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In this paper, we consider Poincaré inequalities for non euclidean metrics on R d . These inequalities enable us to derive precise dimension free concentration inequalities for product measures. This technique is appropriate for a large scope of concentration rate: between exponential and gaussian and beyond. We give different equivalent functional forms of these Poincaré type inequalities in terms of transportation-cost inequalities and infimum convolution inequalities. Workable sufficient conditions are given and a comparison is made with generalized Beckner-Latala-Oleszkiewicz inequalities.

1. Introduction 1.1. Poincaré inequality and concentration of measure. One says that a probability measure on a metric space (X , d) satisfies a Poincaré inequality also called spectral gap inequality with the constant C, if for all locally Lipschitz function f , one has [START_REF] Aida | Logarithmic sobolev inequalities and exponential integrability[END_REF] Var

µ (f ) ≤ C |∇f | 2 dµ,
where the length of the gradient is defined by (when x is not an accumulation point of X , one defines |∇f |(x) = 0).

It is well known since the works [START_REF] Gromov | A topological application of the isoperimetric inequality[END_REF], [START_REF] Aida | Logarithmic sobolev inequalities and exponential integrability[END_REF], [START_REF] Aida | Moment estimates derived from poincaré and logarithmic sobolev inequalities[END_REF] and [START_REF] Bobkov | Poincaré's inequalities and Talagrand's concentration phenomenon for the exponential distribution[END_REF] that the inequality (1) implies dimension free concentration inequalities for the product measures µ n , n ≥ 1. For example, in [START_REF] Bobkov | Poincaré's inequalities and Talagrand's concentration phenomenon for the exponential distribution[END_REF], M. Ledoux Another way to express the concentration of the product measure µ n is the following:

Corollary 2 (Bobkov-Ledoux). Let µ be a probability measure on X satisfying the Poincaré inequality (1) on (X , d) with the constant C > 0. Define K(C) = α( 1 √ Cκ )/16, where as before κ = 18e √ 5 , then for all subset A of X n with µ n (A) ≥ 1/2, [START_REF] Barthe | Interpolated inequalities between exponential and gaussian, orlicz hypercontractivity and isoperimetry[END_REF] ∀h ≥ 0,

µ n A h ≥ 1 -e -K(C)h ,
where the set A h is the enlargement of A defined by

A h = y ∈ X n : inf x∈A n i=1 α(d(x i , y i )) ≤ h ,
where α(u) = min(|u|, u 2 ) for all u ∈ R.

The inequality (4) can be easily derived from Theorem 1 (see [START_REF] Bobkov | Poincaré's inequalities and Talagrand's concentration phenomenon for the exponential distribution[END_REF] or Section 2.2 of the present paper). Inequalities such as (4) were first obtained by M. Talagrand in different articles using completely different techniques (see e.g. [START_REF] Talagrand | Concentration of measure and isoperimetric inequalities in product spaces[END_REF]).

If µ satisfies (1) on R d equipped with its standard euclidean norm | • | 2 , then (4) can be rewritten in a more pleasant way: for all subset A of R d n with µ n (A) ≥ 1/2, (5) ∀h ≥ 0,

µ n A + √ hB 2 + hB 1 ≥ 1 -e -hK(C)
with the same constant K(C) as above. The archetypic example of a measure satisfying [START_REF] Aida | Logarithmic sobolev inequalities and exponential integrability[END_REF] is the exponential measure on R d ν d 1 , where dν 1 (x) = 1 2 e -|x| dx. For this probability, (5) cannot be improved (a version of [START_REF] Barthe | Sobolev inequalities for probability measures on the real line[END_REF] with sharp constants has been established by Talagrand in [START_REF] Talagrand | A new isoperimetric inequality and the concentration of measure phenomenon[END_REF] see also Maurey [19, Corollary 1]). Thus [START_REF] Barthe | Sobolev inequalities for probability measures on the real line[END_REF] expresses that the probability measures µ n concentrate at least as fast as the exponential measure on R d n . Some probability measures concentrate faster than the exponential measure. For example, the standard gaussian measure γ m on R m verifies for all A ⊂ R m with γ m (A) ≥ 1/2, [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF] ∀h ≥ 0,

γ m (A + hB 2 ) ≥ 1 -e -h 2 /2 .
There is absolutely no hope to derive such a bound from the classical Poincaré inequality (1) on R m equipped with the euclidean norm. The inequality (6) requires other tools. For example [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF] follows from the Logarithmic Sobolev inequality, introduced by L. Gross in [START_REF] Gross | Logarithmic sobolev inequalities[END_REF], which is strictly stronger than (1) (see [START_REF] Ledoux | The concentration of measure phenomenon, volume 89 of Mathematical Surveys and Monographs[END_REF]Chapter 5]).

1.2. Changing the metric improves the concentration. The aim of this paper is to show that replacing in (1) and (2) the standard euclidean norm | . | 2 by another metric makes possible to reach a large scope of concentration properties including gaussian or even stronger behaviors. The metrics we are going to equip R d with are of the form:

(7) ∀x, y ∈ R d , d ω (x, y) = d i=1 |ω(x i ) -ω(y i )| 2 1/2 ,
where, in all the paper, we will assume that ω : R → R verifies:

• ω is such that x → ω(x)/x is non decreasing on (0, +∞),

• ω is non negative on R + ,

• ω is such that ω(-x) = -ω(x), for all x ∈ R.

Note that the first assumption is verified as soon as ω is convex on R + with ω(0) = 0.

Definition 3. One says that a probability measure µ on R d satisfies the inequality SG(ω, C) (resp. SG(C)) if µ satisfies the Poincaré inequality (1) for the distance d ω ( . , . ) defined by (7) (resp. for the standard euclidean metric) with the constant C > 0.

Let us give a first example:

Proposition 4. Let ω p (x) = max(x, x p ) on R + with ω p (-x) = -ω p (x) for all x ∈ R.
Suppose that µ satisfies the inequality SG(ω p , C) on R d for some C > 0.

If p ∈ [1, 2], then for all n ≥ 1 and all A ⊂ R d n , ∀h ≥ 0, µ n A + 2 √ hB 2 + 2h 1/p B p ≥ 1 -e -K(C)h/d . If p ≥ 2, then for all n ≥ 1 and all A ⊂ R d n , ∀h ≥ 0, µ n A + 2 √ hB 2 ≥ 1 -e -K(C)h/d ,
and ∀h ≥ 0,

µ n A + 2h 1/p B p ≥ 1 -e -K(C)h/d .
(where

K(C) is defined in Corollary 2)
This result will be easily deduced from Corollary 2 and from an elementary comparison between the metric d ωp ( . , . ) and the norms | . | p . In particular, it will follow from our general sufficient conditions that, for all p ∈ [1, +∞), the probability measure dν p (x) = 1 Zp e -|x| p dx verifies SG(ω p , C) for some C. The interest of our approach is to give a somewhat unified picture of the concentration of measure phenomenon. 1.3. Presentation of the results. Before going into further details in the presentation of our results, let us introduce some notations and conventions. 1.3.1. Notations. The map ω is defined on R but we will also denote by ω the map defined on R m (for every m ≥ 1) by (x 1 , . . . , x m ) → (ω(x 1 ), . . . , ω(x n )). The image of a probability measure µ on a space X under a measurable map T : X → Y will be denoted by T ♯ µ. We recall that is is defined by (i) The probability measure µ verifies SG(ω, C).

∀A ⊂ Y, T ♯ µ(B) = µ T -1 (A) .
(ii) The probability measure ω ♯ µ verifies SG(C).

(iii) The probability measure µ satisfies the following weighted Poincaré inequality:

(8) ∀f, Var µ (f ) ≤ C d i=1 1 ω ′ (x i ) 2 ∂f ∂x i (x) 2 dµ(x), for all f : R d → R such that f • ω -1 is of class C 1 .
Observe that this proposition furnishes a huge collection of examples. Indeed, with a slight abuse of notations, one has

ω -1 ♯ SG(C) ⊂ SG(ω, C).
1.3.3. Sufficient conditions for SG(ω, C). In Section 3 we addressed the problem of finding workable sufficient conditions for Poincaré inequalities SG(ω, C). The strategy is dictated by Proposition 5. Namely, a probability µ satisfies SG(ω, C), if and only if the measure ω ♯ µ satisfies SG(C). So all we have to do is to apply to the measure ω ♯ µ one of the known criteria for the classical Poincaré inequality.

In dimension one, one has a necessary and sufficient condition for SG(ω, C): Proposition 6. A probability measure µ on R absolutely continuous with density h > 0 satisfies the inequality SG(ω, C) for some C > 0 if and only if (9)

D - ω = sup x≤m µ(-∞, x] m x ω ′ (u) 2 h(u) du < +∞ and D + ω = sup x≥m µ[x, +∞) x m ω ′ (u) 2 h(u) du < +∞,
where m denotes the median of µ. Moreover the optimal constant C in (1) denoted by

C opt verifies max(D - ω , D + ω ) ≤ C opt ≤ 4 max(D - ω , D + ω )
This proposition follows at once from the celebrated Muckenhoupt criteria for the classical Poincaré inequality (see [START_REF] Muckenhoupt | Hardy's inequality with weights[END_REF]). The following result completes the picture giving a large class of examples:

Proposition 7. Let µ be an absolutely continuous probability measure on R with density dµ(x) = e -V (x) dx. Assume that the potential V is of class C 1 and that ω verifies the following regularity condition:

ω ′′ (x) ω ′2 (x) ----→ x→+∞ 0.
If V is such that

(10) lim inf x→±∞ sgn(x)V ′ (x) ω ′ (x) > 0,
then the probability measure µ verifies the Poincaré inequality SG(ω, C) for some C > 0.

In dimension d, one gets: Proposition 8. Let µ be a probability measure on R d absolutely continuous with respect to the Lebesgues measure, with dµ(x) = e -V (x) dx with V a function of class C 2 . Suppose that ω is of class C 3 on R and such that ω ′ (0) > 0 and

∀x ∈ R, ω (3) (ω ′ ) 3 (x) ≤ M,
for some M > 0. If there is some constant u > 0 such that

lim inf |x|→+∞ 1 u 2 d i=1 1 4 
∂V ∂x i 2 x u - ∂ 2 V ∂x 2 i x u 1 ω ′ (x i ) 2 > dM,
then the probability measure µ satisfies SG(ω, C) for some C, where ω(x) = ω(ux), for all x ∈ R. This condition will be easily derived from the condition lim inf |x|→+∞ |∇V |(x) 2 -∆V (x) > 0, which is known to imply the classical Poincaré inequality. 1.3.4. Links with Transportation-Cost inequalities. In Section 4, we show the equivalence between the Poincaré inequalities for the metric d ω and certain transportation-cost inequalities. Transportation-cost inequalities were first introduced by K. Marton and M. Talagrand in [START_REF] Marton | A simple proof of the blowing-up lemma[END_REF][START_REF] Marton | Bounding d-distance by informational divergence: a method to prove measure concentration[END_REF] and [START_REF] Talagrand | Transportation cost for Gaussian and other product measures[END_REF]. For recent advances in the understanding of these inequalities consult [START_REF] Cattiaux | Talagrand's like quadratic transportation cost inequalities[END_REF], [START_REF] Gentil | Modified logarithmic Sobolev inequalities and transportation inequalities[END_REF], [START_REF] Gozlan | Characterization of talagrand's like transportation-cost inequality on the real line[END_REF], [START_REF] Wang | Probability distance inequalities on riemannian manifolds and path spaces[END_REF][START_REF] Wang | Generalized transportation-cost inequalities and applications[END_REF]. In these inequalities one tries to bound an optimal transportation cost in the sens of Kantorovich by the relative entropy functional. More precisely, if c : X × X → R + is a measurable map on some metric space X , the optimal transportation cost between ν and µ ∈ P(X ) (the set of probability measures on X ) is defined by

T c (ν, µ) = inf π∈P (ν,µ) c(x, y) dπ,
where P (ν, µ) is the set of probability measures π on X × X such that π(dx, Y) = ν(dx) and π(X , dy) = µ(dy). One says that µ satisfies the transportation cost inequality with the cost function c(x, y) if [START_REF] Gozlan | Characterization of talagrand's like transportation-cost inequality on the real line[END_REF] ∀ν ∈ P(X ),

T c (ν, µ) ≤ H(ν | µ),
where H(ν | µ) denotes the relative entropy of ν with respect to µ and is defined by H(ν | µ) = log dν dµ dν if ν is absolutely continuous with respect to µ and H(ν | µ) = +∞ otherwise.

Transportation cost inequalities are known to have good tensorization properties and to yield concentration results independent of the dimension (all these facts are recalled in section 4). For example, the celebrated T 2 inequality which corresponds to cost functions of the form (x, y) → a|x -y| 2 2 gives gaussian concentration (see e.g [START_REF] Talagrand | Transportation cost for Gaussian and other product measures[END_REF]). A celebrated result of Otto and Villani shows that the Lograithmic Sobolev inequality implies T 2 (see [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF]).

Let us say that µ ∈ P(R d ) satisfies the inequality T(ω, a) if it satisfies the transportation cost inequality [START_REF] Gozlan | Characterization of talagrand's like transportation-cost inequality on the real line[END_REF] with the cost function (x, y) → α (ad ω (x, y))

One proves the following Theorem 9. Let µ be a probability measure on R d absolutely continuous with respect to Lebesgues measure with a positive density. Then µ satisfies the Poincaré inequality SG(ω, C) for some C > 0 if and only if it satisfies the transportation-cost inequality T(ω, a) for some a > 0. More precisely,

• if µ satisfies SG(ω, C) then it satisfies T(ω, 1 √ Cκ ), with κ = 18e √ 5 .
• if µ satisfies the inequality T(ω, a), then µ satisfies the inequality SG(ω, 1 2a 2 ).

This theorem is an easy extension of a result by Bobkov, Gentil and Ledoux concerning the classical Poincaré inequality (see [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF]Corollary 5.1]). This extension is performed using a very simple contraction principle for transportation cost inequalities. The author previously used this technique in [START_REF] Gozlan | Characterization of talagrand's like transportation-cost inequality on the real line[END_REF] to characterize a large class of transportation cost inequalities on the real line.

1.3.5. Comparison with Latala-Oleszkiewicz inequalities. In Section 5, we compare the inequalities SG(ω, C) to other functional inequalities including the ones introduced by R. Latala and K. Oleszkiewicz in [START_REF] Latala | Between sobolev and poincaré. in geometric aspects of Functional Analysis[END_REF]. Let r ∈ [START_REF] Aida | Logarithmic sobolev inequalities and exponential integrability[END_REF][START_REF] Aida | Moment estimates derived from poincaré and logarithmic sobolev inequalities[END_REF], one says that a probability measure µ on R d satisfies the inequality LO(r, C) if

(12) sup p∈(1,2) f 2 dµ - f p dµ 2/p (2 -p) 2(1-1/r) ≤ C |∇f | 2 dµ.
It is well known that these inequalities interpolate between Poincaré and Log-Sobolev. For r = 1, the inequality ( 12) is Poincaré inequality SG(C) and for r = 2 it is equivalent to the Logarithmic-Sobolev inequality (see [START_REF] Latala | Between sobolev and poincaré. in geometric aspects of Functional Analysis[END_REF]Corollary 1]). The LO(r, C) inequalities on R were completely characterized by Barthe and Roberto in [START_REF] Barthe | Sobolev inequalities for probability measures on the real line[END_REF].

Recall that a probability measure µ on R d verifies the Logarithmic-Sobolev inequality with constant C, if for all smooth f , 

(13) Ent µ (f 2 ) ≤ C |∇f | 2 dµ where Ent µ (f 2 ) := f 2 log f 2 dµ -f 2 dµ log f 2 dµ . If µ verifies LO(r, C)
y→x |f (x) -f (y)| |x -y| 2 = d i=1 ∂f ∂x i 2 1/2 = |∇f | 2 (x),
for µ a.e. x ∈ R d , and so the length of the gradient equals the norm of the vector ∇f µ a.e.

Locally lipschitz function for d ω ( . , . ) and | . | 2 are related in the following way. A function

g : R d → R is locally Lipschitz for d ω ( . , . ) if and only if g • ω -1 is locally Lipschitz for | . | 2 . [(i)⇒(ii)] Define μ = ω ♯ µ. Let f : R d → R be locally Lipschitz for | . | 2 , then f • ω is locally Lipschitz for d ω ( . , .
), and

Var μ(f ) = Var µ (f • ω) ≤ |∇(f • ω)| 2 ω dµ ( * ) = |∇f | 2 2 • ω = |∇f | 2 2 dµ,
where ( * ) follows from the easy to check identity:

|∇(f • ω)| ω = |∇f | 2 • ω. [(ii)⇒(i)]
The proof is the same.

[(ii)⇒(iii)] Take f : R d → R such that f • ω -1 is of class C 1 . Then Var µ (f ) = Var μ(f • ω -1 ) ≤ |∇(f • ω -1 )| 2 2 • ω dµ = d i=1 1 ω ′ (x i ) 2 ∂f ∂x i (x) 2 dµ(x)
[(iii)⇒(ii)] Apply the weighted Poincaré inequality to the function f •ω with f of class C 1 .

2.2.

Poincaré inequalities and concentration -the abstract case. In order to recall how concentration estimates can be derived from the Poincaré inequality, let us briefly sketch the proof of Theorem 1.

Sketch of proof of Theorem 1.

[First step] According to [8, Theorem 3.1] (which is the main result of [START_REF] Bobkov | Poincaré's inequalities and Talagrand's concentration phenomenon for the exponential distribution[END_REF]), µ enjoys a modified Logarithmic-Sobolev inequality: for all 0 < s < 2

√

C and for all locally Lipschitz f : X → R such that |∇f | ≤ s µ a.e. one has [START_REF] Gross | Logarithmic sobolev inequalities[END_REF] Ent

µ (e f ) ≤ L(s) |∇f | 2 e f dµ, where L(s) = C 2 2+ √ Cs 2- √ Cs 2 e s √ 5C
.

[Second step] Tensorization. Thanks to the tensorization property of the entropy functional,

Ent µ n (e f ) ≤ n i=1 Ent µ (e f i ) dµ n , for all f : X n → R.
Applying this inequality together with ( 14) yields

(15) Ent µ n (e f ) ≤ L(s) n i=1 |∇ i f | 2 e f dµ,
for all 0 < s < 2 √ C and f : X n → R such that max 1≤i≤n |∇ i f | ≤ s µ n a.
e. [Third step] Herbst argument. Thanks to the homogeneity one can suppose that f :

X n → R is such that max 1≤i≤n |∇ i f | ≤ 1 (b = 1) and n i=1 |∇ i f | 2 ≤ a 2 .
Define Z(λ) = e λf dµ n . Then, applying [START_REF] Latala | Between sobolev and poincaré. in geometric aspects of Functional Analysis[END_REF] to λf , one easily obtains the following differential inequality

∀0 < λ ≤ s < 2 √ C , d dλ log(Z(λ)) λ ≤ L(s)a 2 ,
and since log(Z(λ))

λ ---→ λ→0 f dµ n , one gets ∀0 < λ ≤ s < 2 √ C , e λf dµ n ≤ e λ 2 L(s)a 2 +λ f dµ n [Fourth step]
Chebischev argument. This latter inequality on the Laplace transform yields via Chebischev argument:

∀t ≥ 0, µ n f ≥ f dµ n + t ≤ e -hs(t) ,
where

h s (t) = sup λ∈[0,s] {λt -L(s)a 2 λ 2 } = t 2 4L(s)a 2 if 0 ≤ t ≤ 2L(s)a 2 s st -L(s)a 2 s 2 if t ≥ 2L(s)a 2 s
Now it easy to see that, h s (t) ≥ min

t 2 4L(s)a 2 , st 2 . For s = 1/ √ C one obtains after some computations, h s (t) ≥ min t 2 Cκ 2 a 2 , t √ Cκ with κ = 18e √ 5 .

Sketch of proof of Corollary 2. Take

A ⊂ X n , such that µ n (A) ≥ 1/2 and define F (x) = inf a∈A n i=1 α(d(x i , a i ))
, where α(u) = min(|u|, u 2 ). Then for all r ≥ 0, the function f = min(F, r) verifies (see the details in [START_REF] Bobkov | Poincaré's inequalities and Talagrand's concentration phenomenon for the exponential distribution[END_REF]

): max 1≤i≤n |∇ i f | ≤ 2 and n i=1 |∇ i f | 2 ≤ 4r. Moreover since µ n (A) ≥ 1/2, one has f dµ n = f 1I A c dµ n ≤ r(1 -µ n (A)) ≤ r/2. Consequently, applying (3) to f yields: µ n (F ≥ r) = µ n (f ≥ r) ≤ µ n f ≥ f dµ n + r/2 ≤ e -rK(C) , with K(C) = 1 16 min 1 Cκ 2 , 1 √ Cκ = 1 16 α( 1 √ Cκ )
. This achieves the proof of (4).

2.3.

The SG(ω, C) inequality and concentration.

Proposition 11. Suppose that µ ∈ P(R d ) satisfies SG(ω, C) for some C > 0. Then for all n ≥ 1 and all A ⊂ R d n , one has

∀h ≥ 0, µ n A h ω ≥ 1 -e -K(C)h/d ,
where

K(C) = α 1 √
Cκ /16 and A h ω is defined by

A h ω =    (x 1 , . . . , x n ) ∈ R d n : inf a∈A n i=1 d j=1 α • ω |x i,j -a i,j | 2 ≤ h    . (For all 1 ≤ i ≤ n, x i,j , 1 ≤ j ≤ d are the coordinates of the vector x i ∈ R d .)
Remark 12. The fact that the dimension d appears in the preceding result is not important. The important thing is that the constants do not depend on the dimension n.

We need the following elementary lemmas:

Lemma 13. If f : R + → R is such that x → f (x)/x is non decreasing then f is super additive, that is to say: f (x + y) ≥ f (x) + f (y) for all x, y ≥ 0. Proof. Let 0 < x ≤ y ; f (x + y) = f (y(1 + x/y)) ≥ (1 + x/y)f (y) = f (y) + xf (y)/y ≥ f (y) + xf (x)/x = f (y) + f (x). Lemma 14. For all x, y ∈ R, |ω(x) -ω(y)| ≥ ω |x-y| 2 .
Proof. According to the Lemma 13, the function ω is super additive on R + . Let x ≥ y. If x ≥ y ≥ 0, then using the super additivity of ω, one gets ω(x) = ω((x -y) + y) ≥ ω(x -y) + ω(y), so ω(x) -ω(y) ≥ ω(x -y) ≥ ω((x -y)/2). If 0 ≥ x ≥ y, then, according to the preceding case, ω(x) -ω(y) = ω(-y) -ω(-x) ≥ ω((-y + x)/2) = ω((x -y)/2). If x ≥ 0 ≥ y, then ω(x) -ω(y) = ω(x) + ω(-y) ≥ ω(max(x, -y)) ≥ ω((x -y)/2).

Lemma 15. The function α(u) = min(|u|, u 2 ) is such that α(au) ≥ α(a)α(u), for all a, u ≥ 0.

Proof. If 0 < a ≤ 1, then α(au)/a = u 2 if u ≤ 1/a and α(au)/a = u/a if u ≥ 1/a. If u ≤ 1, one has α(au)/a = α(u). If u ∈ [1, 1/a],
then u 2 ≥ u and so α(au)/a ≥ α(u). If u ≥ 1/a, then u/a ≥ a and so α(au)/a ≥ α(u). The case a ≥ 1 can be handled in a similar way.

Proof of Proposition 11. First,

d ω (x, y) ≥ 1 √ d d i=1 |ω(x i ) -ω(y i )|, for all x, y ∈ R d . Now, α(d ω (x, y)) ≥ α d i=1 1 √ d |ω(x i ) -ω(y i )| (i) ≥ d i=1 α 1 √ d |ω(x i ) -ω(y i )| (ii) ≥ d i=1 α 1 √ d ω |x i -y i | 2 (iii) ≥ 1 d d i=1 α • ω |x i -y i | 2 
where (i) comes from the super additivity of the function α, (ii) from Lemma 14 and (iii) from Lemma 15.

Consequently,

inf a∈A n i=1 α(d ω (x i , a i )) ≥ 1 d inf a∈A n i=1 α • ω |x i -y i | 2 .
Applying (4) yields immediately the desired result.

Proof of Proposition 4. Suppose p ∈ [START_REF] Aida | Logarithmic sobolev inequalities and exponential integrability[END_REF][START_REF] Aida | Moment estimates derived from poincaré and logarithmic sobolev inequalities[END_REF] ; in view of Theorem 11, it is enough to prove that

nd k=1 α • ω p (u k ) ≤ h ⇒ u = (u 1 , . . . , u nd ) ∈ √ hB 2 + h 1/p B p .
Let v = (v 1 , . . . , v nd ) and w = (w 1 , . . . , w nd ) be defined by

v k = u k if u k ∈ [-1, 1] and v k = 0 if |u k | > 1 and w = u -v. Then, nd k=1 α • ω p (u k ) = |v| 2 2 + |w| p p ≤ h. So, |v| 2 ≤ √ h and |w| p ≤ h 1/p . Since u = v + w, one concludes that u ∈ √ hB 2 + h 1/p B p . Now, if p ≥ 2, then ∀x ≥ 0, α • ω(x) ≥ x 2 and ∀x ≥ 0, α • ω(x) ≥ x p .
This observation together with Theorem 11 easily implies the result.

3. Workable sufficient conditions for SG(ω, C).

Dimension one.

Proof of Proposition 6. According to Muckenhoupt criterion, a probability measure dν = h dx having a positive continuous density with respect to Lebesgues measure, satisfies the classical Poincaré inequality if and only if 

D -= sup x≤m ν(-∞, x]
μ = ω ♯ µ satisfies SG(C). The density of μ is h = h•ω -1 ω ′ •ω -1 .
Plugging h in Muckenhoupt conditions gives immediately the announced result.

Proof of Proposition 7. Let μ = ω ♯ µ and let ν be the symmetric exponential probability measure on R, that is the probability measure with density dν(x) = 1 2 e -|x| dx. It is well known that it verifies the following Poincaré inequality: [START_REF] Ledoux | The concentration of measure phenomenon, volume 89 of Mathematical Surveys and Monographs[END_REF] Var ν (g) ≤ 4 g ′2 (x) dν(x), for all smooth g (see for example [8, Lemma 2.1]). Let T : R → R be the map defined by

T (x) = F -1 μ • F ν (x), with F ν (x) = ν(-∞, x] and F μ(x) = μ(-∞, x]. It is well known that T
is increasing and transports ν on μ which means that T ♯ ν = μ. Let us apply inequality [START_REF] Ledoux | The concentration of measure phenomenon, volume 89 of Mathematical Surveys and Monographs[END_REF] to a function g = f • T . It yields immediately:

Var μ(f ) ≤ 4 f ′2 T ′ • T -1 2 dμ ≤ 4 sup x∈R T ′ (x) 2 f ′2 dμ
As a conclusion, if the map T is L Lipschtitz then μ verifies Poincaré inequality SG(4L 2 ).

The probability μ has density dμ(x) = e -Ṽ (x) dx, with Ṽ (x) = V (ω -1 (x))+ log ω ′ •ω -1 (x). It is proved in [START_REF] Gozlan | Characterization of talagrand's like transportation-cost inequality on the real line[END_REF] (see Proposition 34) that a sufficient condition for T to be Lipschitz is that

lim inf x→±∞ sgn(x) Ṽ ′ (x) > 0. But Ṽ ′ (ω(x)) = V ′ (x) ω ′ (x) + ω ′′ (x) ω ′2 (x)
and by assumption ω ′′ (x)

ω ′2 (x) → 0 when x goes to ∞. Thus lim inf x→±∞ sgn(x) Ṽ ′ (x) = lim inf x→±∞ sgn(x)V ′ (x) ω ′ (x)
, which achieves the proof.

Remark 16. The condition lim inf x→±∞ sgn(x)V ′ (x) ω ′ (x)
> 0 can also be derived from Proposition 6 using the same techniques as in e.g [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques, volume 10 of Panoramas et Synthèses [Panoramas and Syntheses[END_REF]Theorem 6.4.3]. But this method has the disadvantage of introducing useless technical assumptions such as lim ±∞ V ′′ /(V ′2 ) = 0.

Remark 17. According to Theorem 10, the Logarithmic Sobolev inequality is stronger than the Poincaré inequality SG(ω 2 , C). In [START_REF] Cattiaux | Talagrand's like quadratic transportation cost inequalities[END_REF], P. Cattiaux and A. Guillin were able to construct a potential V on R satisfying V (-x) = V (x) and lim inf x→+∞ V ′ (x)/x > 0 but such that the probability measure dµ = e -V (x) dx does not satisfy the Bobkov-Gtze necessary and sufficient condition for the Logarithmic Sobolev inequality (see [START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF]). According to Proposition 7, this shows that the Logarithmic Sobolev inequality is strictly stronger than the inequality SG(ω 2 , C).

Dimension d.

Proof of Proposition 8. It is well known that a probability dν(x) = e -W (x) dx on R d satisfies the classical Poincaré inequality if W verifies the following condition: [START_REF] Marton | A simple proof of the blowing-up lemma[END_REF] lim inf

|x|→+∞ |∇W | 2 (x) -∆W (x) > 0
Suppose that µ is an absolutely continuous probability measure on R d with density dµ(x) = e -V (x) dx with V of class C 2 . Then μ = ω ♯ µ has density dμ(x) = e -Ṽ (x) dx, with

∀x ∈ R d , Ṽ (x) = V (ω -1 (x)) + d i=1 log ω ′ • ω -1 (x i ).
According to Proposition 5, to show that µ satisfies the inequality SG(ω, C) for some C > 0 it is enough to show that μ satisfies the inequality SG(C) and a sufficient condition for this is that Ṽ fulfills condition [START_REF] Marton | A simple proof of the blowing-up lemma[END_REF].

Elementary computations yield

∂ Ṽ ∂x i (ω(x)) = 1 ω ′ (x i ) ∂V ∂x i (x) + ω ′′ (x i ) ω ′2 (x i ) ∂ 2 Ṽ ∂x 2 i (ω(x)) = - ω ′′ (x i ) ω ′3 (x i ) ∂V ∂x i (x) + 1 ω ′2 (x i ) ∂ 2 V ∂x 2 i (x) + ω (3) (x i ) ω ′3 (x i ) -2 ω ′′2 (x i ) ω ′4 (x i ) Let I(x) = |∇ Ṽ | 2 (ω(x)) -∆ Ṽ (ω(x))
; one has:

I(x) = d i=1 1 ω ′2 (x i ) ∂V ∂x i 2 (x) - ∂ 2 V ∂x 2 i (x) +3 d i=1 ω ′′ (x i ) ω ′3 (x i ) ∂V ∂x i (x)+3 d i=1 ω ′′2 (x i ) ω ′4 (x i ) - d i=1 ω (3) (x i ) ω ′3 (x i ) .
Using the inequality uv ≥ -u 2 -v 2 /4, one has

3 d i=1 ω ′′ (x i ) ω ′3 (x i ) ∂V ∂x i (x) = 3 d i=1 ω ′′ (x i ) ω ′2 (x i ) • 1 ω ′ (x i ) ∂V ∂x i (x) ≥ -3 d i=1 ω ′′2 (x i ) ω ′4 (x i ) - 3 4 d i=1 1 ω ′2 (x i ) ∂V ∂x i 2 (x),
and so

I(x) ≥ d i=1 1 ω ′2 (x i ) 1 4 ∂V ∂x i 2 (x) - ∂ 2 V ∂x 2 i (x) - d i=1 ω (3) (x i ) ω ′3 (x i ) .
Since, lim inf |x|→+∞ I(x) = lim inf y→+∞ |∇ Ṽ | 2 (y) -∆ Ṽ (y) and

d i=1 ω (3) (x i ) ω ′3 (x i ) ≤ dM , one concludes that Ṽ satisfies (17) as soon as lim inf |x|→+∞ d i=1 1 ω ′2 (x i ) 1 4 ∂V ∂x i 2 (x) - ∂ 2 V ∂x 2 i (x) > dM.
Applying this latter condition to the probability measure µ u = (u Id) ♯ µ, (where Id is the identity function) which has density dµ u (x) = 1 u d e -V (x/u) dx gives the condition of Proposition 8.

Transportation-cost inequalities

Basic properties.

Proposition 18 (Tensorization). Suppose that µ ∈ P(X ) satisfies the transportation cost inequality [START_REF] Gozlan | Characterization of talagrand's like transportation-cost inequality on the real line[END_REF] with the cost function c(x, y), then µ n satisfies the transportation cost inequality on X n with the cost function c ⊕n (x, y) = n i=1 c(x i , y i ). In other words,

∀ν ∈ P(X n ), inf π∈P (ν,µ n ) n i=1 c(x i , y i ) dπ ≤ H(ν | µ n ),
where P (ν, µ n ) is the set of probability measures on X n × X n such that π(dx, X n ) = ν(dx) and π(X n , dy) = µ n (dy).

This result goes back to the first works of K. Marton on the subject (see [START_REF] Marton | A simple proof of the blowing-up lemma[END_REF][START_REF] Marton | Bounding d-distance by informational divergence: a method to prove measure concentration[END_REF]). A proof can be found in [START_REF] Gozlan | A large deviation approach to some transportation cost inequalities[END_REF].

Let us explain how to derive concentration inequalities from the inequality T(ω, a).

Proposition 19. If µ satisfies the transportation cost inequality T(ω, a), then for all n ≥ 1 and all A ⊂ R nd , ∀h ≥ 0,

µ n A h ω ≥ 1 - 1 µ n (A) e -hα(a/ √ d)/2 ,
where the enlargement is defined by

A h ω =    y = (y 1 , . . . , y n ) ∈ R d n : inf x∈A n i=1 n j=1 α • ω x i,j -y i,j 2 ≤ h    .
Remark 20. According to Theorem 9, if µ satisfies the inequality SG(ω, C) then it satisfies T(ω, a) with a = 1

√

Cκ . With this value of a the concentration inequality given by Proposition 19 is almost the same as the one derived in Proposition 11.

We will need the following lemma:

Lemma 21. The function α(u) = min(|u|, u 2 ) is such that α(x + y) ≤ 2(α(x) + α(y)), for all x, y ≥ 0. Proof. If x + y ≤ 1, then α(x + y) = (x + y) 2 ≤ 2(x 2 + y 2 ) = 2(α(x) + α(y)). Now, suppose that x + y ≥ 1. If x ≤ 1 and y ≤ 1, then α(x + y) = x + y ≤ (x + y) 2 ≤ 2(x 2 + y 2 ) = 2(α(x) + α(y)). If x ≤ 1 and y ≥ 1, then x ≤ y ⇒ x-2x 2 ≤ y ⇒ x+y ≤ 2(x 2 +y) ⇒ α(x+y) ≤ 2(α(x)+α(y)). If x ≥ 1 and y ≥ 1, then α(x + y) = x + y = α(x) + α(y) ≤ 2(α(x) + α(y)).
Proof of Proposition 19. If µ satisfies T(ω, a) on R d then according to Theorem [START_REF] Marton | Bounding d-distance by informational divergence: a method to prove measure concentration[END_REF], µ n satisfies the transportation cost inequality on R d n with the cost function c defined by

c : ((x 1 , . . . , x n ), (y 1 , . . . , y n )) ∈ R d n × R d n → n i=1 α(ad ω (x i , y i )).
Using the triangle inequality for the metric d ω ( . , . ) and Lemma 21, one has ∀x, y, z ∈ R d n , c(x, z) ≤ 2c(x, y) + 2c(y, z). Now, let ν 1 and ν 2 be two probability measures on R nd . Take π 1 ∈ P (ν 1 , µ n ) and π 2 ∈ P (µ n , ν 2 ), then one can construct three random variables X, Y, Z such that L(X, Y ) = π 1 and L(Y, Z) = π 2 (see for instance the Gluing Lemma of [START_REF] Villani | Topics in Optimal Transportation[END_REF] p. 208). Then, one has

T c (ν 1 , ν 2 ) ≤ E [c(X, Z)] ≤ 2E [c(X, Y )] + 2E [c(Y, Z)] = 2 c(x, y) dπ 1 (x, y) + 2 c(y, z) dπ 2 (y, z).
Optimizing on π 1 and π 2 gives

T c (ν 1 , ν 2 ) ≤ 2T c (ν 1 , µ n ) + 2T c (ν 2 , µ n )
Consequently, µ n satisfies the following symmetrized transportation cost inequality:

∀ν 1 , ν 2 ∈ P(R nd ), T c (ν 1 , ν 2 ) ≤ 2 H(ν 1 | µ n ) + 2 H(ν 2 | µ n ).
Take

dν 1 = 1I A dµ n and dν 2 = 1I B dµ n , then inf x∈A,y∈B c(x, y) ≤ T c (ν 1 , ν 2 ) ≤ 2 H(ν 1 | µ n ) + 2 H(ν 2 | µ n ) = 2 log(1/µ n (A)) + 2 log(1/µ n (B))
Letting c(A, B) = inf x∈A,y∈B c(x, y), one gets

µ (n) (A)µ (n) (B) ≤ e -c(A,B)/2 .
Defining B = {y : inf x∈A c(x, y) > h} one gets µ n (B) ≤ 1 µ n (A) e -h/2 . To obtain the announced inequality it is thus enough to compare A h ω and B. Take x = (x 1 , . . . , x n ) ∈ R d n and y = (y 1 , . . . , y n ) ∈ R d n ; then for all i ∈ 1, . . . , n, one has 

α (ad ω (x i , y i )) (a) ≥ α   a √ d d j=1 |ω(x i,j ) -ω(y i,j )|   (b) ≥ d j=1 α a √ d |ω(x i,j ) -ω(y i,j )| (c) ≥ d j=1 α a √ d ω x i,j -y i,j 2 (d) ≥ α a/ √ d d j=1 α • ω x i,j -y i,j 2 
Consequently, if inf x∈A n i=1 d j=1 α•ω x i,j -y i,j 2 √ d ≥ h/α(a/ √ d), then y belongs to B. From this follows that µ n (A h ω ) ≥ 1 -1 µ n (A) e -α(a/ √ d)h/2
, which achieves the proof.

Remark 22. The idea of deriving concentration estimates from transportation cost inequalities goes back to Marton seminal work [START_REF] Marton | A simple proof of the blowing-up lemma[END_REF]. The above proof is essentially due to Talagrand (see the proof of [25, Corollary 

α s (t) = t 2 4L(s) if |t| ≤ 2L(s)s s|t| -L(s)s 2 otherwise with L(s) = C 2 2 + √ Cs 2 - √ Cs 2 e s √ 5C .
In particular, if one takes s = 1 √ C , then it is easy to check that α s (t) ≥ α t √ Cκ , where α(u) = min(|u|, u 2 ) and κ = 18e (where Id : R → R : x → x is the identity function.)

The converse is also true: Proposition 25. If µ satisfies T (Id, a) , for some a > 0, then µ satisfies the inequality SG( 1 2a 2 ).

The proof of Proposition 25 is classical and can be found in various places (see e.g the proofs of [6, Corollary 5.1] or [START_REF] Maurey | Some deviation inequalities[END_REF]Corollary 3]).

The second argument is a very simple contraction principle:

Proposition 26. Let µ be a probability measure on a metric space X ; if µ satisfies the transportation cost inequality with the cost function c : X × X → R + , and if T : X → Y is a measurable bijection then, T ♯ µ satisfies the transportation cost inequality with the cost function

(x, y) → c(T -1 (x), T -1 (y)).
This contraction principle goes back to Maurey's work on infimum convolution inequalities (see [START_REF] Maurey | Some deviation inequalities[END_REF]). A proof can also be found in [START_REF] Gozlan | Characterization of talagrand's like transportation-cost inequality on the real line[END_REF], where this simple property was intensively used to derive necessary and sufficient conditions for transportation cost inequalities on the real line.

Now let us apply the contraction principle together with Theorem 23 to prove that Poincaré inequalities SG(ω, C) and transportation-cost inequalities T(ω, a) are qualitatively equivalent.

Proof of Theorem 9. If µ satisfies SG(ω, C), then according to Proposition 5, ω ♯ µ satisfies the classical Poincaré inequality SG(C), and according to Theorem 23, this implies that ω ♯ µ satisfies T(Id, a), with a = 1

√

Cκ . According to the contraction principle, µ (which is the image of ω ♯ µ under the map ω -1 ) satisfies the transportation cost inequality with the cost function (x, y) → α (a|ω(x) -ω(y)| 2 ) = α (ad ω (x, y)) by definition of the metric d ω ( . , . ) (see [START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF]). Now suppose that µ satisfies T(ω, a) for some a > 0. According to the contraction principle, ω ♯ µ satisfies T(Id, a), and according to Proposition 25, this implies that ω ♯ µ satisfies SG( 1 2a 2 ). Using Proposition 5, one concludes that µ satisfies SG(ω, 1 2a 2 ). This achieves the proof. Remark 27. If µ satisfies the inequality T(ω, a), it is easy to show that it verifies the transportation cost inequality with the cost function

R d × R d → R + : (x, y) → α(a/ √ d) d i=1 α • ω x i -y i 2 .
In particular, the inequality SG(ω 2 , C) implies Talagrand's T 2 inequality, that is to say the transportation cost inequality with a cost function of the form (x, y) → a|x -y| 2 2 for some a > 0. We do not know if the converse is true.

Comparison with other functional inequalities

In this section we will perform a comparison between the inequalities SG(ω, C) and generalized Beckner-Latala-Oleszkiewicz inequalities introduced in [START_REF] Wang | A generalization of poincaré and log-sobolev inequalities[END_REF] and [START_REF] Barthe | Interpolated inequalities between exponential and gaussian, orlicz hypercontractivity and isoperimetry[END_REF]. Definition 28. Let T : [0, 1] → R + be a non decreasing function and µ be a probability measure on R d . One says that µ satisfies the generalized Beckner-Latala-Oleszkiewicz inequality with the function T and the constant C > 0, if for all smooth f , one has [START_REF] Marton | Bounding d-distance by informational divergence: a method to prove measure concentration[END_REF] sup

p∈(1,2) f 2 dµ - |f | p dµ 2/p T (2 -p) ≤ C |∇f | 2 dµ.
If µ verifies (18) one will say for short that µ satisfies the inequality BLO(T, C).

The LO(r, C) inequality corresponds to the function T (u) = u 2(1-1/r) .

Dimension free concentration results can be deduced from the inequality BLO(T, C). The following result follows easily from Proposition 29 and Corollary 30 of [START_REF] Barthe | Interpolated inequalities between exponential and gaussian, orlicz hypercontractivity and isoperimetry[END_REF].

Theorem 29. Let T : [0, 1] → R + be a non decreasing function. Define T (x) = T (1) for all x ≥ 1 and let ω T : R → R be such that ω T (-x) = -ω(x) for all x ∈ R and

(19) ∀t ≥ 0, ω -1 T (t) = t 0 √ T (1/u) du.
If µ satisfies the inequality BLO(T, C), then for all n ≥ 1 and for all 1-Lipschitz function f :

∀t ∈ R + \ T (1), 2 T (1) , µ n f ≥ f dµ + r ≤ e -α•ω T (t/(3 √ C)) .
We are going to prove the following result:

Theorem 30. Let T : [0, 1] → R + be a non-decreasing function such that x → T (x)/x is non-increasing. If the measure µ verifies the inequality BLO(T, C) for some constant C then it satisfies the inequality SG(ω T , C).

Let us admit Theorem 30 and let us prove Theorem 10.

Proof of Theorem 10. As noticed above, the inequality LO(r, C) is the same as BLO(T, C) with T (u) = u 2(1-1/r) . According to Theorem 30, µ verifies the inequality SG(ω T , C) for some C, where ω T is given by [START_REF] Maurey | Some deviation inequalities[END_REF]. A simple computation gives ω T (t) = t if t ∈ [0, 1] and ω T (t) = t r /r + 1 -1/r, if t ≥ 1. Thus, ω ′ T (t) = max(1, t r-1 ). On the other hand, ω ′ r (t) = 1, if t ∈ [0, 1] and ω ′ r (t) = rt r-1 . Thus, 1 r ω ′ r (t) ≤ ω ′ T (t) ≤ ω ′ r (t), for all t ≥ 0. Using [START_REF] Bobkov | Poincaré's inequalities and Talagrand's concentration phenomenon for the exponential distribution[END_REF], one concludes that µ verifies SG(ω T , C) for some C if and only if µ verifies SG(ω r , C) for some C. This achieves the proof.

The proof of this theorem relies on the capacity-measure formulation of the generalized Beckner-Latala-Oleszkiewicz inequalities due to Barthe, Cattiaux and Roberto [START_REF] Barthe | Interpolated inequalities between exponential and gaussian, orlicz hypercontractivity and isoperimetry[END_REF].

Let us recall the definition of a capacity-measure inequality (a good reference for this type of inequalities is the book of Maz'ja [START_REF] Mazja | Sobolev spaces[END_REF]).

Definition 31. Let µ be a probability measure on R d . Let A ⊂ Ω be Borel sets. One defines

Cap µ (A, Ω) = inf |∇f | 2 dµ; 1 I A ≤ f ≤ 1 I Ω .
The capacity of a set A with µ(A) ≤ 1/2 is defined by

Cap µ (A) = inf Cap µ (A, Ω) : A ⊂ Ω and µ(Ω) ≤ 1/2 = inf |∇f | 2 dµ; f : R d → [0, 1], f |A = 1 and µ(f = 0) ≥ 1/2
One says that µ satisfies a capacity-measure inequality if there is a function Θ : [0, 1] → R + and a constant D > 0 such that for all A with µ(A) ≤ 1/2, Θ(µ(A)) ≤ D Cap µ (A).

The following theorem due to Barthe, Cattiaux and Roberto (see Theorem 18 and Lemma 19 of [START_REF] Barthe | Interpolated inequalities between exponential and gaussian, orlicz hypercontractivity and isoperimetry[END_REF]) gives a capacity-measure transcription of the inequality BLO(T, C).

Theorem 32. Let T : [0, 1] → R + be a non-decreasing function such that x → T (x)/x is nonincreasing. Let C > 0 be the optimal constant such that µ verifies the inequality BLO(T, C).

Then 1/6D ≤ C ≤ 20D, where D is the optimal constant such that for all

A ⊂ R d with µ(A) ≤ 1/2, one has Θ(µ(A)) ≤ D Cap µ (A),
where Θ : R + → R + is defined by:

(20) ∀x ∈ R + , Θ(x) = x 1 T 1 log(1+ 1 x )
, with the convention that T (x) = T (1) for x ≥ 1.

Remark 33. In fact we will only use the fact that the inequality BLO(T, C) implies the measure-capacity inequality Θ(µ(A)) ≤ 6C Cap µ (A), for all A such that µ(A) ≤ 1/2. This is the easiest part of Theorem 32.

To prove Theorem 30, one needs the following basic properties: Lemma 34. If T : [0, 1] → R + is a non-decreasing function such that x → T (x)/x is nonincreasing then the function Θ defined by ( 20) is non-decreasing and verifies Θ(x + y) ≤ Θ(x) + Θ(y) for all x, y ∈ R + .

Proof. Let us write:

Θ(x) = x h(x) • h(x) T (h(x)) with h(x) = 1 log(1 + 1/x) .
The function h is non-decreasing, and since u → u T (u) is non-decreasing, one concludes that x → h(x) T (h(x)) is non decreasing. On the other hand, it is easy to see that the function x → x h(x) = x log(1+1/x) is non-decreasing. As a product of non-decreasing and non-negative functions, the function Θ is itself non-decreasing. Take x ≥ y > 0 ; using the fact that the function x → Θ(x)/x is non-increasing, one gets

Θ(x + y) = Θ(x(1 + y/x)) ≤ (1 + y/x)Θ(x) = Θ(x) + yΘ(x)/x ≤ Θ(x) + Θ(y).
This achieves the proof.

Another ingredient of the proof is the following lemma which explains how behave capacitymeasure inequalities under push-forward: Lemma 35. Suppose that µ satisfies the capacity-measure inequality

∀A with µ(A) ≤ 1/2, Ψ(µ(A)) ≤ D Cap µ (A). Then μ = ω ♯ µ verifies the inequality ∀A with μ(A) ≤ 1/2, Ψ(μ(A)) ≤ DCap μ(A),
where

Cap μ = inf d i=1 ω ′ • ω -1 (x i ) 2 ∂f ∂x i 2 (x) dμ; f : R d → [0, 1], f |A = 1 and μ(f = 0) ≥ 1/2 .
Proof. Let A be such that μ(A) ≤ 1/2, and f be such that f = 1 on A and μ(f = 0) ≥ 1/2. Define B = ω -1 (A) and g = f • ω. Then µ(B) = μ(A) ≤ 1/2, g ≥ 1 on B and {g = 0} = ω -1 {f = 0} and so µ(g = 0) = μ(g = 0) ≥ 1/2. Applying the capacity-measure inequality verified by µ to B and g yields

μ(A) = µ(B) ≤ D |∇g| 2 dµ = D d i=1 ω ′ • ω -1 (x i ) 2 ∂f ∂x i 2 (x) dμ.
Optimizing over such functions f gives the announced inequality for μ.

The next lemma explains how to compare the capacity Cap μ to the usual capacity Cap µ : Optimizing over f yields:

Lemma 36. Let B ∞ (r) = x ∈ R d : max 1≤i≤d |x i | ≤ r , for all r ≥ 0. If A ⊂ B ∞ (r) and µ(A) ≤ 1/2, then Cap μ(A) ≤ 2 ω ′ • ω -1 (r + 1) 2 Cap μ(A) + 8dμ(B ∞ (r) c ). Proof. Let Cap r μ(A) = inf |∇f | 2 dμ; 1I A ≤ f ≤ 1I B∞ ( 
Cap r μ(A) ≤ 2 Cap μ +8dμ(B ∞ (r) c ).

Proof of Theorem 30. Define μ = ω ♯ T µ. One wants to prove that μ verifies the classical Poincaré inequality. According to Theorem 32, the probability measure µ satisfies the capacity-measure inequality [START_REF] Muckenhoupt | Hardy's inequality with weights[END_REF] ∀A with µ(A) ≤ 1/2, Θ(µ(A)) ≤ 6C Cap µ (A).

According to Lemma 35, μ satisfies the capacity-measure type inequality:

∀A with μ(A) ≤ 1/2, Θ(μ(A)) ≤ 6CCap μ(A),

where Cap μ is defined in the lemma.

Let B ∞ (r) = x ∈ R d : max 1≤i≤d (|x i |) ≤ r , for all r ≥ 0. Let A ⊂ R d with μ(A) ≤ 1/2; one has Θ(μ(A)) where (i) follows from the sub-additivity and the monotonicity of Θ, (ii) from Lemma 35, (iii) from Lemma 36 and (iv) from the fact that the function A → Cap μ(A) is non decreasing and from the immediate inequality x ≤ T (1)Θ(x) which holds for all x ≤ 1. Using Theorem 29, it is not difficult to see that one can find K ≥ 1 and 1 ≥ u 0 > 0 such that μ (B ∞ (r) c ) ≤ Ke -u 0 r for all r ≥ 0. Thus Θ (μ (B ∞ (r) c )) ≤ Θ(Ke -u 0 r ) ≤ KΘ(e -u 0 r ) , where the last inequality follows from the sub-additivity of Θ. So, letting a 1 = 12C Cap μ(A), a 2 = (48dCT (1) + 1)K and t = μ(A) and using the definitions of Θ and ω T , one has:

t 1 T 1 log(1+1/t) ≤ a 1 1 T 1 1+r
+ a 2 e -u 0 r 1 T 1 log(1+e u 0 r ) .

Using the inequality 1 + u 0 r ≥ u 0 (1 + r) together with the sub-additivity property of the function T , one sees that

1 T ( 1 1+r ) ≤ 1 u 0 T 1 1+u 0 r
. Thus the preceding inequality implies:

∀v ≥ 0, t 1 
T 1 log(1+1/t) ≤ a 1 u 0 1 T 1 1+v + a 2 e -v 1 T 1 log(1+e v )
. Now, observe that (1 + e v ) 3 ≥ 3e v , so 3 log(1 + e v ) ≥ log(3) + v ≥ 1 + v, and so

1 T ( 1 1+v ) ≤ 1 T 1 3 log(1+e v ) ≤ 3 T 1 log(1+e v )
where the last step follows from the sub-additivity property of T . So, ∀v ≥ 0, t 1

T 1 log(1+1/t) ≤ 3a 1 u 0 + a 2 e -v 1 T 1 log(1+e v )
.

Let n ∈ N * ; taking v = -n log(t) in the preceding inequality gives: 

t

( 2 )

 2 |∇f |(x) := lim sup y→x |f (x) -f (y)| d(x, y) .
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 325 Links with the classical Poincaré inequality. In Section 2, we prove the concentration results and we relate the exotic Poincaré inequalities SG(ω, C) to (weighted) forms of the classical Poincaré inequality: Let µ be a probability measure on R d and C a positive number. The following properties are equivalent.
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 221 then a concentration inequality of the same order as the one given in Proposition 4 holds (see[START_REF] Latala | Between sobolev and poincaré. in geometric aspects of Functional Analysis[END_REF] Theorem 1]). In fact, one has the following Theorem 10. Let r ∈[START_REF] Aida | Logarithmic sobolev inequalities and exponential integrability[END_REF][START_REF] Aida | Moment estimates derived from poincaré and logarithmic sobolev inequalities[END_REF] ; if µ verifies the Latala-Oleszkiewicz inequality LO(r, C) for some C > 0 then it satisfies the Poincaré inequality SG(ω r , C) for some constant C, where ω r (x) = x r on R + . Moreover, a counter example of Cattiaux and Guillin shows that the Logarithmic-Sobolev inequality is strictly stronger than the inequality SG(ω 2 , C) (seeRemark 17). Weighted forms of the Poincaré inequality Links with the classical Poincaré inequality.Proof of Proposition 5. Let us denote |∇f | ω (resp. |∇f | 2 ) the length of the gradient computed with respect to the metric d ω ( . , . ) (see[START_REF] Aida | Moment estimates derived from poincaré and logarithmic sobolev inequalities[END_REF]). If f : R d → R is locally Lipschitz for the euclidean metric, then according to Rademacher theorem, one has lim sup

  constant C opt verifies max(D -, D + ) ≤ C opt ≤ 4 max(D -, D + ). Now, according to Proposition (5) µ satisfies SG(ω, C) if and only if

  where (a) follows from the comparison between the norms | . | 2 and | . | 1 in R d , (b) from Lemma 13, (c) from Lemma 14 and (d) from Lemma 15.

. 2 √

 2 Links with Poincaré inequality. The proof of Theorem 9 relies on two ingredients. The first one is the following result by Bobkov, Gentil and Ledoux: Theorem 23 (Bobkov,Gentil, Ledoux). If a probability measure µ on R d satisfies SG(C) then it satisfies the transportation cost inequality for the cost function (x, y) → α s (|x -y| 2 ) for all s <

√ 5 . 2 √.

 52 Thus if µ satisfies SG(C) it satisfies the transportation cost inequality with the cost function (x, y) → α |x-y| Cκ In other words, with the definition of the transportation cost inequality T (ω, a), the preceding result can be restated as follows Corollary 24. If µ is a probability measure on R d satisfying the classical Poincaré inequality SG(C) for some C > 0, then it satisfies the transportation-cost inequality T Id, 1 √ Cκ .
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 2 r+1) and μ(f = 0) ≥ 1/Using the fact that the function ω ′ • ω -1 is increasing on R + , one clearly has:Cap μ(A) ≤ ω ′ • ω -1 (r + 1) 2 Cap r μ(A).Now let f : R d → [0, 1] be such that f |A = 1 and μ(f = 0) ≥ 1/2. One can easily construct a cut-off function ϕ such that: 1I B∞(r) ≤ ϕ ≤ 1I B∞(r+1) , and such that ∂ϕ ∂x i (x) ≤ 2 for all x ∈ R d and all i.Let g = f ϕ; one has 1I A ≤ g ≤ 1I B∞(r+1) , μ(g = 0) ≥ μ(f = 0) ≥ 1/2 and Cap r μ(A) ≤ |∇g| 2 dμ = |∇f ϕ + f ∇ϕ| 2 dμ ≤ 2 |∇f | 2 ϕ 2 dμ + 2 f 2 |∇ϕ| 2 dμ ≤ 2 |∇f | 2 dμ + 8dμ(B ∞ (r) c ).

≤

  Θ (μ (A ∩ B ∞ (r))) + Θ (μ (B ∞ (r) c )) (ii) ≤ 6CCap μ(A ∩ B ∞ (r)) + Θ (μ (B ∞ (r) c )) .

≤

  12C ω ′ T • ω -1 T (r + 1) 2 Cap μ(A ∩ B ∞ (r)) + 48dC μ(B ∞ (r) c ) + Θ (μ (B ∞ (r) c )) .

≤

  12C ω ′ T • ω -1 T (r + 1) 2 Cap μ(A) + (48dCT (1) + 1) Θ (μ (B ∞ (r) c )) ,

  |∇ i f | ≤ b, µ n a.e. (where |∇ i f | denotes the length of the gradient with respect to ith the coordinate) one has

	(3)					
	∀t ≥ 0,	µ n f ≥ f dµ n + t ≤ exp -min	t 2 Cκ 2 a 2 ,	t Cκb √	,	with κ = 18e
		n				
	such that	i=1	|∇ i f | 2 ≤ a 2 and max i=1,...,n			

and S.G. Bobkov proved the following theorem (see [8, Corollary 3.2]) Theorem 1 (Bobkov-Ledoux). If µ satisfies (1), then for every bounded function f on X n

  It is easy to check that if n is sufficiently large, there is m > 0 such that for all t ∈ [0, 1/2], one has t n -a 2 t n ≥ mt. So mt ≤ 3a 1 u 0 , that is to say Capacity-measure inequality of this form is well known to imply the Poincaré inequality (see e.g [4, Proposition 13 and Remark 20]).

	T	1 log(1+1/t) 1	≤	3a 1 u 0	+ a 2 t n	T	1 log(1+(1/t) n ) 1	.
	Now, (1 + (1/t) n ) ≤ (1 + 1/t) n , thus	T	1 1 log(1+(1/t) n )	≤	T	1 1 n log(1+1/t)	≤	T	n log(1+1/t) 1	and
	consequently,									
			t n	≤		3a 1 u 0	+ a 2 t n .
			μ(A) ≤	36C u 0 m	Cap μ(A).

A