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ABSTRACT

Chiral perturbation theory in heavy-fermion formalism is developed for meson-
exchange currents in nuclei and applied to nuclear axial-charge transitions. Cal-
culation is performed to the next-to-leading order in chiral expansion which
involves graphs up to one loop. The result turns out to be very simple. The
previously conjectured notion of “chiral filter mechanism” in the time component
of the nuclear axial current and the space component of the nuclear electromag-
netic current is verified to that order. As a consequence, the phenomenologically
observed soft-pion dominance in the nuclear process is given a simple interpre-
tation in terms of chiral symmetry in nuclei. In this paper we focus on the
axial current, relegating the electromagnetic current which can be treated in a
similar way to a separate paper. We discuss the implication of our result on
the enhanced axial-charge transitions observed in heavy nuclei and clarify the
relationship between the phenomenological meson-exchange description and the

chiral Lagrangian description.
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1 Introduction

By now there exist a large number of unambiguous experimental evidences [1] for
meson-exchange currents in nuclear responses to electroweak probes. We also have avail-
able a rather satisfactory and successful theory to describe the large bulk of experimental
observations [2]. While inherently phenomenological in character, the approaches taken so
far to describe meson-exchange currents have been commensurate with the ingredients that
account for our progressive understanding of nuclear forces and to the extent that nucleon-
nucleon interactions are now fairly accurately understood, one can have a great deal of
confidence in the theoretical tool with which the effect of exchange currents is calculated.
There remains however the fundamental question as to how our phenomenological under-
standing of nuclear forces and associated meson currents can be linked to the fundamental
theory of strong interactions, QCD.

In this paper we make a first step towards answering this question by applying chiral
perturbation theory (ChPT) to nuclear electroweak processes. To start with, we assume
that at low energies dominated by infrared properties of QCD, the most important aspect of
QCD is the spontaneously broken chiral symmetry and hence that in nuclear dynamics, it is
chiral symmetry that plays a predominant role [3]. The important role of chiral symmetry
in nuclear physics was recognized early on by Chemtob and Rho for exchange currents
[4] but this issue was recently given a stronger impetus and a more modern meaning by
Weinberg in connection with nuclear forces [5] and by Rho [6] in connection with what is
known “nuclear chiral filter phenomenon” (for definition, both intuitive and more rigorous,
see later).

The key question addressed here is this: To what extent can nuclear processes be
described by QCD or equivalently at low energies by chiral perturbation theory? Weinberg
approaches this issue by studying nuclear many-body forces. We propose here to do the
same by looking at nuclear response functions responding to slowly varying electroweak
fields [7]. We suggest that chiral perturbation theory can be made — under certain conditions
specified below — considerably more powerful and predictive for response functions than for
nuclear forces. In calculating nuclear forces to loop orders in chiral perturbation theory,
one encounters a plethora of counter terms to renormalize the theory, most of which are
not accessible by experiments [8]; furthermore there are contact four-fermion interactions in
the Lagrangian — most of which are again unknown parameters — that have to be carefully
examined and treated. In principle, this may be feasible, perhaps with the help of lattice
QCD calculations but in practice it may not be possible to make clear and useful predictions
because of many uncontrolled parameters. While the tree order chiral theory justifies a
posteriori the current nuclear physics practice of using two-body static forces [5], it appears
that chiral symmetry will be unable to make any truly significant statement on the structure
of nuclear forces for sometime to come. A major new development will be required before

one can make a prediction that goes beyond the accuracy of the phenomenological approach



which has been strengthened by the wealth of experimental data. On the contrary, as we
will show in this paper, when the formalism is applied to nuclear response functions, in
particular, to exchange currents, it can make a highly nontrivial and potent prediction.
This is because nuclear short-range correlations generated by nuclear interactions at short
distance — which while poorly understood of their mechanism, are nonetheless operative
in nuclear medium — screen all the contact interactions, both intrinsic and induced and
consequently all of the four-fermion (and higher) counter term contributions, effectively
“filtering” off the ill-understood short-range operators: Given phenomenological information
on nuclear wave functions at short distance, the short-range suppression helps in simplifying
nuclear response functions. In addition, in certain kinematic conditions, higher order chiral
corrections are found to be naturally suppressed. The suppression of the many-fermion
counter term contributions at the one-loop order that we are studying is, as will be stated
more precisely later, a consequence of the fact that such terms occurring at high orders
in the chiral expansion reflect the degrees of freedom that enter directly neither in nuclear
forces nor in nuclear currents at the chiral order considered. The combination of these
two phenomena lead to the “chiral filtering” proposed previously [10]. In this paper, we
will establish this chiral filtering to one-loop order in chiral perturbation theory. This
will provide, in our opinion, the very first compelling explanation of the pion-exchange
dominance observed in axial charge transitions (considered in this paper) as well as in
radiative np capture or in threshold electrodisintegration of the deuteron.

As stressed by Weinberg, chiral perturbation theory is useful in nuclear physics only
for “irreducible” diagrams that are by choice free of infrared divergences. This means that
both in nuclear forces and in exchange currents, reducible graphs are to be taken care of by
a Schrédinger equation or its relativistic generalization with the irreducible graphs entering
as potentials. This also implies that in calculating exchange currents in ChPT, we are to use
the wave functions so generated to calculate matrix elements to obtain physical amplitudes.
This is of course the standard practice in the theory of meson-exchange currents but it is
also in this sense that ChPT is predictive in nuclei. Clearly this precludes what one might
call “fully consistent chiral perturbation theory” where nuclear forces, nuclear currents and
wave functions are all calculated to the same order of chiral perturbation expansion. Such
a calculation even if feasible is likely to make no sense. A little thought would persuade the
reader that it is a futile exercise.

We will here focus on the irreducible diagrams contributing to exchange currents. We
will calculate next-to-leading order terms in the chiral counting involving one-loop graphs.
In doing this, we will employ the recently developed heavy fermion formalism (HFF) [11].
The standard ChPT [12] arranges terms in power of (9/A,) and/or of (m,/A,) where 0 is
four-derivative acting on the Goldstone boson (viz, pion) field, m, the pion mass (=~ 140
MeV) and A, = 1 GeV, the chiral expansion scale. It has been established that this
expansion works well at low energies for such processes as mm scattering. However the

situation is different when baryons are involved. The dynamically generated masses of the



baryons are of O(A,) and hence when the baryon field is acted upon by time-derivative, it
gives an O(1) term. Therefore a straightforward derivative expansion fails. (Incidentally
this is also the reason why a chiral Lagrangian describing pion interactions well with low-
order derivative terms does not necessarily describe well skyrmion properties.) The HFF
circumvents this difficulty in rearranging the derivative expansion. Indeed the principal
virtue of the HFF is that it provides a consistent chiral expansion in Q/A, where Q) is
four-derivative on pion field or pion mass or space derivative on baryon field; it avoids time
derivative on baryon field which is of order A, which is not small. The standard ChPT
involving baryons [13] can in principle be arranged to give a similar expansion. However
it requires a laborious reshuffling of terms avoided in the HFF. The distinct advantage
of the HF'F is that the multitude of diagrams that appear in such calculations as ours in
the standard ChPT involving baryons get reduced to a handful of manageable terms, thus
alleviating markedly the labor involved. We will see that there is an enormous simplification
in the number of terms and in their expressions. The potential disadvantage might be that
the HF'F is not fully justified for the mass corresponding to that of the nucleon and hence
higher order “1/m” corrections may have to be systematically included. We will examine
the class of approximations we make in the calculation by looking at the next order terms.
It turns out that the leading “1/m” correction is absent in our calculation. We shall discuss
this matter in the concluding section.

While the procedure is practically the same, the resulting expression for electromag-
netic (EM) current is somewhat more involved. We will therefore not treat it here although
we shall give a general treatment of the theory applicable to both axial and EM currents.
The detailed analysis on the EM currents, together with an application to threshold np
capture, will be reported in a separate paper [14]. Both currents are intricately connected
even at low energy through current algebras and we will need some vertices involving the
EM current.

It is perhaps obvious but we should stress that for both vector and axial-vector
currents, relevant symmetries (i.e, conserved vector current and partially conserved axial-
vector current) are preserved to the chiral order considered since both nuclear forces and
currents are treated on the same footing with the same effective Lagrangian. More on this
point later.

This paper is organized as follows. In Section 2, we state our basic assumption in
applying ChPT to nuclear dynamics. In Section 3, we describe the effective chiral La-
grangian with which we develop heavy-fermion formalism including “1/m” corrections. We
also define the relevant kinematics we will consider. The chiral counting rules are given in
Section 4. In Section 5, the renormalization of n-point vertices that enter in the calculation
is detailed. For the sake of making this paper as self-contained as possible and to define no-
tations, we also list the renormalized quantities for the pion and the nucleon following from
the Lagrangian. Readers familiar with renormalization of heavy-fermion chiral Lagrangian

could proceed directly to subsection 5.4. Two-body exchange currents are calculated in



Section 6. Both momentum-space and coordinate-space formulas are given. Numerical
analyses are described in Section 7. In Section 8, we explain why there are no other graphs
that can contribute to the same order and point out in what circumstances they can show
up in physical observables. Concluding remarks including those on the observed enhanced
axial-charge transitions in heavy nuclei are made in Section 9. The Appendices A-I list all
the formulas needed in the calculation.

This paper is written in as a self-contained way as possible so as to be readable by
those who are not familiar with the recent development in the field. Some of the material
are quite standard and readily available in the literature. Most of them however serve as a

check of our calculation.

2 Strategies in Nuclear Physics

We wish to calculate operators effective in nuclei for transitions induced by the vector
and axial vector currents of electroweak interactions, denoted respectively by V,, and A,
associated with the electroweak fields V, and A,,. In principle there will be n-body currents
for N > n > 1in N-body systems. Here we will focus only on one- and two-body currents,
ignoring those with n > 2. The reasons for so doing are given in the literature [2, 4] but we
will later show that n-body currents for n > 2 are suppressed to the order considered for
long wavelength probes.

The diagrams we wish to calculate are generically given by Fig. 1. They correspond
to the standard definition of single-particle and two-particle exchange currents entering in
the description of nuclear response functions to the external electroweak fields. These have
been calculated before in terms of phenomenological Lagrangians. Here we wish to do so
using chiral perturbation theory (ChPT), starting with a chiral Lagrangian that is supposed
to model QCD at low energies. Following the chiral counting rule we will derive later, we will
restrict our consideration to one-loop order, which corresponds to going to the next order
in the chiral counting to the leading soft-pion limit. Although one-loop calculations have
been done before for nucleon properties [15] and for infinite nuclear matter [16], they have
up to date not been performed in finite nuclear processes. We believe this work constitutes
the first attempt to implement consistently chiral symmetry in nuclear processes.

In dealing with divergences encountered in calculating loop graphs, in particular
the loops involving two-pion exchange, we will need a certain prescription for handling
operators that are short-ranged in coordinate space. This prescription does not follow from
chiral symmetry alone and will have to be justified on a more general ground. Specifically,
we argue that consistency with ChPT demands that zero-range interactions be “killed” by

nuclear short-range correlations:

e Lirstly, the zero-range operators that come from finite counter terms appearing in

four-fermion interactions figure neither directly nor indirectly — but importantly — in



the successful phenomenological nucleon-nucleon potentials and hence must represent
the degrees of freedom unimportant for the length scale involved. In fact, one can
show (see Appendix I) that the counter terms we need to introduce (denoted 521’2)
later) cannot arise, unlike in the better understood -7 scattering [17], from an ap-
proximation of taking an infinite mass limit of the strong interaction resonances such
as the vector mesons p, w etc. which have a scale comparable to the chiral scale and

play an important role in boson-exchange potential models.

e Secondly, ChPT by its intrinsic limitation cannot possibly provide a nuclear force
that can account for the interactions shorter-ranged than two pion or one vector-
meson range at most. Thus the truly short-range interaction known to be present
in the nucleon-nucleon interaction must involve elements that are not calculable by
means of finite-order chiral expansion even if such an expansion existed. Thus it would
be inconsistent to put a part of such interactions into the currents in the context of
ChPT without a similar account in the nuclear force. It is known that even to one-loop
order, the number of counter terms is so large in the calculation of nuclear forces that
it is highly unlikely that one can make a meaningful prediction based strictly on low-
order chiral perturbation expansion [8]. As suggested in Ref.[9], one should implement

ChPT calculations with phenomenological informations whenever available.

e Applied to the “irreducible diagrams” that enter in the definition of exchange cur-
rents, ChPT screens out the short-range part of the interaction which originates from
dynamics of possibly non-chiral origin. When the matrix elements of the operators
arising from the irreducible graphs are calculated with wave functions suitably com-
puted in the presence of two-nucleon potentials, the short-range correlation built into
nuclear wavefunctions must therefore suppress strongly interactions that occur at an
internuclear distance < 0.6 fm, automatically “killing” the & function interactions
associated with finite counter terms. This fact will be kept in mind when we derive

two-body operators in coordinate space.

We will present, at several places in the paper, arguments to justify the above procedure
which purports to establish that the only unknown parameters in the theory must be (a)
negligible in magnitude and (b) further suppressed by nuclear correlations when embedded
in nuclear medium.

There is nothing very much new in our calculation of the one-body operators except
for its consistency with chiral invariance. As for the two-body exchange currents, our
results are new. There are two graphs to consider: One-pion exchange (Fig. 2a) and two-
pion exchange (Fig. 2b). Both involve one-loop order graphs. Note that we are to calculate

only “irreducible graphs.”



3 Effective Chiral Lagrangian

We begin with the effective chiral Lagrangian that consists of pions and nucleons
involving lowest derivative terms[13] relegating the role of other degrees of freedom such as

vector mesons and nucleon resonances A to a later publication#!,
- . 1 — 2
Lo = N[0, +1,) —m+igay'ysA,lN — §C'a (NFQN)
F? ; PR
+ T (Vuutves) + GMPFPTr(S) + -+ Lon, (1)

where m ~ 939MeV is the nucleon mass, g4 ~ 1.25is the axial coupling constant and F' ~ 93
MeV is the pion decay constant. The ellipsis stands for higher derivative and /or symmetry-
breaking terms which will given later as needed. We have written the Lagrangian with the
renormalized parameters m, g4, I/ and M with suitable counter terms L to be specified
later. Under the chiral SU(2)xSU(2) transformation#2, the chiral field ¥ = exp(i’}—ﬁ)
transforms as Y — gREgI (gr, g1 € SU(2)) and the covariant derivative of the chiral field

transforms as X does,
V2 = 0,X—i(V,+A)E+ XV, - A)

— ga VX4l (2)

—

where the external gauge fields V, =V, -

—

and A, = A, - % transform locally

ST

Vit Ay =V + A, =gV, + A gt — 10,95 - g,
V= Ay =V = AL = g (Ve — Agl — i0ug1 - g1

In our work, only the electroweak (SU(2) x U(1)) external fields will be considered. The
Lagrangian of course has global SU(2) x SU(2) invariance in the absence of the pion mass

term. Non-linear realization of chiral symmetry is expressed in terms of £ = v = exp(igz)

and U = U(&, g1, gr) defined with &

£ = gutUt = Uty

#1While the vector mesons and the nucleon resonances (in particular, the A) play an important role in

nuclear phenomenology — and they can be easily implemented in ChPT at least in low orders, they are
unimportant for the process we discuss in this paper. It is not difficult to see which processes require such
degrees of freedom but we will not pursue this matter, for a treatment of such processes goes beyond the
framework of ChPT.

#2We are using a slightly unconventional notation of Ref. [13] which we will follow in this paper. This
facilitates checking our results on single-nucleon properties against those derived in [13] using standard
(relativistic) chiral perturbation expansion. The more familiar transformation of the chiral field used in the
literature is gotten by replacing ¥ by ©1. We are also working with the exponentiated (Sugawara) form of
chiral Lagrangian instead of Weinberg’s [5] used previously. They are of course equivalent. For the rest we

will follow the Bjorken-Drell metric and convention.



Now nucleon field N transforms as N — UN, and covariant derivatives of nucleon field and
chiral field transform as nucleon field does, D,N — UD,N and A, — UA“UJr where#3

D,N = (8,+T,)N,
Do = 5 [6h0u] = 560+ AE — 260V — A
Ay = 6 (Ve = e 0,8} - LAV AEE eV - AL ()

The U can be expressed as a complicated local function of £, g, and gg. The explicit form
of U is not needed for our discussion.

Note that we have included the four-fermion non-derivative contact term studied re-
cently by Weinberg[5]. We will ignore possible four-fermion contact terms involving deriva-
tives (except for counter terms encountered later) and quark mass terms since they are not
relevant to the chiral order (in the sense defined precisely later) that we are working with.
The explicit chiral symmetry breaking is included minimally in the form of the pion mass

term. Higher order symmetry breaking terms do not play a role in our calculation.

3.1 Heavy-fermion formalism

For completeness — and to define our notations, we sketch here the basic element of the
heavy-fermion formalism (HFF)[18] applied to nuclear systems as developed by Jenkins and
Manohar[11] wherein the nucleon is treated as a heavy fermion. As stressed in Introduction,
the relativistic formulation of ChPT works well when only mesons are involved but it does
not work when baryons are involved since while space derivatives on baryons fields can be
arranged to appear on the same footing as four-derivatives on pion fields, the time derivative
on baryon fields picks up a term of order of the chiral symmetry breaking scale and hence
cannot be used in the chiral counting. This problem is avoided in the HFF. To set up the

HFF, the fermion momentum is written as
p* = mo* + k* (4)

where v# is the 4—velocity with v = 1, and k# is the small residual momentum. (In the
practical calculation that follows, we will choose the heavy-fermion rest frame v* = (1,0).)

We define heavy fermion field B,(z) for a given four-velocity v#, by #4
B,(z) = ™V N(z). (5)

The field B, is divided into two parts which are eigenstates of #,

1
;ﬁB +—¢ B, = P, B,+ P_B,. (6)

#3We have defined two covariant derivatives involving chiral fields, V,Z and A,. We can express one in

B, = B") 4+ B(-) =

terms of the other, but it is convenient as done frequently in the literature to use V3 for the meson sector
and A, for the meson-nucleon sector.
#4 Another familiar field redefinition is B, (z) = e'™7" Y *N(z), with v = 1. This definition gives exactly

the same physics to the lowest order in % expansion.



As defined, B£+)(B1(,_)) can be identified as positive (negative) energy solution. As will be
justified in the following subsection, the negative energy solution is suppressed for large
baryon mass and its contribution can subsequently be incorporated as higher-order correc-
tions in the inverse mass expansion. Thus to the leading order, the fermion loops can be
ignored. With the neglect of the negative energy solutions, we have a useful relation for

gamma matrices sandwiched between spinors which holds for any T,
B.UB, = B,fIB, = B.IyB, = B (I’ B, (7)
It follows from this identity that
B,vsB, =0, B,v"B,=v"B,B,. (8)

Let us define spin operators S/ by

B,ysv"B, = —2B,S"B, (9)
or explicitly
1

Sy = [#A1T (10)

The spin operators have the following identities,

1

{s£,57} = 5(7}“@” - g"), (11)
[Sﬁ, SZ] = Z'E'MUOZBUOZSB with €0123 = 1. (12)

From the anti-commutation rule, we have

1 -2
Sy-S, = 1(1—61):—346:—%, (13)
SUSSw = J(d— )8!~ 1St (14)
1
(¢-5.)° = 7 @-v) -2 (15)

where d is the dimension of the space-time, d = g/ and we have defined ¢ = (4 — d)/2.

Between spinors, we have the approximate relations

_ 1 1
B, [8%,S.] B, ~ —%Ex & (17)

with & the usual Pauli spin matrices. We see that S° and {SS,SZ,} are suppressed by a

factor of ¥ = O (%) where @) is the characteristic small momentum scale for processes with

small three-velocity. Since
(56,50 = (0" + po™p)

= %U‘“’ + (v*Sy — v"SH) s



where o#¥ = % [v#,7"], we also have
B, (%UW) B, = B,[S" SY]B, (18)
B, (6"y5) B, = 2iB, (v"'S) — v”S") B,. (19)

We are now in position to write down the chiral Lagrangian (1) in HFF. The nucleon

part of the Lagrangian becomes

N(ip — m)N = Byiv- 0B, (20)

and the corresponding nucleon propagator S(muv + k) is#®
i

vk 40t

Our chiral Lagrangian (1) expressed in terms of the heavy-fermion field to leading (i.e,

iS(mv+k) = (21)

zeroth) order in 1 takes the form
- s : 1 — 2
Lo = B,[iv"(9,+T,) +2igaStA] B, - 5C, (B.r.B.)
F? 1
+ T (v, 2tvey) + S M?EPTr(2). (22)

In practical calculations, the chiral field X or £ is expanded in power of the pion field. The
explicit form resulting from such expansion as well as the vector and axial-vector currents

calculated via Noether’s theorem are given in Appendix A.

3.2 % corrections

As mentioned, the HFF is based on simultaneous expansion in the chiral parameter

and in “1/m”. We have so far considered leading-order terms in 1/m, namely, O((1/m)").
1

do this in a perhaps more general way than needed for our purpose. Consider the following

We now discuss = corrections following closely the discussion of Grinstein [19]. We choose to

Lagrangian
— 1 —
L = N[EP—m+~ yA4,]N — §CQ(NFQN)2

= BliP ~m(1~ f) + 7757, B~ 5Col BL,B)’

#5Although we do not actually encounter it in our calculation, it might be worthwhile to point out one
technical subtlety. The infinitesimal 0% is inserted to define the singularity structure of the propagator.
When we encounter a d—dimensional loop integral we first perform the Wick-rotation to put it in the
Euclidean metric. In doing this, we assume that the first and third quadrants (in the plane of real 10 vs.
imaginary lo) contain no poles. If we can take the flow direction of the loop-momentum to be the direction
of the fermion momentum, there is no problem. However for some graphs it is impossible to do this. For
instance consider a two-nucleon box diagram. In this case, we have one fermion line in which the loop-
momentum flow direction is opposite to that of the fermion arrow. In this case, the fermion propagator is
of the form

1 1 : .
v-k—i0t  v-k+i0t +2mwd(v - k).



where we have included Weinberg’s four-fermion contact term with ', an arbitrary her-
mitian operator which we assume to contain no derivatives. We have also introduced an
arbitrary “axial” field A, which we take to be hermitian and free of gamma matrices. (Here
and in what follows, we shall omit the subscript v in B,, B, and S”.) The equation of
motion satisfied by B is

(G —m(1— )] B =0 (23)

with
G=g—Cil[4(BU.B), g=il)+y"y5A,. (24)

Multiplying (23) on the left by P_, we obtain
P_GB-2mB) =0

which leads to

B(‘):%P_GB:%P_GB(J’)—H’)(%). (25)
Now multiplying Py to (23), we get
P,GB=0
which gives
Py [G + %G P_ G] B =0 (#) . (26)

Given this, it is now a simple matter to write down the Lagrangian that gives rise to the

equation of motion to the desired order #¢. The result correct to O(1/m) is
— 1
£ = Blotgoorg|B
2m
Lo {F[F L P gtgPT )]3}2
2 SIS
1 — — —
+5-CaCh (Br.B) (Br, P_1,B) (BT, B) (27)

with ¢ defined in (24). To put this into a more standard form, we use the identities

1
PrgPy = Proif g} Py,
PrgP_g' Py = Py {P-,9}¢'Py = Prg{P-,g'} Py,
1 1
PyrgP_gPy = Py [5{75792}—1{9,9{3579}} Py (28)

One can show from these identities that

(BY 1. B") 0BT, o =0 (29)

#6We remind the reader that one should not insert the solution of B{~) into the original Lagrangian, since
in Lagrangian approach, what is important is the form, not the value. However in Hamiltonian approach,

the insertion of the solution for B{~) into the original Hamiltonian is allowed.
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for any I'y = {1, vs, vu, Vu7s, Ouv}. This allows us to simplify the Lagrangian further to

the form
_ By e BBV s LB(_D2 4 (v D)2
L = B(iv-D+2S-A)B QCQ<BFQB) —|—2mB( D2+ (v- D)
+[S*, 81[D,, D] — (v A)? = 2i{v- A, S - D}) B, (30)

for general I', allowed by symmetries. In our case, A4, = 1gaA, = igA%gT(V“E)gT, SO our

L term Lagrangian is
m

1 —
0L = =B (=D'+ (v D)2 +[8* 8Dy, D]+ g5 (v- A)* + 294 {v- A, S - D}) B

2m
+0 (mi) . (31)

While Eq.(31) is the first “1/m” correction, it is not the entire story to the order
considered. One can see that it is also the next order in the chiral counting in derivatives
and it is expected in any case, independently of the inverse baryon mass corrections. Thus
in a practical sense, the coefficients that appear in each term are parameters rather than
fixed by chiral symmetry in HFF. We also note that in the derivation given above, neither
O(1/m) corrections to the quartic fermion term nor sixth-order fermion terms are generated
by the (1/m) expansion. This of course does not mean that such terms cannot contribute
on a general ground. We have however checked that no such terms arise from exchanges of
single heavy mesons that are formally “integrated out” which means that our calculations

are not affected by such terms, at least to the order we are concerned with.

4 Counting Rules

In this section, we rederive and generalize somewhat Weinberg’s counting rule[5]
using HFF. Although we do not consider explicitly the vector-meson degrees of freedom,
we include them here in addition to pions and nucleons. Much of what we obtain turn out
to be valid in the presence of vector mesons. Now in dealing with them, their masses —
which are comparable to the chiral scale A, — will be regarded as heavy compared to the
momentum probed ) — say, scale of external three momenta or m,.

In establishing the counting rule, we make the following key assumptions: Every
intermediate meson (whether heavy or light) carries a four-momentum of order of Q. In
addition we assume that for any loop, the effective cut-off in the loop integration is of order
of ). We will be more precise as to what this means physically when we discuss specific
processes, for this clarifies the limitation of the chiral expansion scheme.

An arbitrary Feynman graph can be characterized by the number Fn (F) of external
— both incoming and outgoing — nucleon (vector-meson) lines, the number L of loops, the
number In ([, Ig) of internal nucleon (pion, vector-meson) lines. Each vertex can in turn

be characterized by the number d; of derivatives and/or of m, factors and the number n;
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(h;) of nucleon (vector-meson) lines attached to the vertex. Now for a nucleon intermediate

state of momentum p* = muv* + k* where k* = O(Q), we acquire a factor Q! since

1
An internal pion line contributes a factor Q=2 since
1
2,2y _ _ -2

while a vector-meson intermediate state contributes @° (~ O(1)) as one can see from its

propagator
1 1
AF(92§ mi ) = 7 = 2 = O(QO) (34)

q* —mi, —my

where my represents a generic mass of vector mesons. Finally a loop contributes a factor Q*
because its effective cut-off is assumed to be of order of (. We thus arrive at the counting

rule that an arbitrary graph is characterized by the factor Q¥ with
v=—Iy -2, +4L+» d; (35)

where the sum over 7 runs over all vertices of the graph. Using the identities, I, +Ig+ Ix =

L+V —-1,Ig= %ZZ h; — ETH and Iy = %EZ n; — ETN, we can rewrite the counting rule

F 2F
V:Q—%—I—QL—I—;W, v, =d; +

n; + 2h;

> 2. (36)

We recover the counting rule derived by Weinberg [5] if we set Ky = h; = 0.

The situation is different depending upon whether or not there is external gauge field
(i.e., electroweak field) present in the process. In its absence (as in nuclear forces), v; is
non-negative

i+ 2h;
ﬁ%f——Qzu (37)

This is guaranteed by chiral symmetry [5]. This means that the leading order effect comes

di +

from graphs with vertices satisfying

n; +2h;

d;
+ 2

2=0. (38)

Examples of vertices of this kind are: 7*NN with & > 1(d; = 1, n; = 2, h; = 0),
ANN (d; =0, n; =2, h; = 1), (NF]V)Q (di =0, n; =4, h; =0), hr* with k > 1(d; =
1, n; =0, h; = 1), etc where h denotes vector-meson fields.

In N N scattering or in nuclear forces, Ky = 4 and Fy = 0, and so we have v > 0. The
leading order contribution corresponds to v = 0, coming from three classes of diagrams;

one-pion-exchange, one-vector-meson-exchange and four-fermion contact graphs. In 7N
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scattering, Ky = 2 and Fy = 0, we have v > 1 and the leading order comes from nucleon
Born graphs, seagull graphs and one-vector-meson-exchange graphs.#7

In the presence of external fields, the condition becomes [6]
i +2h;
<di+%—2>2—1. (39)

The difference from the previous case comes from the fact that a derivative is replaced
by a gauge field. The equality holds only when h; = 0, n;, = 2 or h; = 0, n; = 0. We
will later show that this is related to the “chiral filter” phenomenon. The condition (39)
plays an important role in determining exchange currents. Apart from the usual nucleon
Born terms which are in the class of “reducible” graphs and hence do not enter into our
consideration, we have two graphs that contribute in the leading order to the exchange
current: the “seagull” graphs and “pion-pole” graphs #2, both of which involve a vertex
with »; = —1. On the other hand, a vector-meson-exchange graph involves a v; = +1
vertex. This is because d; = 1, h; = 2 at the J,hh vertex. Therefore vector-exchange
graphs are suppressed by power of ?. This counting rule is the basis for establishing the
chiral filtering even when vector mesons are present (see Appendix I). Thus the results we

obtain without explicit vector mesons are valid more generally.

5 Renormalization in Heavy-Fermion Formalism

In this section, we discuss renormalization in heavy fermion formalism. Most of the
renormalized quantities that we will write down here have been obtained by others in stan-
dard ChPT [13]. We rederive them for completeness and as a check of our renormalization
procedure.

For reasons stated above, fermion loops are suppressed in HFF. OQur basic premise
is that antiparticle solutions should be irrelevant to physical processes in large-mass and
low-energy situations. Their effects can however be systematically taken into account in
“1/m” expansion.

We shall denote “bare” quantities by m, ]\04, 1%, !(}A and the corresponding “renor-
malized (to their physical values)” quantities by m = m + ém, M, F, ga, respectively,
for nucleon mass, pion mass, pion decay constant (~ 93 MeV) and axial coupling constant
(~ 1.25).

5.1 Dimensional regularization

We adopt the dimensional regularization scheme to handle ultraviolet singularities in

our loop calculations. It has the advantage of avoiding power divergences like §(0) ~ A%,

#7We note here that scalar glueball fields y play only a minor role in 7N scattering because the Y7 vertex
(di =2, n; =0, h; = 1) acquires an additional @ power.

#8These are standard jargons in the literature. See [2, 4].
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where Ay is the cut-off mass. In d = 4 — 2¢ dimensions, all the infinities are absorbed in %
When heavy fields are involved, somewhat different parametrization schemes and integral

formulas are needed. The relevant ones for our calculation are

1 [(n+1) [ P
Y Ul L) W 4
A7 B () /0 @A T By (40)
1 r 2 1 o A1
- an/ dz/ dA - (41)
A"BC I'(n) Jo 0 2AA+ 2B+ (1 —2)CT"
and o 1 N N
F(n)/ AANE(O2 4 02)~" = Sottk-2ep <n _ht ) r < + ) . (42)
0 2 2 2
This integral is singular when
n—k‘;—lzo,q,—g,--- (43)

so € must be kept finite until the integration in A is performed. Some relevant integral
identities needed in this paper are given in Appendix C.

As is customary in the dimensional regularization, we introduce an arbitrary mass
scale . After renormalization, the results should, of course, be independent of the scale p.
Here some comments are in order regarding the one-loop renormalization scheme. First, all
the divergences of our theory can be classified in two classes by their degrees of divergence:
quadratic and logarithmic divergences. The quadratic divergences are removed by counter
terms that are of exactly the same form as the lowest chiral-order Lagrangian, Lg as given by
(22). Thus these quadratic singularities can be absorbed into the renormalization process
of the basic quantities, namely, g4, F, M, m. To take care of the logarithmic singularities,
we include counter terms that are higher chiral order by Q2 than £y. As it is an arduous
task [13] to write down all possible counter terms, we shall write down only the counter
terms needed for the calculation. All the quadratic divergences can be written in terms of

A(M?) and all the logarithmic divergences in terms of n defined by

d=deogdp M? M2\
AM? = & / =-— (-1
(7 i (2m)4 12 — M? 1672 (-1+9 (4ﬁu2)

M? (1 M?

= —+14+1(1) =1 44
1 M2\NT" 1 (1 M?

= —T = ——[-+T'(1) -1 O 45

K 1672 () (47r,u2) 1672 (6 +I(1) —In 47r,uz) +0(9 (45)

where € = (4 — d)/2 and ["(1) ~ —0.577215. Note that both A and 7 are scale-dependent
and singular. But the coefficients of the counter terms (written down below) are also scale-
dependent and singular. To remove the scale dependence and singularity, one must adjust
the coefficients of the counter terms. This procedure however is not unique since finite

parts of the coefficients of the counter terms are totally arbitrary. There are many ways to
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eliminate this non-uniqueness leading to a variety of “subtraction schemes.” In this paper,
we use the scheme whereby renormalization is made at the on-shell point for the nucleon
and at zero four-momentum for the pion and the current. Thus the quantities g4, F and
the coefficients of the counter terms are defined at zero momentum of the axial current and
the pion.

To make our discussion on renormalization streamlined, we list below all the counter

terms needed in our work (for the meson sector, see [12]) to which we will refer back as

required;
- . .C
Lo = Bl=dm+ (Zy —1)iv-D+ zF—IQ(v . D)?’] B
. Cy— — —
+ ngﬁB SHtoYv? (AﬂDyDa— D, A, D+ D,D, A#) B
.C3 — 4 B
+ iz B (D%, [Da, )| B
4B g2 g8] 1v -
+ i75B|5% %] {v- D, [Da, Dsl} B
n i%E[U-A,[U-D,v-A]]B
+ iSB[S-A[v-D,S-A]lB
F
94 (1) o
+ {—@dg)BTQD#B-B[U-A,TQ]S“B
244 (B[s*,8"1D,B - Bv-AS,B+B[S*,5"v-AD,B - BS,B)
- 4F4 4 3 2 v v 3 v “w v
+ h.c.} (46)
with
3(d — 1)gj A(M?)
Zn =1
N + 4 2z
395 M°
4 =
T 3nE?
3
o = Seanter
d—3
2 = o gan+el,
S 1+ (d+1)d5 U
g = —g[l+(d+ )] m+ e,
cs = 2040+ i,
s = n+eg,
6 = —(d—3)gin+cq,
d) = &+ [(d-1)gd - 2|,
a) = w7 —8gkn (47)
where ¢f (i = 1,2,---,6) and k$"?) are finite renormalized constants that we will refer

to as “finite counter terms.” Since these finite counter terms and the finite parts of loop
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contributions are scale-independent, our final results also are scale-independent and regular.
The chiral counting is immediate from the counter-term Lagrangian. We should mention
for later purpose that the two-derivative four-fermion counter terms proportional to dgl’z)
cannot be gotten from single low-mass resonance exchanges and hence do not figure in
long-range as well as intermediate-range NN potentials.

We should note here that although the above counter-term Lagrangian contains the
isospin matrix 7, chiral invariance of the Lagrangian is preserved. This can be verified by

noting that
= (Tfl)ij (Ta) (48)

where (i, §, k, [ = 1,2) and R is the SU(2) matrix for chiral transformation, B — RB.#° Also

—
note that S* is hermitian while A, and [S*, S”] are antihermitian and 'yOD:fL'yO =D,=0,

—I',, where I, is the antihermitian operator defined by D, =9, +T',.

L)

(R'mR) (R'mR)

kl

5.2 Pion properties to one loop

Since due to pair suppression fermion loops can be ignored, renormalization in the
pion properties is rather simple. The wavefunction renormalization Z,, renormalized mass

M and pion decay constant I (here as well as in what follows renormalized at ¢* = 0 with
M +# 0) are given by [12]#10

S _ 2 A(M?)

Zn = 1=~ (49)
2 o2 A(MQ)

wo— o [1— ( ] (50)
F = ﬁ[HA%Z)] (51)

with A(M?) defined in Eq.(44).

5.3 Nucleon properties to one loop

One-loop graphs for nucleon propagator are given in Fig. 3. Fig. 3b vanishes due to

isospin symmetry, so only Fig. 3a survives to contribute to the nucleon self-energy 3,

2
k) — 394 ga B/ lals
S(o-k) = -3S°S° | e (52)

/lz th / %. (53)

#9 Actually this equation can be simply understood if one uses an O(3) representation. In this case, R is

where (and in what follows)

an orthogonal real matrix and (7.)i; = —t€aij, a,1,7 = 1,2,3.
#10We have not put in the counter terms that appear at O(Q4) in the pure meson sector, so the L} terms of
Gasser and Leutwyler [12] are missing from our expression. Since the meson sector proper does not concern

us here, we will leave out such terms from now on.
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From this, we get

3(d —1)g3 A(M?)
4 F?

where the prime on ¥ stands for derivative with respect to v - k. In our case confined to

Zn = 1+4%'(0) = 1+ (54)

irreducible graphs, there is no nucleon pole, so we can set v -k = 0 in the denominator of

the nucleon propagator. For an off-shell nucleon, we have
S(o- k) = (d— 1) 24 h(o . k) (55)
AR

with the function h(v - k) defined by

/zv U+ 15;1(?2 —ME) gaph(v - k) + vavp(- ) (56)

where (---) stands for a function that does not concern us. The evaluation of hA(v - k) is
described in Appendix D. For (v- k)% < M?, we have

34> 3q2 _
17 (M%) y — 224043 + 224 (M2 — y?) holy), (57)

Ely) = e AF?

where y = v - k and 7 is a singular quantity given by (45) and hg is a finite function, the
explicit form of which is given in Appendix D. We note that the above equation contains
the 1 divergence in the coefficient of (v - k) as well as in the coefficient of (v - k) (i.e, in
A(M?)). This additional singularity arises also in the conventional method. See the paper
by Gasser et. al.[13]. The counter term needed to remove this divergence, as given in (46),

is

(4] 3
Y
In order to regularize the propagator subject to the condition 3(0) = X’(0) = 0, we choose

Yer(y) =m - (Zn -1y + (58)

3(d — 1)gi A(M?)

Zn = 1+

4 2
395 M3
5 =
" 3272
3
g = 5931774‘6?-
The result is R )
_ 1 3, 394 2 2\~
S(y) = om+ 5 '+ 5 (M2 - ) o). (59)

Here the finite constant ¢ is in principle to be determined from experiments. To see its

physical meaning, we should look at a process involving an off-shell nucleon. For instance,
when v -k = +£M, we have

R
c
Y(EM) = j:F—12M3 + dm. (60)
Finally, the % correction is readily seen to be
SY(k) = == [K2 = (v £)?]. (61)
2m
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5.4 Renormalization of 3-Point Vertex Functions

In this subsection, we shall calculate three-point vertex functions to one-loop order,
in particular, J,NN and 7 NN given in Fig. 4, where .J, = A,(V,,) denotes the axial vector
(vector) current. We treat the vector current simultaneously since some vertices involving
it figure in our calculation. Each vertex function is a sum of contributions from tree graphs,
one-loop graphs, wavefunction renormalization, higher-order counter term insertion and
O (%) corrections, if needed. The tree-graph contribution to J,NN is

Pinn(tree) = ga7a 5%,
a TL’L
[y (tree) = 5 vk (62)

Wavefunction renormalization produces multiplicative coefficients Z, i.e., Zx for 'y and
1
Z2 Zn for 'y etce.
Unless noted otherwise we will always set the momentum flow of all pions and currents

to be outgoing. The current-off-shell-nucleon couplings that we will consider are of the type

N(mv+k) — N(mv+k—q)+J;(q),
N(mv+k) — N(mo+k—q)+m(q)

with the relevant momenta indicated in the parentheses.
For completeness, we list in Appendix F all the contributions to the three-point

functions of each Feynman graph.
5.4.1 Axial vertex function '}y

For off-shell nucleons, we find

A(M?)
F2

3(d—1)g3 o d—39%
AM?) + 2294
IV M)+ =72

DNy =947 S ll—l— + hg(’U'k,’U'Q)] (63)

where h3(v-k,v-q) = L [h(v-k —v-q) — h(v- k)] is evaluated in Appendix D. The singu-

v-q
larity in the above equation is removed by the counter term contribution

[FZ}%N]CT =947 5" <_%) [3(1) . k)2 —3v-kv-qg+(v- q)Q} (64)
with s
Cy = 3 gi’l]—k C? (65)

where ¢¥ is a finite renormalized coupling constant. Adding the counter term contribution

to the loop contribution, we obtain a renormalized axial coupling constant by g4 = ga(k =
0,q=0) where g4(k, q) is defined by

Fi’]i,NR(k, q) = galk,q) 7, S*. (66)
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Physically ga(k, q) is just the axial charge form factor for the incoming nucleon of momen-

tum muv* + k* and the axial current carrying the momentum ¢*. Explicitly it is given

by

ga(k, q) 9% cf 2 2
= U gpahe(v ko ea) = o 30k =30 kot ()" (67

where h3(v - k,v-q) is a finite function defined by
_ 2
ha(v-k,v-q) = ha(v-k,v-q) +A(M?) - gn{S(v-k)Q—Sv-kv-q—}—(v-q)ﬂ (68)

and

. A(M?) d
ga=294 |1+ 2 1—|—§gA ~ 1.25 (69)

where we have equated the renormalized g4 to the experimental value. Finally, the %

correction is .
NN = — 5,94 Ta v (2k — q) - S. (70)

For on-shell nucleons, v-k =wv-¢q =0 or in Breit frame, v -k = %v - ¢, so we find

ga(k,q) = ga. (71)

Note that we have neither momentum dependence nor % corrections for an on-shell nucleon
or in Breit frame. This means that there will be no one-loop correction to the # NNV vertex
in the exchange currents calculated below.

Given an experimental axial charge form factor of the off-shell nucleon, one can fix
the constant ¢¥. The vertex I'? ;v can be obtained by a direct calculation or by means of
Lehmann-Symanzik-Zimmermann (LSZ) formulation: Both give the same result

a ga(k,q
Linn" (k,q) = —2% Taq - S. (72)

5.4.2 Vector vertex function I'{}

The full form of T'}/%y is rather involved,

a 1 4
Iyany = % <U“ o+ - [q-S, S F) — Q“F:Y) (73)
where
1 g3
Voo 2 2 A
Py = 1—ﬁ[f1(q ) — AM )}—I_ﬁ@

+2 [(v q)* - qQ} %Bz(k,q) +4v-qu(k,q)},
FY = 4m%—%B0(k,q),
: 3}
Bo= e ey -2 (00t - 7)o Bk ()



with the functions f;, h; and B; given explicitly in Appendix B, D and E, respectively.
Although the above equations appear to have quadratic divergences, they actually have

only logarithmic divergences as can be seen below :

9 g4 M d+1 g2
FV = 1-Z@uk—v-qA— 4y L2y 2t 94,
L 7 (2 v ) T n +6F2 Ll
d—1 ¢% 2 2
+5-n ﬁ[i%(v-k) —3v-kvogt (veg)? 4,
M g
V f— — —
Fy = 4m T6n F2—|—2 Fz(?v kE—v-q)n+---,
B = [1+W+0g] s+ (75)

where the ellipsis denotes finite and O(Q")|,>2 terms. Quadratic divergences disappear
because of EM gauge invariance. We see that ['{/x (k= ¢ =0) = Ta v#*. The remaining

logarithmic divergences are removed by the counter term in Eq.(46) of the form

= C H . 2_ . . . 2
Tyynler = QFQTQU [(v k)*—3v-qu-k+ (v q)}
— 200 _ 0. g g”
+ QFQTQ (q v v-qq )
2 . _ : p
+ QFZT'IU (2k —q) [q- S,5"] (76)
with
1
e = [+ @+ 0gh]nt el
ca = —2g5n+cf. (77)

When v-k=v-q=0, we have I} =0 and

CR q2 1_|_ 392 i i
() = 1+ F—?’Qq2 ~ 6757 > AKo(q?) — 2(1+2¢%) Ka(4*) | (78)
2 1
gym
F (g% = _4?1?2 /0 dz\/M2 —z(1-2)g2 +1 (79)

where we have added the % correction appearing in the second term of F) #'!. It is easy
to see in (78) that the counter term constant ¢ can be related directly to the isovector
charge radius of the nucleon. We will give the precise relation later. K;(¢%) are the finite

pieces of the functions f;(¢?) defined in Appendix B,
- (2 ! ¢
Ko(q®) = / dzIn 1—2(1—2)M2 )
2

Ky(¢?) = / dzz(1—2z)In [1 —z(1-2) ]\(]42] . (80)

#11 Although the loop contribution to the Pauli form factor F) is finite and hence requires no infinite
counter term, there is a finite counter term contributing to it which we did not — but should — include in our
formula. As pointed out by Bernard et al. [20], the finite counter term can be considered as coming from

the p exchange as in vector dominance picture. This point will be addressed more precisely in [14].
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5.5 Renormalization of 4-Point Vertex Function

In this section, we study the 4-point vertex functions denoted Fi’jb and Fﬁ"?b to one

loop as given in Iig. 5, corresponding to the process
N(mv+k) = N(mv+k — g — @) + 5 (9) + 7 (a)

where the isospin components of the current and the pion are denoted by the subscripts a
and b, respectively. Here v - k represents how much off-shell the incoming nucleon is and

v (k — g, — @) the same for the outgoing nucleon. For tree graphs, we have

1
Fi’jb(tree) = —ﬁeabcrcv“.

(81)

The full formulas for non-vanishing graphs for off-shell nucleons are given in Appendix
G. Here we limit ourselves only to the on-shell nucleon case. For axial-charge transitions,
only the six graphs Fig.5 (a) — (f) survive. Figures 5 (g), (h) are proportional to S, so
suppressed for the time component and Figures 5 (i) — (n) are proportional to v-S = 0.
Figures 5 (0) — (r) do not contribute to the axial current. (We have included them for later
purpose, see [14].)

Adding the loop contributions and tree graphs with their wavefunction renormaliza-

tion constant, we have

[t = eper TP7 406, DT
(52)
with
_ v# 1 _
vy = - S [+ - 0R) T - 8 9P v gt 0 00)] |
2 2
241y 5,5 Bul)
4 71 d d—3 )
+% <T {ap- S, "} hi (v - qa) + — -5, 5" hy (v qa)) ; (83)
4g% [1—d 0 vt
mt p YA Loy Y 2 2. Sy
P =l 3m) g [ 2 8] Bole) + o 0 k(o)
4 1—-d d—3
S8 (S 0 580 ) + S - 5,5 b0 a) (34)

where ¢ = g, + a1, Fi(¢%) = fi(¢®) — £1(0) and 53 (y) = L[hi(y) £ hi(~y)]. The integrals
defining the functions f;(¢?) for i = 0,1,2,3 are listed and evaluated in Appendix B. (h;’s
are defined in Appendix D and By in Appendix E.) The log divergences contained in these
vertices are removed by the counter term contribution,
1
)

P _6abCF[F$EH\TN]CT
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C
+ €abeTe _SIU#(U : qa)2

2

Ce V- qq ,.

m F (Z(Sab [5#7 b - S] — €abcTe {Sﬂv qp - S}) (85)

with

s = 1+ C§7

_ 4 R

cc = —(d=3)gan+cs (86)

where cf! are renormalized finite constants listed in Eq.(46) and [}y y].. is given by (76).

With soft momentum, we have v - g, = 0 for which we obtain a surprisingly simple

expression, viz,

04 1
P = —eanereg s Y (1) (87)

where t = ¢* = (¢, + @)% and F is the isovector Dirac form factor Eq.(78). The one-loop
renormalization of the TAN N vertex corresponds to the isovector charge radius obtainable
from the form factor F\ for which the finite counter term c£ plays a key role. We see that
Fﬁ’jb and Iy are related, respectively, to ['[’3 v and Fﬁ"?b calculated in Appendix G. That
the A,m NN vertex for a soft pion is simply given by FY has of course been understood
since a long time via current algebra and also in terms of the p-meson exchange.

Finally for the % correction, one can readily obtain the corrections to the vertices

1
5Fﬁ’jb = —fabcTcW(Qk“—q“—v“(2v-k—v-q)—|—2[Q'S7SuD
2
. 94
- 6,;1 ° " Ya I
t0ab U7 U G 4dmF
ST = by gt g 88
v 10ab U q 2mI’ 5)

where k is the residual momentum of the incoming nucleon and k£ — ¢ = k£ — ¢, — ¢ is that of
the outgoing nucleon. An important point to note from Eq.(88) is that for the case v-q, = 0
and on-shell nucleons, we have no contribution from % corrections to the time component
of the axial current and the space component of the vector current. This is the basis for the
pair suppression we will exploit in the application to axial-charge transitions in nuclei.
The complete list of the four-point functions involving the vector and axial-vector

currents needed here and in [14] is given in Appendix G.

6 Two-Body Exchange Currents

So far we have computed one-loop corrections to the graphs involving one nucleon.
They are extractable from experimental data on nucleon properties. In this section we
incorporate the above corrections into — and derive — two-body exchange currents in heavy-

fermion chiral perturbation theory. As shown previously [7], the time component of the
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axial-vector current (and also the space component of the vector current [14]) in the long-
wavelength limit is best amenable to chiral perturbation loop calculations.#2 We will work
out the computation to one loop order corresponding to the next-to-leading order in the

chiral counting rules as derived in Section 4. The process of interest is
N(p1) + N(p2) = N(py) + N(p)) + Ji (k),

where we have indicated the relevant kinematics with ¢ = p}, — p2, ¢1 = p| — p1 and the

energy-momentum conservation ¢; + g2 + k = 0. The process is soft in the sense that

m

2
v-k:v-qi:v-(p;»—pi):@(@—):0

where m is the nucleon mass or chiral scale. This kinematics markedly simplifies the calcu-
lation. Clearly this kinematics does not hold, say, for energetic real photons.

It is convenient to classify graphs by the current vertex involved. The graphs that
contain J,7#NN play a dominant role since J,7nNN ~ v* for the axial current (and
JymNN ~ S# for the vector current). The graphs which contain J,NN (and J, 77NN
for the vector current) can be ignored to the relevant order because the role of the vector
and axial currents is interchanged. In what follows, we discuss the axial current only. The
argument for the vector current goes almost in parallel and will be detailed in [14].

What we are particularly interested in is the time component of the axial current,
with axial-charge transitions in nuclei in mind. This is where the “pion dominance” is
particularly cleanly exhibited. The space component is also interesting both theoretically
and phenomenologically. Theoretically Gamow-Teller transitions — observed to be quenched
—represent the other side of the coin relating to the chiral filter phenomenon discussed above,
namely that chiral symmetry alone or more precisely soft mechanisms associated with it
cannot make statements on this quantity [21]. Empirically the quenching phenomenon is
closely associated with the missing strength of giant Gamow-Teller resonances in nuclei.
Since the treatment of the space part of the axial current requires going beyond chiral
perturbation theory, we will not pursue this issue any further in this paper.

For convenience, we define an “axial-charge” operator M by#1!3

= 6 gA -~
Ar=0 = 1M (89)

#12This is the crucial point in using ChPT in nuclei that quantifies the general discussion given in Section

2. Since this point is often misunderstood by nuclear physics community, we would like to stress it once
more although to some it may sound obvious and repetitive. The chiral counting on which our analysis is
based is meaningful only if %2 << 1 where @ is the characteristic momentum or energy scale involved in the
process. Therefore ChPT cannot describe processes that involve energy or momentum scale exceeding that
criterion. This means that processes probing short-distance interactions are not accessible by finite-order
ChPT. In particular two-body currents describing an internuclear distance ri2 < 0.6 fm cannot be probed
by the expansion we are using. We argued before — and will make use of the fact — that there is a natural
cut-off provided by short-range nuclear interactions that go beyond the strategy of ChPT which allows a
meaningful use of the small @ expansion.

#13The operator M is an isovector but in what follows we will not explicitly carry the isospin index.
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We decompose M into M = My,... + Moo, where My, denotes the axial charge operator
coming from the one-pion-exchange tree graph (i.e, the soft-pion term) and Mj,,, is what

comes from loop corrections. Further we decompose M, into
Mloop - M17r + M27r (90)

where My, denotes the loop correction to the one-pion-exchange axial charge operator
(also referred in the literature to as “seagull graph”) and My, the contribution from two-
pion-exchange graphs and tree graphs involving four-fermion contact terms with counter-
term insertions. We will later argue that the latter does not contribute. One-loop graphs
involving four-fermion contact interactions, while allowed in the relevant chiral order, do

not however contribute either.

6.1 Results in momentum space

As stated above, the non-zero contributions to the time component of the axial cur-
rent come only from the graphs that contain a J,m#NN vertex. The tree seagull graph
supplemented with a vertex form factor — and properly renormalized — leads to#!*

A 4 A =if A gy Sy — FV () + (165 2) (01)

tree 1r — 471 22F2 a2 2 M2 _ q% 1 ¢
where Y is the Dirac isovector form factor of the nucleon. To the order considered, there are
no further corrections. The present formalism allows us to calculate within the scheme the
form factor Y. The tree-graph (or soft-pion) contribution corresponds to taking F} = 1.
The difference (F) — 1) is given by Figs. 5(a) — (f). Taking & — 0, we encounter two

spin-isospin operators,

TW = _2if x Fq-S1 4 (10 2) ~ify X B 7 (51 + 62), (92)
TO = 2f+7) [q- 52,5 Sl + (1 ©2) ~i(fi +7)§- 61 x & (93)

with ¢* = ¢4 ~ —q;'. With the help of these operators, we can rewrite (91) as

1 vV
My =-T" M= 2 [F1 (4*) - 1} (94)
with Mtree = —T(l) M+_{12
As for two-pion-exchange and four-fermion contact interaction contributions, the rel-

evant diagrams are those given in Fig.6(a) — (k) and their symmetrized ones. Before going

#11We denote particle indices by i = 1,2 without expliciting heavy fermion fields. For instance, S; should be
understood as the spin operator sandwiched between B, and B, of particle 1 with velocity v. In this section,
¢ is the four-momentum squared of the pion but we are concerned with the situation where ﬁl—ol << 1, so
the static approximation ¢*> ~ —|q|? will be made in practical calculations and also in Fourier-transforming
to coordinate space later. In fact, the static approximation is not only natural for the chiral counting but

also essential for suppression of n-body forces and currents for n > 2. More on this later.
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into any details, one can readily see that each graph in Fig. 6 contributes a term of at least
O(@Q). This can be shown both in the conventional method and in HFF by observing that
their contributions vanish if we set M = ¢/ = k* = 0. This assures us that our counting
rule is indeed correct. Therefore we can neglect all the graphs proportional to S* since the
axial-charge operator involves S° ~ O(Q/my) as stated before. Figures (f), (g), (h) and
(7) belong to this class. Now Fig. (e) is identically zero because of the isospin symmetry
and Fig. (7) is proportional to v -S = 0. The graph (k), involving time-ordered pion
propagators, are the so-called “recoil graphs” [4] which as we shall argue in Section 8 will
be cancelled by similar recoil terms in reducible graphs. So we are left with only the four
graphs (a), (b), (c) and (d) to calculate. Without any further approximation than using
HEFF, the full expression of the four graphs comes out to be

Ala) = —(27 —if) X 7o) 89% (v" ¢z 5); fola3),

Av(b) = (27 + 7 X 7o) 8% (g2 Sv"), folgd),

Ab(e) = (=27 — 27 +iF X 5)% (0" 5%), (575"), Tnas(a2),

A’“‘(d) = (271 + 275 4471 X 7'2)2;4 (S*wH), (S”S’B)ny@g(qg), (95)

with fo(¢?) given in detail in Appendix B and I, ,5(q) defined by

_ (L+ q@)ulals
Lo (@) _/zv-lv'(l—l-Q) (12— M?) [(I+q)? = M?]

This integral is evaluated in Appendix E. Using the conditions v - ¢; = 0 and k* ~ 0, we

(96)

can rewrite them in a symmetrized form

- vH .
Afa+Db) = = 89% {KO(QQ) — 1671-277} 70, (97)
- vH 3 . .
Fetd) = —m 15%4 {[-(d=1)167% + 3Ko(¢?) + 2K1(4?)| T
8 [Ko(¢?) - 1622 T},
- . 9a_ (10 (2) (2
A, = 16F1 (0T + dIT®) (98)

where ¢* = %(qg — q1)* and {A“} is the contribution from the counter-term Lagrangian
cT
(46). The K;(¢q?) are finite pieces of the functions f;(¢?) defined in Appendix B, i.e.,

Kolg ):/1 dz1In [1—2(1—2)]?;2] ,

1—2)
Ki(q / domr o e

The expressions (97) and (98) contain smgulalltles in 7, which are removed by the counter

term contribution with
dV) = s+ [(d-1)gd - 2|,
Y = kP —sgin (99)
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where the renormalized constants k4’s are finite and scale-independent.

The resulting two-body axial-charge operator including finite counter-term contribu-

tions is
1 395 -2 . 1, ,
Ma = 5o { l_ 2—Ko(q") - 593&1(&)1 7 +ngfgo(q2)7(2)}
- g (T 4+ 7). (100)

The two-body axial-charge operator due to loop correction is then the sum of (94) and (100)
Mloop :le+M27r- (101)

As it stands, the constants k4’s are the only unknowns in the theory as they cannot be
determined from nucleon-nucleon interactions as mentioned before. They could in principle
be extracted from two-nucleon processes like N+ N — N+ N+ but they appear as higher-
order corrections and it is inconceivable to obtain an information on these presumably small
constants from such processes. However as argued above, we expect the constants mff) to
be numerically small and what is more significant, when we go to coordinate space as we
shall do below to apply the operator to finite nuclei, they become § functions and will be
completely suppressed as we discussed in Section 2. In momentum space, such constant
terms have also to be removed as done for the celebrated Lorentz-Lorenz effect (or more
generally for the Landau-Migdal g§) in pion-nuclear scattering [22]. It should be stressed
that once the constant counter terms are removed, no unknown parameters enter at next to
the leading order in the chiral expansion in nuclei. 1t is also noteworthy that to the order

considered, the loop contributions are renormalization-scale independent.

6.2 Going to coordinate space

Applications in nuclear transitions are made more readily in configuration space.
Furthermore considerations based on ranges of nucleon-nucleon interactions which seem
necessary for rendering chiral symmetry meaningful in nuclei are more transparent in this
space. Therefore we wish to Fourier-transform the operators (97) and (98) into a form
suitable for calculations with realistic nuclear wave functions. In doing this, we will treat
the pion propagator in static approximation, namely, ¢*> ~ —|q|%. In Appendix B, we show
how the highly oscillating integrals involved in the calculation can be converted into inte-
grals of smooth functions by performing the Fourier transform before doing the parametric
integration. Since the spin-isospin operators 7(!) and 7(2) contain ¢ which is a derivative

operator in configuration space, it is convenient to define

T = T X Ty T (31-1- 32)7
T = F+7)f (01 x03). (102)
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Writing Egs.(94) and (100) in coordinate space which we will denote by M to distinguish
from the momentum-space expression, we obtain — modulo § function terms mentioned

above — the principal result of this paper:

. oy d 1
— (> (. - —Mr
Miree(r) T dr[ pp— ], (103)
- M2 .
-Mlﬂ'(r) = CgRﬁMtree
TO d [ 1434 - 2 [ -
+ WE{—T{I&O(r)—lﬁo(r)}—l—(Q—}—élgA) |[Ka(r) = Ka(r)] ¢,
(104)
- 1 d 392 —2 1, - s
Ma(r) = oy, {— [ATKO(T‘) + 59311‘1(7“)] AREE 293130(7“)7(2)} , (105)
Migop(r) = Myp(r) + Mo (r). (106)

As defined, M, are nm exchange corrections to the soft-pion (tree) term. M, is therefore
the total loop correction we wish to calculate. The explicit forms of the functions K;(r)
and K;(r) are given in Appendix B.
As noted above, the constant ¢§ can be extracted from the isovector Dirac form factor
of the nucleon, i.e.,
v
F? 6

It is interesting to separate what we might call “long wavelength contribution” from M.,

(r3Y ~0.04784. (107)

Miz(r) = 840t Mipee(r) + (short range part)

where

M? M? 1+ 345 T 17 T
Bsopt = cgjﬁ + l JA (2 - —) — (14 24¢%) <— - —)] ~0.051 (108)

1672F2 | 2 V3 9 3

and compare this one-loop prediction for d,¢; #15 to what one would expect from the

phenomenological dipole form factor
A2\’
Vi 2y _

with A = 840 MeV. This form factor leads to the following one-pion exchange contribution
to Migep, corresponding to (104):

~dipole F M2 A2 ?
M = T {47r967rY1($w) KW) B 1}

#15]t is worth noting that this contribution is generic in the sense that it is more or less model-independent:

It is of the same form and magnitude whether it is given by chiral one-loop graphs or by the vector dominance
(see Appendix I) or by the phenomenological dipole form factor. This may have to do with the fact that
it is controlled entirely by chiral symmetry. It is curious though that this longest wavelength effect is an

enhancement rather than quenching usually associated with form factors.
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11 A2 A2 N\r1oA
S () (L S . L am— e I D T B!
47 Q(AQ—MQ) +(A2—M2) <r2+r) ¢ (110)
Identifying the first term of (110) with the first term of (104), we see that d,,f; corresponds

to

X

It is remarkable — and pleasing — that the one-loop calculation of d,,¢; is so close to the
empirical value. Furthermore the remaining term in (104) involving the functions K| cor-
responds — and when applied to the process of interest, is numerically close — to the second
(short-ranged) term in (110).

7 Numerical Results

In order to get a qualitative idea of the size involved, let us first look at the magnitude
of the relevant terms given in momentum space. For this purpose we set ¢* ~ —|q|? ~ —Q?,
where () is taken to be a characteristic small momentum scale probed in the process which we
take to be of order of m, at most. For convenience we shall factor out the tree contribution

from the expression (101) and write it as
M = Miree(1+ 6y +0(Q%)) (111)

where 4y is the chiral correction of O(Q?) that we have computed (relative to the tree
contribution). We obtain

6M - 617r + 627r

where, setting (7(1)) = (7)) in nuclear medium #16 and dropping the r4’s #17

2 9 1+ 3¢%2 1+2%

4F? 3

Q*+ M? [5¢%5+2 . 9i
Oor & — K — 2K . 112
2 4F2 1677-2 O(Q) 87T2 1(@) ( )

For Q ~ m, =~ 140 MeV, g4 = 1.25 and F ~ 93 MeV, we get
|61 ~ 0.045, |89 ~ 7.5 x 1072, (113)

This is consistent with the notion that at the relevant scale @2, the chiral correction remains

small.

#160ne can show in fermi-gas model, Wigner’s SU(4) supermultiplet model or even jj-coupling shell model
of nucleus with one particle outside of closed core, (T(1)> = (T(2)>. This relation will be assumed in all
numerical calculations that follow. We would like to thank Kuniharu Kubodera for his help on this relation.

#1"Dropping the constant terms in momentum space is not fully justified unless all other terms of the same
nature are removed as well. This problem is avoided in coordinate space. We give only the absolute values

for the é,,» for the same reason. See below for more on this matter.
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We now turn to a more realistic estimate of the chiral correction appropriate to the
actual situation in finite nuclei. Calculating nuclear transition matrix elements in momen-
tum space is cumbersome and delicate. There are several reasons for this. The most serious
problem is the implementation of the short-range correlation. In the well-studied case as
in the m-nuclear scattering, we know how to proceed, obtaining the celebrated Lorentz-
Lorenz effect. Roughly the argument goes as follows [22]. Consider a term of the form
7 /(G + M?) that figures in the p-wave pion-nuclear scattering amplitude, or more specif-
ically in the interaction between the particle-hole states excited by the pion. Rewrite this
as 1 — M?/(¢® + M?). Removing the constant 1 corresponds to suppressing a § function
in coordinate space and leads to the Lorentz-Lorenz factor. Note that this procedure of
accounting for short-range correlations can even change the sign. Unfortunately our case
does not lend itself to a simple treatment of this kind because of the nonanalytic terms
coming from the loop contributions: there is no economical way of “removing ¢ functions”
from them. This task is much simpler and more straightforward in coordinate space.

Let us therefore turn to the coordinate space operators (103) and (106). In Fig. 7, we
plot My, ce (103) and Mloop (106) as function of the internuclear distance r = |7; — 7| setting
T = 7(2) = 1. Some of the important features discussed in the preceding sections can
be seen in this plot. While negligible at large distance, say, r > 1 fm, the loop corrections
get progressively significant at shorter distances and at r ~ 0.4 fm, they are comparable to
the soft-pion result. There is nothing surprising or disturbing about this feature at short
distances. At shorter distances which are probed by the momentum scale approaching
the chiral scale, there is no reason to ignore the degrees of freedom integrated out from
the theory. Low-order calculations with higher chiral-order degrees of freedom eliminated
cannot possibly describe the short-distance physics properly. This may be construed as a
sign that ChPT is not predictive in nuclei. We claim that this is not so. The point is that
as long as the scale () probed by experiments is much less than the chiral scale, truncating
higher chiral-order and shorter wavelength degrees of freedom as done in ChPT can be
meaningful provided short-range nuclear correlations are implemented in the way discussed
above.

Calculations of the nuclear matrix elements with sophisticated wave functions in
finite (light and heavy) nuclei — and comparison with experimental data — will be made
and reported in a separate paper. Here for our purpose of getting a semi-quantitative
idea, the fermi-gas model as used by Delorme [23] will suffice. One could incorporate
accurate correlation functions — and this will be done for specific transitions in finite nuclei.
Here we will not do so. We shall instead take the simplest correlation function, namely
g(r,d) = 8(r — d) with the cut-off distance d ~ 0.7 fm as used by Towner [24]. Since this is
a rather crude approach, we will consider the range of d values between 0.5 and 0.7 fm.

Specifically we are interested in the ratio of the matrix elements (M;,op)/(Miree)
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which in fermi-gas model takes the form (see Appendix H)

(Miss) _ [ drr [ () My 1)
(Miree) [ drr [ (ppr)]2 Mipee(r)

k(d, p)

(114)

where p and p = %pg’ are, respectively, the fermi-momentum and density of the sys-
tem, ji(z) = S;# — 2 and Migep(r) = Mix(r) + Mag(r). Note that w(p,r) =
Amr [y (per)]? /2 can be viewed as a weighting function. Since this calculation is straightfor-
ward, we shall not go into details here. For completeness, however, we sketch the calculation
in Appendix H.

In Fig. 8 are plotted the functions w(pe, ) M ree(r) and w(pe, 1) Moop(r) with T =
73 =1 for po ~ 1.36 fm™! corresponding to nuclear matter density. The ratio R(d, p) is
plotted in Figure 9 for d = 0.5, 0.7 fm. For d = 0.7 fm which was used by Towner[24],
the loop correction is at most of the order of 10% of the soft-pion term at nuclear matter
density. There are two important points to note in the result. The first is that separately
the loop corrections to the one-pion term (i.e, Mi,) and the two-pion term (i.e, Mq,) can
be substantial but the sum is small. The second point is that the resulting loop contribution
has a remarkably weak density dependence. The first is a consequence of chiral symmetry
reminiscent of the tree-order cancellation in linear ¢ model of the nucleon pair term and
the o-exchange term in the S-wave m N scattering amplitude. The second observation has a
significant ramification on the mass dependence of axial-charge transitions in heavy nuclei

to which we will return shortly.

8 Other Contributions

Here we briefly discuss what other graphs could potentially contribute and the reason
why they are suppressed in our calculation. Consider the two-body graphs given by Figure
6(k) where the pion propagators are time-ordered. They belong to what one calls “recoil
graphs” in the literature [4]. To O(Q?) relative to the soft-pion term, these graphs — and
more generally all recoil graphs including one-pion exchange — do not contribute. The reason
is identical to the suppression of three-body forces as discussed by Weinberg[9]: the graphs
in Fig. 10 are exactly cancelled by the recoil corrections to the iterated one-pion exchange
graphs that are included in the class of reducible graphs. Thus to the extent that the static
approximation is used in defining the one-pion exchange potential, these graphs should not
be included as corrections. Incidentally this justifies the standard practice of ignoring recoil
graphs in calculating exchange contributions in both weak and electromagnetic processes
in nuclei.

We have ignored in our calculation three-body and higher-body contributions such
as Figure 11. The reason for ignoring these graphs is identical to that used for proving the
suppression of three-body and other multi-body forces [9]. As in nuclear forces, they can
contribute at O(Q?) relative to the soft-pion term[8].
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An interesting question to ask is in what situations the approximations that justify
dropping the graphs considered here break down in nuclei. It is clear that the static ap-
proximation — one of the essential ingredients of the heavy-fermion formalism — must break
down when the energy transfer involved is large. Imagine that one is exciting a A resonance
in nuclei by electroweak field. The energy transfer is of the order of 300 MeV, so the static
approximation for the pion propagator involving a 7AN vertex cannot be valid. In such
cases, one would expect that multi-body forces and currents suppressed in this work could
become important. This suggests specifically that in electron scattering from nuclei with
sufficiently large energy transfer, n-body currents (for n > 2) will become progressively
more important in heavier nuclei. Combined with the dropping mass effect (i.e, “Brown-
Rho” scaling mentioned below), one expects a large deviation from the standard mean-field

description used currently.

9 Conclusions and Discussions

We have used heavy-baryon chiral perturbation formalism to calculate the leading
corrections to the soft-pion axial-charge operator in nuclei. Exploiting short-range suppres-
sion of the counter terms and other short-range components of the two-body operator, we
have shown that the chiral filter mechanism holds in nuclear matter with a possible uncer-
tainty of no more than 10%, thus confirming the dominance of the soft-pion exchange. In
a separate paper, we will show that the same holds in electromagnetic responses in nuclei.
Since the currents (both vector and azial-vector) are calculated consistently with the symme-
tries involved, they are fully consistent with nuclear forces that are calculated to the same
chiral order: Ward-Takahashi identities will be formally satisfied although in practice ap-
proximations made for calculations may disturb them. The final consistency will of course
have to be checked a posteriori case-by-case.

Taking this result as a statement of chiral symmetry of QCD in nuclei, what can one
learn from this concerning the phenomenological models popular in nuclear physics where
one uses exchanges of all the low-lying bosons in fitting nucleon-nucleon scattering (such
as the Bonn potential) as well as calculating the exchange currents? Suppose we denote
the axial-charge two-body operator from one-pion exchange with form factors by Ay, one-
heavy-meson exchange with form factors by Ay, the axial current form factor by App, all
calculated within a phenomenological model, then our result implies that for the model to

be consistent with chiral symmetry, then the total must sum to
Atotal:A17r‘|’AH+AFF+"'zAsoft(l‘}'(s)a |5| <<'1 (115)

where A,z is the soft-pion term as defined in this paper and ¢ is the next-to-leading term
of O(Q?). Our calculation illustrates how individually significant terms conspire to give a

small O(Q?) correction which is insensitive to nuclear density.
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One other outcome of our result is that while a subset of graphs can have a substantial
density dependence, the small net chiral correction from the totality of the graphs does
not have an appreciable nuclear density dependence, at least in fermi-gas model. We see
no reason why this weak density dependence should not persist in more realistic nuclear
models. Thus assuming that n-th order chiral corrections for n > 3 (relative to the leading
soft-pion term) are not anomalously large, we come to the conclusion that meson-exchange
axial-charge contributions to nuclear matrix elements cannot be substantially enhanced in
heavy nuclei over that in light nuclei. The question arises then as to what could be the
explanation for Warburton’s recent observation that while the mesonic effect is about 50%
in light nuclei, it is required to be 100% in heavy nuclei such as in lead region [25]. One
suggestion [26] was that the parameters of the basic chiral Lagrangian have to be modified
in the presence of nuclear matter consistent with trace anomaly of QCD [27]. Tt predicted
that hadron masses and pion decay constants that appear in the single-particle and one-
pion exchange two-body operators are scaled by a universal factor ® that depends on matter
density. Another suggestion [24, 28] was that exchanges of heavy mesons o, p, w, a1 etc could
become important in heavy nuclei while relatively unimportant in light systems. The latter
mechanism relied on nucleon-antinucleon pair terms in phenomenological Lagrangians. Both
mechanisms seemed to qualitatively account for the enhancement.

We wish to understand the possible link, if any, between the chiral Lagrangian ap-
proach and the phenomenological approach that includes pair terms involving heavy mesons.
Since within the chiral approach developed in this paper the pair is naturally suppressed
as required by chiral symmetry and multi-body currents are also suppressed as discussed
above, the scaling mass effect of [26, 27] is the only plausible mechanism left within low-
order chiral expansion for the medium enhancement noted by Warburton. Needless to say,
we cannot rule out — though we deem highly unlikely — the possibility that higher order chi-
ral terms supply the needed density effect. Incorporating the possible 10% loop correction
calculated above in the two-body operator and the scaling factor ® = m};/muy ~ 0.8, one
gets in the scheme of Ref.[26] the enhancement in heavy nuclei (at nuclear matter density)
eéupc & 2.1 which is reasonable in the lead region compared with the experimental value
2.01 4 0.05 [25]. Within the scheme, this is the entire story and a surprisingly simple one.
Of course more detailed finite nuclei calculations will be needed to make a truly meaningful
test of the theory.

In the phenomenological approach studied by the authors in [24] and [28], there is no
fundamental reason to suppress NN pairs, so that heavy mesons could contribute through
the pair term. However the exchange of heavy mesons, particularly that of vector mesons, is
suppressed by short-range correlations in nuclear wave functions. Furthermore in the model
of Towner[24], a large cancellation takes place in the sum such that the relation (115) seems
to hold well[29]: Towner finds § < 10% over a wide range of nuclei. It is naturally tempting
to suggest that Towner’s model gives a result close to ours because it is consistent with chiral

symmeltry, at least to the same order of chiral expansion as ours, with higher-order terms
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implicit in Towner’s model which need not be consistent with ChPT somehow cancelling
out#!8. There is however one aspect that needs to be clarified: in the models of [24] and [28],
there is a pair term associated with a scalar meson (o) exchange. In the chiral Lagrangian
used in this paper, there is no equivalent scalar field. We have however the scalar field y
associated with the trace anomaly of QCD which plays a role in the Brown-Rho scaling[27].
We believe that these two effects are roughly related in the sense discussed in Ref.[30].
In this sense we would say that the pair term involving the ¢ meson is simulating the
density-dependence of the nucleon mass in the one-body axial-charge operator. There is no
mechanism in Ref.[24, 28], however, for the density dependence of Ref.[26] in the two-body
operator. We suggest that this can be generated by taking three-body terms with an NN
pair coupled to a o-exchange.

An obvious omission in our treatment of the axial current is the space component of
the current governing Gamow-Teller transitions in nuclei (and the time part of the electro-
magnetic current in [14]). The reason for this was already stated at several points in the
paper: this part of the current is not dominated by a soft-pion exchange and indeed as noted
many years ago [21] it is rather the very short-ranged part of nuclear interactions (roughly
equivalent to the removal of the ¢ functions associated with the counter terms in the spin-
isospin channel) that plays an important role, e.g. in quenching the axial-vector coupling
constant from the free-space value g4 = 1.25 to ¢% =~ 1 in nuclear matter. (For a simi-
lar situation with the isoscalar axial-charge transition mediated by a neutral weak current
where soft-pion exchange is forbidden, see Ref.[31].) Furthermore, three-body operators for
the space component of the axial current may not be negligible. For instance, as one can
see from Appendix A, the three-body Gamow-Teller operator involving one nucleon with an
A,mm NN vertex with the pions absorbed by two other nucleons is not trivially suppressed
as it is for the axial-charge operator. This suggests that low-order chiral perturbation the-
ory may have little to say about this aspect of nuclear interactions. It is intriguing that in
nuclei, both chiral and non-chiral aspects of QCD seem to coexist in the same low-energy
domain. This makes QCD in nuclei quite different from and considerably more intricate
than QCD in elementary particles studied by particle physicists.

Finally we mention a few additional issues we have not treated in this paper but we

consider to be important topics for future studies.

e It would be interesting to see what two-loop (and hopefully higher-loop) and corre-
sponding chiral corrections do to the chiral filter phenomenon. Two-loop calculations
are in general a horrendous task but the situation in nuclear axial-charge transitions

(8)

#18The following observation may be relevant to our argument that the counter terms s’ must be ignored.

Suppose one constructs a purely phenomenological theory based on meson-exchange picture by fitting ex-
periments but conform to the symmetries of the strong interactions. Towner’s model is one such example.
One can convince oneself that in such a model, it is not possible to generate counter terms of the k4 type in
infinite mass limit. Therefore if such terms existed, then they must be due to degrees of freedom that are

not relevant at the accuracy required.
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might be considerably simpler than in other processes.

e It would be important to see whether ChPT is predictive for processes involving larger
momentum transfers as well as large energy transfer. IFrom our experience with the
electrodisintegration of the deuteron at large momentum transfers where the naive
soft-pion approximation seems still to work fairly well, we conjecture that the chiral
filter mechanism holds still in some channels even in processes probed at shorter
distances or at larger momentum transfers. But as mentioned above, large energy

transfer electron scattering might require multi-body currents in heavy nuclei.

e In this paper, we worked with an effective Lagrangian in which all other degrees of
freedom than pions and nucleons have been integrated out. It would be important to
reformulate ChPT using a Lagrangian that contains vector mesons incorporated a la
hidden gauge symmetry (HGS) [32]#!° and also nucleon resonances (such as A). As
mentioned before, we believe that the chiral filter argument presented in this paper
is not modified in the presence of these resonances in the Lagrangian. In Appendix
I, we show that the presence of vector mesons does not modify our prediction on the
axial-charge operator. Furthermore it is not difficult to see that the baryon resonances
— in particular the A resonances — do not contribute to the axial-charge transitions
to the order considered. However as is known for Gamow-Teller transitions in nuclei
[21], certain processes in nuclei might require, even at zero momentum transfer, an
explicit role of some of these heavier particles. As recently shown by Harada and
Yamawaki [34], vector mesons introduced via HGS can easily be quantized, so their

implementation in ChPT would pose no great difficulty.

e A systematic higher-loop chiral perturbation approach using the same heavy-fermion
formalism to kaon-nuclear interactions and kaon condensation has not yet been worked
out. This is an important issue for hypernuclear physics, relativistic heavy-ion physics

and stellar collapse [35].

e Finally if the parameters of effective chiral Lagrangians scale as a function of nuclear
matter density as suggested by Brown and Rho[27], then one expects that as matter
density increases, many-body currents will become increasingly important even at
small energy transfer. This was already noticed in [26] where the soft-pion exchange
charge operator became stronger in heavier nuclei. We already noted that this effect
will show up more prominently in nuclear electromagnetic responses with large energy
transfer. Future accurate experiments in electron scattering off nuclei will test this
prediction. Of course this issue has to be treated together with many-body forces that

enter into such processes.

#19 A5 stressed by Georgi, the HGS is an approach most suited to a systematic chiral counting when vector

mesons are explicitly present. See [33].
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Appendix A: Chiral Lagrangian Eq.(22) Expanded

For completeness we expand Ly in powers of the pion field and in external fields. We will

group Lo by the number of external gauge field, Lo = £+ L + L2,

1, . 1, | M?* [/ _\2
£ = 50 g = g [F0,7 07— (70,7 + g (7°)
+ Biv-0B
_ vH 1
+B{_m;.ﬁxaﬁ_%‘su;. [aﬂﬁ+m (77 aﬁ—aﬁﬁ?)]}B
1 _ 2
- 5Ca (Br.B) +-, (A1)
; 1 - 2
cl = w.[ﬁxaﬁ—mﬁxaﬁﬁ? — FA¥ [(’)ﬁ—m 077 — 7 aﬁ)]
LB (4%, 4 245" 4,) - |74 — (777 - 77| B
—|—§ (v w294 w) T—|—2—2( T T —TT
1— - - 1. . . ..
—I—§B (U“Aﬂ-l-?gAS“Vu)'[fTX”—GﬁTXWTQ B+ (A.2)
1 ™ ~ 17, = ™ = 13 - T
L3 = SPPAAFFVx &+ [# (V- &) - (FV)2+ 7 A)7] +--. (A3)

Ar = —F [aﬁ 3%(0#7?7?2—7?7? a,ﬁ)]
1 —B{ngS“ [F+L(ﬁf 7?—772)] + oH [—Txﬁ N 7?7?2]}8—1—
212 F GF3 ’
(A.4)
Ve = |7#x0,7 ;ﬁﬁxaﬂﬁﬁ]
+1§{uﬂ [F+L 77 7?—7?7?2)]+29AS“ —Fx 7 foﬁﬁQ]}BJr
2 2F2 F e
(A.5)

Appendix B: Functions f;(¢?)

The functions f;(¢%) (i = 0, 1,2, 3) figuring in subsections (5.4.2) and (5.5) are defined
by
1
2y _
O o T

1 2 2 _ (l+ Q)al
§9a6f1(q )+ aaqsfa(q”) = /1(12 - M?) [(l+qﬁ)2 — M?]

@) = 256+ 5ho(d) (B.1)
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where we have defined f3(¢?) through

/1(12 _ ]\/[l;)(?(llt_qq))i — M7 = gaph ((12) + QaQBfS(QQ)- (B.2)

Here and in what follows, the mass M could be thought of as the pion mass M. One can

verify that

9 2
Jg;g ) = f2(92)-

After performing the parametric integration, we have

fol@®) = n— WKO((f),

A = A0 =1 i) - Lke?)]

1\q = 69 16 3 2 5 1to al,

) = —g + @KQ (%),

) = 41 [2Rale?) - 3K (B.3)

where

1 M2\
= r
T () (47ru2)

and K (q?)’s are finite functions given explicitly by

1 2 1
Ko(g?) = /dzln l1—ﬁ(1—z)]\qp] = —2+40ln (Zfl) (B.4)
z(1-2)q 2 -1 o+1
Ki(g) = /d = 1- 1( ) B.
1(e”) ZMQ—zl—z) 26 \o—1)’ (B-5)
2
Ky(q?) = /dzz (1—2)In [1—2(1—2)]\(22]
4 o o(3-0? o+1
= gttt hl(a—l) (8.6)
with )
4M2_q2 2

We should note that all the functions given above are positive definite for negative ¢? and

vanish when ¢? = 0. For —¢? <« M?, we have
i i 1 — 2 4
Ko(¢®) = Ki(g®)=- 5 +0 (q—) 7

i 1 _q2 q4
Kalg') = @W+O<W -
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In the chiral limit (—¢? > M?), they simplify to

Ko(¢*) = - =2
Ki(d*) = 1,

. 1 ¢ 5
Iﬁg(qz) = EIHW — E

In order to go to the r—space, we must Fourier-transform K;(¢*) and M?/(M?* —
¢%) K;(q?). This involves an integration#20 of highly oscillating functions. Instead of in-
troducing a regulating function which kills contributions from large ¢ and performing a
tricky numerical calculation, we transform the problem into an integral of a smooth function
with the use of residue calculation. The point is that we do the parametric integration (of

variable z) at the last step. To see how this work, let us rewrite K;(¢?),

1 2
1(0(_@2) = /0 dz In (1 + %) y
_ B 1 ’ Q2
Ki(-Q%) = /0 Y

_ 22 2
Ka(—Q?) = /01 do in (1+%). (B.8)

where Q = |q] = /—¢* and £ = E(z) = 2M/y/1 — 22.#2! First we Fourier-transform
algebraically the integrands of the above integrals and then do the parametric integral
numerically. The Fourier transform of Ky becomes an elementary residue calculation with

a pole at QQ = 1M,
1 1
Ki(r) = 8(r) — — / de B2~ Fr (B.9)
0

4mr
while Ky and K, are somewhat involved due to the logarithmic function. We rewrite the

logarithmic functions (of Kg and K3) into a simple pole form by integration by part

1 1— 22 Q? 1 212 1 z2 Q?
dz |1 | 1+ =] = d: 1, - — —| ——. B.1
/0 x [ 3 4 ] n ( + E2> /0 z 1 — 22 [ 3 4 12] Q2 + £2 ( 0)

With the above equation and

d3q tq-r Q2 A? 1 A2 9 _Ar Y B
/(%)3eq Q2+E2Q2+A2:mm(/\e — e ) (B.11)

we obtain the expressions for K (r, A) defined by

kit A = | éﬁ? G R (B.12)

QZ + A2’
#20Recall that Ki(qQ) does not go to zero when § goes to infinity.

#21'We have made the change of variable, & = 2z — 1, to render the expressions more symmetric.
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- 1 ! 2$2 A2 2 _—Ar 2 —FEr
Ko(r,A) = M/odml—xw\?—E? (A2e — p2emPr)),
Lot 227 (1 a? A?
Ko(r,A) = — [ do " (- -5 ) —— (A% - E%F7). (Ba
2(r,A) 471'7‘/0 T (4 12) g (Ve ). (B3

Here the parameter A is introduced to regularize the integrals near the origin of the config-
uration space. When A = oo, we get the expressions for the K;(r) needed in the paper,

Ki(r) = lim K;(r, A). (B.14)

A—oo
The above integrals are non-singular even near z = 1, since F increases so as to make the
integrals regular. However the expressions contain highly singular terms near the origin of

configuration space when A goes to infinity. To see this, note

Ko(r) = -1 | o B P4 lim A K(q = A7) e
d7r Jo 1—z? A=co 47T 7

and

1
lim — A% =§(r).
A—oco 47y

Now Ko(A?) goes to infinity logarithmically when A? goes to infinity. So, roughly, the
second term of (9) behaves in the limit of infinite A as

2

. A
Allgloo In Y 3(r).

The mathematical reason for this behavior is not hard to see : For large )%, both Ky and
K, increase logarithmically with a gentle slope. Thus they can be viewed as a constant at
large Q% with their value increasing to infinity. The constant behavior leads to the 4(r)
function. This term singular at the origin is of course “killed” by the short-range correlation
present in nuclear wave functions.

In terms of the function so defined, we can immediately obtain R}(r) defined by

- d3q M?
K;(r) = AT K (—Q?) ———— = K;(r, M). B.15
()= [ Gy ™ K@) gy = K, M) (B.15)
In summary we have the expressions for K;(r) (valid for r > 0)
1 1 222
K = —— [ d Eetr
o(r) Ay /0 T
1 1 22 1 2?
K = —— [ dz - = B B.16
2(r) 47rr/0 T (4 12) ‘ (B.16)

and the expressions for K;(r) (valid in the whole region)

- 1 ! 2$2 M2 2 —Mr 2, —FEr

Ko(r) = M/Od‘rl—x?M?—E? (MZe=Mr — ety

d 1 ! 2$2 1 $2 M2 2 —Mr 2 —FEr

I(Q(T') = m /0 dx —1 — $2 (Z — ﬁ) 7M2 — E2 (M [§ — F“e ) . (Bl?)
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Appendix C: Integral Identities

In this Appendix, we list some useful identities for the integrals we need to evaluate.

Consider the following integral without imposing the condition v? = 1,

l
2N [e]
IQ(U7M):[U.I(12_M2)7

then Lorentz covariance implies that its most general form is
I (v, M?) = va Io(v®, M?).
Now multiplying v to both sides, we get
A(M?) = v* (v, M)

/lw = LA, (C.1)

Using this expression, we obtain the following identities by successive differentiation with

respect to v,

/z(v : l)?l(azlf— M2 (“%B - E];;;@) A(M?) (C.2)
lalgly, _ VaUBVu  Vufop + Vagpu + VsGapu 2
/z (v-1)3 (12— M%) [4 (v2)3 (v2)2 A(M?) (C.3)

and so on.

Appendix D: Functions h(v - k)’s

In this Appendix, we define — and give explicit forms of — the function h(v - k) that
figures in the self-energy for the off-shell nucleon discussed in section (4.3). The basic one

is ho(v - k),

1
ho(v-k) =
o(v- k) /lv-(l—l—k) (12 = M?)
1 .1y
= 2yn+ W |:7TM* + 2y — 2M, sin (M)] ) for |y| <M, (D'l)
1 .1 —1 y) ; ~:|
_ L P 2 N >
2yn + 52 [Qy 2M sinh <M Oy — M)2ix M|, for |y| > M

(D.2)

where y = v -k, M, = /M? — 42, M = \/y? — M? and -5 < sin~!(z) < 5. We observe
that the imaginary part appears only when v -k > M. The even part of hg has a very

ni(y) = WD) _ L T (D.3)

42

simple form




For special values of y, we have ho(0) = —2L, h(0) = 2n, ho(M) = —ho(-M) = Ly,
The finite function Ao (y) is defined by
ho(y) = ho(y) — 2yn. (D4)
We now examine the function h(v - k) defined by
o = 9esh(v ) + v (0.5)
Vv (L+ k) (12— Mm2) — 9o Pabplie ) '
If we multiply the above equation by ¢®° and v®, we obtain the following identity
1
hy) = —— [y AM2) + (M? = y*)ho(y)] - (D-6)
Note that the even part has a very simple form,
h(y) + h(-y) 1 2
hS = = —— M2 —y?)? . D.
() . = (M =) (D7)
Let us define hz(v-k,v-q)
J i = Gapha(v- k.0 @)+ vav(-+)
l,U(l+k_q)v(l_l_k)(lQ_MQ)_ga,B?)v ,U-(q 'Uo/U/B
or .
hg(v-k,v-q):U—q[h(v-k—v-q)—h(v-k)]. (D.8)

When the nucleon is on-shell, that is, v-k = v-q = 0, then h3 becomes h3(0,0) = —A(M?).
More generally, for small momentum, we have

M —(2v-k—v-q)+< 77[ (v-k)2—3v-kv-q+(v-q)Q}—l—--- (D.9)

ha(v-k, v-q) = —A(M?) = £ —

where the ellipsis denotes finite and higher momentum terms. Finally consider h4(v - )

defined by

lols
= e h * o ). Dl
/z(v-l)Zv-(l—q)(IZ—MQ) gapha(v - q) +vavs(- ) (D.10)
The h4 is a somewhat complicated function,
h(—y) — k(0 A(M?
hty) = 2 ”2 @ , A0
Yy )
M 2

= +§ n+--- (D.11)

with h(y) given by (D.6) and the ellipsis again denotes finite and higher momentum terms.
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Appendix E: Integrals for Two-Pion Exchange Currents

Consider the integrals of the form
/ I’s
ro-(U+k) (12 = M?) [(14¢)* = M?]

which figure in two-pion exchange currents. For most of the cases, we do not need the terms

proportional to v as they appear multiplied by the spin operator S, and vanish. To utilize

this, we assume that the spin operator is multiplied to the numerator. Now we have

(I+q)> 1P _ N N i
/IU U+ k) (Z-M2) [((+q2-M7] [g f 1+ 2q qﬁan] Bo(k, q), (E.1)
(+a)"1° (20 +q)" O S A "
/zv (+k) - M) [(1+¢2-M] — (9 % +2q ‘I’Ba—qg) [¢" By (K, q) + v" Ba(k, q)]
+ (0" 9% + d°9°") Buk,a) + (a79”" — ¢°9°") Bo(k, q) (B:2)

where we have neglected terms proportional to v® or v°. After some algebra, we can get

the following relations,

¢*Bi(k,q) +v-qBa(k,q) = h(v-k) = h(v-k —v-q),
Ba(k,q) = fl(qZ) +v-q[Bo(k,q) — Bi(k,q)] — 2v - kBo(k, q).

When v -k =v-qg=0, they become elementary functions,

Bo(¢?) = —m%/oldz\/MQ—Z(l—Z)QQ,
Bl(qQ) - 07
Ba(¢®) = fild?) (E.3)

For small but nonzero momentum, they become

M 1
Bo(k,q) = —16—7T—|—<’Uk—§vq)77+’
v-
Bi(k,q) = an+...7
2 M 2 2 2 ¢
Bak,q) = AM) 4+ (20-k-v-q)— — [20-k)* =20 kv-g+-(v-q)2+ =|n
167 3 6
T (E.4)
For two pion exchange graphs, we need to evaluate
(l—}—q)ylalﬁ
Ly E/ . E.5
WP oo () (P = M) [+ 7 - M) (E-5)

In evaluating this function, we neglect terms proportional to v,, v, or vz because they
vanish when multiplied by $¥S%S%. With the parametrization explained in the text, we
have, in the limit of v-g =0,

1 9vq243

-2
o B ), (B6)

Laplq) = (—09ap + 40905 + 459va) [Ko(qz) - 167r2n} -

3272
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where K1(q?) is defined at (B.5),

Ki(q /dg 202 (E.7)

M? — z(1 - z)q?

For completeness, we also list results for vector currents for which we need the fol-

I+ q)2 18 (2l + q)*
/zv lvo-(I+q) (2= M) [(I+q)? - M?] (E.8)

We first look at its low momentum behavior,

lowing integrals

- 8M7rg - ("¢~ ¢" ")+ 0 (%) (.9)

In the limit of v - ¢ = 0, we have

/ (L4 q)*1° 2L+ g)*
V(v D)2 (2= M2) (1 +q)% — M?]

'U'M

_ af _ _ o B B« 2
= 87T( +2qq82)/dz\/M2 2(1-2) ( g qg“)fo(qXE-lo)

Again we dropped terms proportional to v® or v”.

Appendix F: Three-point Vertices (Figure 4)

In this section as well as in the next, we classify graphs into Class A, Class V and
Class AV. The graphs in Class V appear only with the vector current while the graphs
in Class AV appear both for the vector and axial-vector currents. The graphs in Class
A involving the axial-vector current do not figure in three-point vertices. We define two
operators for the graphs in Class AV: T]' = v* and Ty = 2¢g45*. We write the expressions
only for the axial-vector current for graphs in Class AV. The expressions for the vector
current is obtained by interchanging T}" and Tj'. Fig.4c and 4d vanish because they are

proportional to v - S.

Class AV#22

i@ = 2T Ao, (F.1)
a Tll
yyn () = 5 }q;AQ SaT3' Sahs(v-k,v-q), (F.2)
‘a g
iayn(a) = 3;3Taq SA(M?), (F.3)
d—3 Iy
ivn () = ——Taq- S Tyhs(v-kv-q), (F.4)

#22The figure label a,b, c... is given in the parenthesis.
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Class V

Yanle) = 2;2 { “filq )-I-v-qqﬂfs(qQ)L (F.5)
M) = 23 { [55 426097 505 0 Balha) + 0" Bath, )

+{Q'S7Sﬂ}B1(k‘7Q)+[ 'S7SH]BO(k7Q)} (FG)

Lyec(e) = ieabc(qc—qb)“gA%Z), (F.7)

My (h) = @'eabc% [~ (0 — @) Fi(62) + d (4 — 4}) fo(a2)] (I.8)

Here the index a labels the isospin of the photon with four-momentum g¢,, the indices b and

¢ the isospin of the pions with their momenta ¢, and ¢. and the momentum conservation is
Qo+ @+ q. = 0.

Appendix G: Four-point Vertices (Figure 5)

Here we define ¢ = ¢” + ¢'. For other notations, see Appendix F. Figures 5(i) — (n)
vanish because they are proportional to v -S. Here we restrict ourselves to the case of

on-shell nucleons, v-k=v- (¢, + @) =

Class A
w,ab 1
1—‘7rA ((l) = 2F36abCTCIU fl( ) (Gl)
,ab . 2 8
FiA (b) = —Z(Sab(QQa+6Qb) 3F3 [S S+2( S) 8—:| Bo( )
2
~CabeTe T {vﬂ [S'S+2(q-5) ]f( ) + [q-S7S“]Bo(q2)},
(G.2)
Class AV
b 5 T
PEEe) = e AGM?), (G3)
2
reeb(d) = 2‘%6@” S.TIS™ A(M?), (G.4)
vtet ) = g 40000 B (0 00) + eaners [AOM?) = 20 b (0]},
(G.5)
3
Fiﬁb(g + h) = (_3i5ab + eabcTc)ég%Sa qp - ST“ Se h4(’U ) qg)
+(_3i6ab — €gbceT, u) S TQM Ul S8 h4( v qa)7 (G6)

213
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Class V

— (20845 — €apeTe) /l I _lAjz()QE(Z__qJ;Z — M?]}’ (G.7)

) = pish [ S G
where

Bolg?) = 16”/ dz\/M? = =(1 - (G.9)

B a) = 3lho(v-g) +ho(—v- )] = —8% Mg (G0

Wi a) = 5 lho(v-q) — ho(~v-q)]. (Gu11)

Now we study low-momentum expansion for on-shell nucleons with v-k=v-(q. + @) =

To second order in external momentum;

Class A
a 1
Fﬁ;lb(a) = 9F3 Sz EabeTe U |:A(M2) — QQQ + .. :| ,
o) = _igab(9a+3qb)”ggM/
2
~€abeTe oz {v“S SA(M?) — v“g {S - S q¢? _}_2((].5)2} —[q-S,S"] M’}
+ ...
Class AV
,ab 5 T'u
i (o) = _E€abcTcF_13A(M2)7
2
reild) = ;’F,Sfabcr S.TI'S™ A(M?),
w,ab _ ) )
et f) = 4F3{ 8100y v+ gu M’ + €aper, L{A(M)—Ll(v.qa) w},

3
Fmab(g + h) = ( 31045 + 6abcTc) 291;, Sa qb - S TM S I:M/ el A/ 77:|

2
—|—(—3i5ab—6abc ) S T;qb S S« |:M/—§v %77]+

282
Class V
a ga
Fi’vb(o—}—p—l— q) = BV (410, M'S* + €4peTe(SPv - qo + V7 q0 - S)] + - - -,
M) = —mab—{ 20" M'Soqy - S S — (qa-Sqp-S5" — S qy-Sqq-S)n}
4o
We have used the notations M’ = 2L and = L (%) B ['(e).
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Appendix H: Fermi-Gas Model for Two-Body Axial-Charge
Operator

Let |F) be the ground state of Fermi-gas model whose fermi-momentum is p- and
[ph) = blbs|F) be the one-particle (labeled by p) one-hole (labeled by h) excited state,
where b,(b1) is the annihilation(creation) operator of a fermion state characterized by a.

Consider the matrix element (ph|M|I") (or its effective one body operator M),

(PhIMIF) = (ol Mglh) = 3 gi<p,ﬁw|h,ﬁ> (H.1)
BeF

where g3 is defined by {ba, bg} = g3ds,3. In computing this, it is convenient to define the

antisymmetrized wave function |a, ) in terms of the simple two-particle state |«, )

_ |OJ,5) — |5,0J)

o, B) = 5B (H.2)
so the matrix element (p, 8| M|h, 5) is of the form

The first term is the Hartree term and the second the Fock term. Rewriting |a) as [pamata)
where p, is the momentum of the state labeled by a and m, (t,) the third component of

the spin (isospin) of the state o, we may write the axial charge operator as
(1, 2IMIL,2) = (), | [TO61(g) + TOa(g)] [trma, tams) (A

where T() =i 7 x _)2(77)1 -|-5>2) 'q, T@ = (F1+72)f_7>1 X f_7>2 q and q = py — p2 = P1 — Py,
q = lal.

It is trivial to see that the Hartree term must vanish. Thus we are to calculate the
Fock term. First we shall show that the matrix element of 7(1) is equal to that of 7(2)

when summed over spin and isospin of occupied states. Doing the sum, we get

S0 > (mpty mts| TO|msts, maty) = =4 (myty |7 © 0 |maty) - q. (H.5)
mg tﬂ

For T®), we simply interchange the spin and isospin operators and get the same result. It

then follows that the effective one-body operator of the axial-charge operator becomes

L = dp
pIMeglh) = 4710 h/
< eftlh) ey pl<pr (27)°

(p —pr) ¢(|p — Pal) (H.6)

where ¢(q) = ¢1(q) + ¢2(q), p- stands for the fermi-momentum of the ground state |[F') and
th(t_fph) is (t,|7|th) ((mp|(_7>|mh>). This form is particularly useful when the particle is on

the fermi surface |py| = pr,

[ oy @ R —pal) = = 2t [ o 07— ) g2em). (1)
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In order to give a meaning to this expression, we have to account for short-range correlations.
Otherwise we can get erroneous results. For instance, a constant in momentum space (say,
¢(q) = constant) gives a contribution whereas it should be suppressed in reality. One way
to assure a correct behavior at short-distance is to subtract the constant as one does for
the Lorentz-Lorenz effect in m-nuclear scattering. However this procedure is not always
practicable if one is dealing with non-polynomial terms. It is therefore preferable to go to

coordinate space by Fourier-transform. For this, define f(r) by

dq -
) . ' H.
1) / (2r)3 € ¢(q) (11.8)
Using
dP ip-r _ pg . o _ Sinx cos
/|p|<pF (27)° ‘ - 27r2r]1(pﬂ)’ Ji(z) = z2 T
e /dQ FelP = i4rpji(pr),
we obtain
- = R 8p§ o . . d
(ph|M|F) = Tpp O ph, - P 7/0 drr g1 (per) j1(prr) Ef(r)' (H.9)

Introducing a correlation function §(r,d) where d is a parameter of §, we get the final
expression
. o . 8pE [ . . d
(ph|M|F) = Ty, 0 i - Pi 7/,:1 drr ji(per) g1 (pnr) Ef(r) (H.10)

In the numerical results discussed in the next, we have used the simplest correlation function,

g(r,d)=6(r — d).

Appendix I: The Role of Vector Mesons

In this Appendix, we describe briefly the role that vector mesons play in the axial-

charge transitions in chiral perturbation theory. We will in particular establish that vector

mesons can contribute only at (’)(#) and hence their contributions are suppressed to the

chiral order we are concerned with. For simplicity, we shall consider the vector field V, only.
The axial vector field a;, could also be included but we shall leave it out since it plays even
less significant role in our case. Let

1
VM = taVi“, Tr(tatb) = 55,15 (1.1)

denote the spin-1 field. The index a and b are (1,2, 3) for SU(2) with i = Z, and (0,1,2,3)

for U(2) with ¢ty = 1. The a = (1,2, 3) components correspond to the p mesons and a = 0
to the w meson. We write the relevant part of the Lagrangian as#23

~ 2 1
L = NRF(i0,+ gV,+ gavsiA,) —m] N + 7<m# IAMY + ZM?172<2>

#22We have not included the axial-vector field a1, although it is not difficult to do so. For the axial-charge

process we are considering the a; field does not play an important role. For the Gamow-Teller operator,

however, the axial field may not be ignorable.
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1 ' 21
+ §M€<<VM - éru) > - Z<V;w‘/}w> + /Can (12)

where

Vi =0,V, —0,V, —ig[V,,V.], (1.3)

and I', (A,) were given in Section 3 and explicitly take the form

. - [a T, = T . -
ZFM = t'livﬂ+F7TXA#—m7TX8H7T+"'1|7

. - [ = 1. = 1.
ZAM = t- I:A/:L + fﬂ- X V'UJ - fa#ﬂ' + - :| (14)

where V,, (A,) is the external vector (axial-vector) field and the ellipsis denotes terms
involving more than three fields. Here L,, is an “anomalous parity” piece involving the
totally antisymmetric € tensor which we do not explicit here as it does not contribute. Also
four-fermion interaction terms do not figure in the discussion. In (1.2), the constants g
and My can be identified as the VNN coupling constant and the mass of the V meson

respectively. We are using the short-hand notation
(X)=2Tr(X) (I.5)

for any X. This convention is convenient due to the normalization of ¢,, (XY) = X,Y, for
any X =t,X, and Y =t¢,Y,.

Before proceeding, let us note a few characteristics of this Lagrangian:

e It is vector gauge-invariant (or hidden gauge invariant) provided that ¢V, transforms
as il', does, V, — UV, UT — é@MU - UT. It is also invariant under (global) chiral

transformation apart from the pion mass term.
e It has vector-meson dominance.

e When My goes to infinity, we recover our previous chiral Lagrangian involving only

m’s and nucleons N.

e There is a Vv mixing but the mixing is trivial in the sense that the photon field

appears only as an external (non-propagating) field.

For the reasons spelled out in the main text, we wish to transform the Lagrangian to

a form appropriate for heavy fermion formalism. Including the “1/m” terms, we have

_ F? 1
L = B(iv-D—}—QgAS-z'A)B—}—7<iAMiA’J‘)—|—1M2F2<E>

1 -

+ 5B (=D + (v D)* 4[5, 5")[Dy, D,] - gi(v-id)’ = 2iga {v-iA,S - D}) B
I T T S "

+ 9 v ‘M_EFM >_Z<‘/MUV )+ Lan (1.6)
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where D, = 0, — igV,. Now let us calculate the tree-order contribution of the vector
mesons to the two-body axial charge operator. Three types of graphs contribute. The
relevant graphs are given in Figure 11.

First we find that the graph (¢) does not contribute. To see this, note that G-parity
does not allow the couplings ppA, and wwA,. The coupling for A,pw is of the form
e Pu,,ps coming from the anomalous-parity term L,, of (1.6). In the figure (c), each
vector meson brings in v, as one can see in (1.6), so that we have ey ,v5 = 0.

Working out the graphs (a) and (b) #24 we get

- - g4 Mg 1 < g _ U )
A* (1) = -5y — Sy - P,
( ) 1T X T22F2 M% — q% M2 _ q% Gz - 92 — 2 I3
1 v Q1
by —[§H -S1] — K 12 1.8
@ (U1+mN[ 1:q1 1] M‘% QI) + ( & ) ( )

AQ2) = (A+7)

ga M Clal 1 V2 G2 .
vy - Sy + ——[S1 - Sa, 42 - Sa] .5
207 M2 — g ampy \ V2752 Ty [0 S22 52l = Zpas - 5

+ (12 (1.9)

where we have used the KSRF relation M7 = 2¢*F? and defined

1
P = S+ )"
e v#—}—i(Pf—v‘Lv-Pi) (1.10)
my

and ¢; = p. — p;, t = 1,2. Now noting thatv-q:vi-qj:(’)(%) and S?:(’)(%),We

m

have (setting ¢ = —¢1 = ¢q)

- . .ga M 1 1 Q?

+ (1< 2) (L11)
A2 = A+ 73)2*% [(9 (2—%) +O <m§M@)] . (1.12)

The leading part of Equation (I.11) is nothing but the one-pion exchange current with one-

loop radiative corrections (91) expressed now in terms of a vector-dominated Dirac form
factor V. (In fact, with the Lagrangian (1.6), the soft-pion contribution corresponds to
(L.11) in the limit My — oo.) There is no further correction to what has already been

obtained with our Lagrangian given in its full glory in Appendix A. This corroborates our

#24]p the spin-1 propagator

. Sab q"q” .
wy _ w14
Dy (q) = ey ( 9+ 3z ) (1.7)

the term proportional to #q“q” is a correction term of O (Q—z) relative to the leading term (o< g"*). It

A% A%
is further suppressed in the vector-meson exchange between two nucleons since the VNN vertex function is

proportional to v* and v-qg = O %2 . So effectively this term is of order m%; and hence can be dropped.
A%
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argument that the counter terms k{1 cannot come from one vector-meson exchange in the
limit my — oo. This also establishes our assertion that vector mesons do not modify our
result on the “chiral filter mechanism.”

For completeness, we give the corresponding axial-charge operator in coordinate space
NVMD_}_ ~(VMD :7~(1) (1_|_5 )L[(M_}_l) e—Mr_ (MV‘FE) e—Mvr:| (I 13)
tree 17 soft Anr , , .

WMfLQ and we have dropped the terms of order m]_VQ. This is the vector-

dominated form of M, in place of (104): The second term of vector-meson range in (1.13)

where 0505 =

is the counterpart to the shorter-ranged loop correction in (104). In fermi-gas model (1.13)

predicts roughly the same quenching as the loop calculation (104).
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FIGURE CAPTIONS

Figure 1

Generic nuclear electroweak currents up to two body. The solid line represents
the nucleon, the blob with a cross the coupling of electroweak fields and the

shaded blob without cross stands for the strong interactions.

Figure 2

Two-body exchange currents: (a) One-pion exchange; (b) two-pion exchange.
The solid blob represents a strong-interaction vertex and the shaded blob with
a cross the vertex involving an external field and strong interactions. The solid

line represents the nucleon and broken line the pion.

Figure 3

One-loop graphs contributing to the nucleon self-energy 3. As in Figure 2, the

solid line represents the nucleon, the broken line the pion.

Figure 4

One-loop graphs contributing to the three-point GG, NN vertex where G, = A,
(V,) is the external axial-vector (vector) field, the encircled cross representing
the field coupling. Here and in Fig. 5, vector-field couplings are also drawn for

comparison and for later use in [14].

Figure 5

One-loop graphs contributing to the four-point &G, # NN vertex. For axial-charge
transitions, only the graphs (a)-(f) contribute.

Figure 6

One-loop graphs contributing to two-body two-pion exchange currents ((a) —
(h)), four-fermion-field contact interaction currents ((¢) — (5)) and “recoil” cur-
rent (k). The pion propagator appearing in (a) — (j) is the Feynman one while
that in (k) is a time-ordered one. Only the graphs (a), (b), (¢) and (d) survive

for the axial-charge operator.
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Figure 7

AP Myyee (solid line) and 47rr2./\;iloop (broken line) defined in Eqs.(103) and
(106) vs. r in fm. Here and in Fig. 8, we have set T(1) = 7(2) = 1.

Figure 8

fr[jl(pFr)]Q./\;ltree (solid line) and r[j; (pFT)]Q./\;lloop (broken line) vs. r with pp &
1.36 fm~! (corresponding to nuclear matter density). See the caption for Fig.

7.

Figure 9

The ratios of the matrix elements (%ii) in fermi-gas model vs. p/pg for d =
0.5,0.7 fm for X = 17, 2w, 17 + 27 corresponding to one-loop correction to the
one-pion exchange graph, one-loop two-pion exchange graph and the sum of the

two, respectively.

Figure 10

Three-body currents: a) Genuine three-body current with Feynman pion propa-
gators; b) “recoil” three-body currents with time-ordered pion propagators; the
ellipsis stands for other time-orderings and permutations. Both (a) and (b) are

of order O(Q?) relative to the leading soft-pion term.

Figure 11

Vector-meson contribution with the Lagrangian (1.6) to the two-body axial
charge operator. V and V' stand for vector mesons of mass My. For the

axial current, V = p and V' = w.
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