2

0 otherwise
(17)

The calculation of the gradient with respect to Xt can be

done in a recursive way analogously to the recursive dynamic

calculation.

Forward recursion:

• Initialization: Given
∂V0

∂Xt
.

• loop over all links in depth manner:

∂Vi

∂Xt

=
∂Ad

T−1
P,i

(VP)

∂Xt

+Si

∂ q̇i

∂Xt

∂ai

∂Xt

= −
∂adSiq̇i

(Vi)

∂Xt

∂bi

∂Xt

= −
∂ad∗

Vi
(JiVi)

∂Xt

(18)

Backward recursion:

• Initialization: Given
∂ F̂j

∂Xt
,

∂V̇0

∂Xt
.



• loop over all links in reversed breadth

∂V̇i

∂Xt

=
∂Ad

T−1
P,i

(

V̇P

)

∂Xt

+Si

∂ q̈i

∂Xt

+
∂ai

∂Xt

∂ Ĵi

∂X
= ∑

j∈C

∂Ad∗
T−1

i, j

∂Xt

Ĵ jAd
T−1

i, j
+ · · ·

Ad∗
T−1

i, j

Ĵ j

∂Ad∗
T−1

i, j

∂Xt

+Ad∗
T−1

i, j

∂ Ĵ j

∂Xt

Ad
T−1

i, j

∂Bi

∂Xt

=
∂bi

∂Xt

+ ∑
j∈C

∂Ad∗
T−1

i, j

z j

∂Xt

∂ zi

∂Xt

=
∂ Ĵi

∂Xt

(Siq̈i +ai)+ Ĵi

(

Si

∂ q̈i

∂Xt

+
∂ai

∂Xt

)

+ · · ·

∂Bi

∂Xt

+ ∑
j∈C

∂Ad∗
T−1

i, j

F̂j

∂Xt

∂Fi

∂Xt

=
∂ Ĵi

∂Xt

Ad
T−1

P,i

(

V̇P

)

+ Ĵi

∂Ad
T−1

P,i

(

V̇P

)

∂Xt

+
∂ zi

∂Xt

∂τi

∂Xt

=ST
i

∂Fi

∂Xt

(19)

where as we mentioned, earlier, C denotes the child links for

link i.

B. Ground reaction forces

(a) Single support.

Centre

of mass

(b) Double support.

Fig. 3. Ground reaction forces represented by the yellow arrows.

In the absence of external forces applied on the robot, the

only forces are the ground reactions forces. In order to estimate

the ground reaction forces, we distinguish two cases

1) Single support: The ground reaction force is applied on

the support foot and its magnitude is equal to Mg, where

M is the total mass of the humanoid robot and g is the

gravitational acceleration.

2) Double support: The ground reaction forces are applied

on the two foots. Their magnitude are proportional to

the distance from the projection of the center of mass

on the floor and the centers of the support foots.

A demonstration of the ground reaction forces in single and

double support is shown in Fig. 3.

V. DISCRETIZATION OF CONFIGURATION SPACE

As it is well known the space of the admissible solution

of the minimization problem (6) is very large. In order to

transform this infinite dimensional space to a finite one, we

can use a basis of shape functions.

Let us consider a basis of shape functions Bt that is defined

as follows

Bt =
[

B1
t B2

t · · · BP
t

]T
(20)

where Bi
t denotes the value of shape function number i at the

instant t, the dimension of Bt is P defines the dimension of

the basis of shape functions.

The projection of the vector of angular values qt into the

basis of shape functions Bt can be given by the following

formula

qt = QBBt (21)

where QB is a constant matrix.

The derivative q̇t and q̈t can be written as follows

q̇t =QBḂt

q̈t =QBB̈t

(22)

In this case, the derivative with respect to each element

QB (i, j) of the matrix QB can be computed using the following

formula
∂Yt

QB(i, j)
=

∂Yt

∂Xt

×
∂Xt

∂QB(i, j)

=
∂Y

∂Xt

× ei
[

B
j
t Ḃ

j
t B̈

j
t

]

(23)

where

ei = [0 . . . 0 1

↑
i

0 . . . 0]T

By using the discretization of the configuration space, the

problem of optimization transforms into the problem of finding

the optimal matrix QB, which minimizes the function L̃(Xt ,λ )
in Eq. (12).

It remains to define the shape functions Bi
t . In our case, the

shape functions should verify the following properties:

1) They are continuous.

2) Their first and second derivatives are continuous.

Therefore, we use the quartic B-spline functions.

VI. EXPERIMENTAL RESULTS

The experimental scenario that we have tested to validate

the proposed method is the following

1) The robot carries a bar in its hand.

2) The robot starts walking and depressing the vertical

position of its pelvis. At the same time, it lifts up the

carried bar.

The characteristics of the carried bar are: length= 2 m, weight=

0.7 Kg, cylindric form with uniform density distribution. The

robot grasps the bar at 0.35 m from its end.



Snapshots of the conducted motion1 are presented in Fig. 4.

Note that the objective of using the carried bar is to generate a

non-symmetry in the kinematic structure, and also to perturb

dynamically the motion by the movement of the bar.

To compare the obtained results with the results obtained

by the method presented in [19], we use the real quantities

measured by the sensors of the humanoid robot HRP-2.

Fig. 5 shows the x coordinate of the Zero Moment Point

(ZMP), and the ground reaction force applied on the right

foot are presented in Fig. 6. Finally, the applied couple on the

right knee is given in Fig. 7.

From Figures 5, 6 and 7 we conclude that

1) The optimization method smoothes the shape of ZMP,

and the oscillations have been avoided. Note that the

ZMP trajectory of the optimized motion does not follow

the designed ZMP trajectory. This is because the opti-

mization method assures the stability of humanoid robot

by guaranteeing that the spacial velocity and acceleration

of the support foot to be null, and it does not consider

the trajectory of ZMP.

2) Using the optimization method avoids the surges in the

ground reaction forces applied on the foot.

3) Using the optimization method not only minimizes the

joint torques, but also it avoids the surges.

VII. CONCLUSION

In this paper, we have presented an optimization method of

pre-calculated humanoid robot motions. The objective of this

method is to smooth and improve stability of the humanoid

motions. To do that the integral Euclidean norm of the applied

torques on the joints is minimized, and the dynamical stability

conditions are transformed into guaranteeing that the spatial

velocity and accelerations of the support foot are null.

The experimental results have pointed out that the proposed

method not only smoothes the motion but also yields a

dynamically stable motion. Future work will focus on the

improvement of the proposed method to take into account

all degree of freedoms of the humanoid robot. In this case

deforming the planned trajectory is required, therefore a

function to calculate the distance between the robot and the

obstacles should be developed and considered as an additional

constraint.

APPENDIX

A Lie group is a differentiable manifold. An example of Lie

group is the orthonormal matrix Θ in R3×3, which is called

SO(3). Note that this group consists of the rotation matrices in

Euclidean space. Another example of Lie group is the group

of homogeneous transformation which is the special Euclidean

group or SE(3). Given a rotation Θ ∈ SO(3) and translation

b ∈ R3, the homogeneous matrix is defined as follows

G =

[

Θ b

0 1

]

(A-1)

1Videos of experimental results are available at
http://www.laas.fr/˜suleiman/Humanoids07/index.htm
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(a) Before optimization.
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(b) After Optimization.

Fig. 5. x coordinate of ZMP: the solid blue line is the measured ZMPx, the red
dash-dotted lines design the safe stability zone and the magenta dashed line
denotes the designed reference. The oscillations around 6.1 and 6.8 seconds
disappear after optimization as well as the surge at 6.81 second.

An important concept associated with each Lie group is

the notation of Lie algebra. The tangent space at the identity

element of a Lie group is called the Lie algebra for that group.

The Lie algebra of SO(3) and SE(3) are denoted so(3) and

se(3) respectively.

Let us define some notations and operations on Lie groups

and Lie algebra:

1) Skew operator:

[.] : ω ∈ R3 → so(3)

[ω] =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0





(A-2)

http://www.laas.fr/~suleiman/Humanoids07/index.htm
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Fig. 4. Snapshots of the conducted motion.
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Fig. 6. Applied ground reaction forces on the right foot: solid line for the
optimization method and dashed line for the classical method. The surge at
13.3 second disappears after optimization.
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Fig. 7. Applied torques on the right knee: solid line for the optimization
method and dashed line for the classical method. The surges at 11.2 and 12.35
seconds disappear after optimization.

2) (., .) operator:

(., .) : {ω,v} ∈ R3 → se(3)

(ω,v) =

[

[ω] v

0 0

]

(A-3)

3) Matrix exponential:

e(ω,v) = exp

[

[ω] v

0 0

]

=

[

exp([ω]) Av

0 1

]

(A-4)

where

exp([ω]) = I +
sinφ

φ
[ω]+

1− cosφ

φ 2
[ω]2, φ = ‖ω‖

A = I +
1− cosφ

φ 2
[ω]+

φ − sinφ

φ 3
[ω]2

(A-5)

4) Adjoint map on SE(3):

AdG(h) : se(3) → se(3)

AdG(h) =

[

Θ 0

[b]Θ Θ

][

hω

hv

]

(A-6)

where G ∈ SE(3) is defined as in (A-1), and h =
(hω ,hv) ∈ se(3).

5) Dual adjoint operator:

Ad∗
G(h∗) : se(3)∗ → se(3)∗

Ad∗
G(h∗) =

[

ΘT ΘT [b]T

0 ΘT

][

M

F

]

(A-7)

where G ∈ SE(3), and h∗ = (M,F) ∈ se(3)∗.

6) Lie bracket operator:

adg(h) = [g,h] =

[

[gω ] 0

[gv] [gω ]

][

hω

hv

]

(A-8)

where g,h ∈ se(3). h = (hω ,hv) and g = (gω ,gω).
7) Dual Lie bracket operator:

ad∗
g(h∗) = [g,h∗] =

[

[gω ]T [gv]
T

0 [gω ]T

][

M

F

]

(A-9)

where g = (gω ,gv) ∈ se(3) and h∗ = (M,F) ∈ se(3)∗.
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