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Abstract: This paper addresses the workspace analysis of

two 3-DOF translational parallel mechanisms designed for

machining applications. The two machines features three

fixed linear joints. The joint axes of the first machine are

orthogonal whereas these of the second are parallel. In both

cases, the mobile platform moves in the Cartesian x−y−z

space with fixed orientation. The workspace analysis is con-

ducted on the basis of prescribed kinetostatic performances.

Interval analysis based methods are used to compute the

dextrous workspace and the largest cube enclosed in this

workspace.
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Workspace, Transmissions factors, Stiffness, Design, Inter-
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1 Introduction

Parallel kinematic machines (PKM) are known for
their high dynamic performances and low positioning
errors. The kinematic design of PKM has drawn the
interest of several researchers. The workspace is usu-
ally considered as a relevant design criterion [1, 2, 3].
Parallel singularities [4] occur in the workspace where
stiffness is lost, and thus are very undesirable. They
are generally eliminated by design. The Jacobian ma-
trix, which relates the joint rates to the output veloc-
ities is generally not constant and not isotropic. Con-
sequently, the performances (e.g. maximum speeds,
forces, accuracy and stiffness) vary considerably for
different points in the Cartesian workspace and for
different directions at one given point. This is a se-
rious drawback for machining applications [5, 6, 7].
Some parallel mechanisms were recently shown to be
isotropic throughout the workspace [8, 9, 10]. But
their legs are subject to bending which is not desir-
able for machining applications . To be of interest
for machining applications, a PKM should preserve
good workspace properties, that is, regular shape and
acceptable kinetostatic performances throughout. In
milling applications, the machining conditions must re-
main constant along the whole tool path [11, 12]. In
many research papers, this criterion is not taken into
account in the algorithmic methods used to calculate
the workspace volume [13, 14].

This paper compares two PKM with three trans-
lational DOF derived from the Delta robot originally
designed by Reymond Clavel for pick-and-place opera-
tions [2]. The first one, called UraneSX (Renault Au-
tomation) [15], has three non coplanar horizontal linear
joints, like the Quickstep (Krause & Mauser) . The sec-
ond one, called Orthoglide, has three orthogonal linear
joints [16].

The comparative study is conducted on the basis of
the size of a prescribed workspace with bounded veloc-
ity and force transmission factors, called the dextrous
workspace. Interval analysis based method is used to
compute the dextrous workspace as well as the largest
cube enclosed in this workspace [21].

Next section presents the Orthoglide and UraneSX
mechanisms. The kinematic equations and the singu-
larity analysis are detailed in Section 3. Section 4 is
devoted to the determination of the largest cube en-
closed in the dextrous workspace and to the compara-
tive study between the two mechanisms.

2 Description of the Orthoglide and the

UraneSX

Most existing PKM can be classified into two main
families. PKM of the first family have fixed foot points
and variable length struts and are generally called
“hexapods”. PKM of the second family have variable
foot points and fixed length struts. They are interest-
ing because the actuators are fixed and thus the moving
masses are lower than in the hexapods and tripods.

The Orthoglide and the UraneSX mechanisms stud-
ied in this paper are 3-axis translational PKM and be-
long to the second family. Figures 1 and 2 show the
general kinematic architecture of the Orthoglide and
of the UraneSX, respectively. Both mechanisms have
three parallel PRPaR identical chains (where P , R
and Pa stand for Prismatic, Revolute and Parallelo-
gram joint, respectively). The actuated joints are the
three linear joints.

The output body is connected to the linear joints
through a set of three parallelograms of equal lengths
L = AiBi, so that it can move only in translation.
Vectors ei coincide with the direction of the ith linear
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Figure 1: Orthoglide kinematic architecture

joint. The base points Ai are located at the middle of
the first two revolute joints of the ith parallelogram,
and Bi is at the middle of the last two revolute joints
of the ith parallelogram.

For the Orthoglide mechanism, the first linear joint
axis is parallel to the x-axis, the second one is parallel
to the y-axis and the third one is parallel to the z-
axis. When each vector ei is aligned with AiBi, the
Orthoglide is in an isotropic configuration and the tool
center point P is located at the intersection of the three
linear joint axes.

The linear joint axes of the UraneSX mechanism are
parallel to the z-axis. In fig. 2, points A1, A2 and A3

are the vertices of an equilateral triangle whose geo-
metric center is O and such that OAi = R. Thus,
points B1, B2 and B3 are the vertices of an equilateral
triangle whose geometric center is P , and such that
OBi = r.

3 Kinematic Equations and Singularity Analysis

We recall briefly here the kinematics and the singulari-
ties of the Orthoglide and of the UraneSX (See [15, 16]
for more details).
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Figure 2: UraneSX kinematic architecture

3.1 Kinematic equation and singularity analysis

Let θi and βi denote the joint angles of the parallelo-
gram about axes ii and ji, respectively (Figs. 1 and 2).
Let ρ1, ρ2, ρ3 denote the linear joint variables and L
denote the length of the three legs, AiBi.

For the Orthoglide, the position vector p of the tool
center point P is defined in a reference frame (O, x, y,
z) centered at the intersection of the three linear joint
axes (note that the reference frame has been translated
in Fig. 1 for more legibility).

For the UraneSX, the position vector p of the tool
center point P is defined in a reference frame (O, x, y,
z) centered at the geometric center of the points A1,
A2, and A3 (same remark as above).

Let ρ̇ be referred to as the vector of actuated joint
rates and ṗ as the velocity vector of point P :

ρ̇ = [ρ̇1 ρ̇2 ρ̇3]
T , ṗ = [ẋ ẏ ż]T

ṗ can be written in three different ways by traversing
the three chains AiBiP :

ṗ = eiρ̇i + (θ̇iii + β̇iji) × (bi − ai) (1)

where bi and ci are the position vectors of the points
Bi and Ci, respectively, and ei is the direction vector
of the linear joints, for i = 1, 2,3.

We want to eliminate the three idle joint rates θ̇i

and β̇i from Eqs. (1), which we do by dot-multiplying
Eqs. (1) by bi − ai:

(bi − ai)
T ṗ = (bi − ai)

T eiρ̇i (2)

Equations (2) can now be cast in vector form, namely
Aṗ = Bρ̇, where A and B are the parallel and serial
Jacobian matrices, respectively:

A =





(b1 − a1)
T

(b2 − a2)
T

(b3 − a3)
T



 and B =





η1 0 0
0 η2 0
0 0 η3



 (3)

with ηi = (bi − ai)
T ei for i = 1, 2, 3.

Parallel singularities occur when the determinant of
the matrix A vanishes, i.e. when det(A) = 0. Eq. (3)
shows that the parallel singularities occur when:

(b1 − a1) = α(b2 − a2) + λ(b3 − a3)

that is when the points A1, B1, A2, B2, A3 and B3 lie
in parallel planes. A particular case occurs when the
links AiBi are parallel:

(b1 − a1)//(b2 − a2) and (b2 − a2)//(b3 − a3) (4)

and (b3 − a3)//(b1 − a1)

Serial singularities arise when the serial Jacobian ma-
trix B is no longer invertible i.e. when det(B) = 0.
At a serial singularity a direction exists along which
no Cartesian velocity can be produced. Equation (3)
shows that det(B) = 0 when for one leg i, (bi − ai) ⊥
(bi − ai).

When A is not singular, we can write,

ṗ = Jρ̇ with J = A−1B (5)
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3.2 Velocity transmission factors

For joint rates belonging to a unit ball, namely, ||ρ̇|| ≤
1, the Cartesian velocities belong to an ellipsoid such
that:

ṗ
T (JJT )ṗ ≤ 1

The eigenvectors of matrix JJT define the direction of
the principal axes of this ellipsoid. The square roots
ψ1, ψ2 and ψ3 of the real eigenvalues σ1, σ2 and σ3 of
JJT , i.e. the lengths of the aforementioned principal
axes are the velocity transmission factors in the prin-
cipal axes directions. To limit the variations of these
factors in the Cartesian workspace, we set

ψmin ≤ ψi ≤ ψmax (6)

throughout the workspace. To simplify the problem,
we set ψmin = 1/ψmax where the value of ψmax de-
pends on given performance requirements.

4 Determination of the largest cube enclosed in

the dextrous workspace

For usual machine tools, the Cartesian workspace
shape is generally a parallelepiped. Due to the sym-
metrical architecture of the Orthoglide, the Cartesian
workspace has a fairly regular shape in which it is pos-
sible to include a cube whose sides are parallel to the
planes xy, yz and xz respectively.

The Cartesian workspace of the UraneSX is the in-
tersection of three cylinders whose axes are parallel to
the z-axis. Thus, the workspace is theoretically unlim-
ited in the z-direction and the Jacobian matrix does
not depend on the z coordinate. Practically, only the
limits on the linear joints define the limits of the Carte-
sian workspace in the z-directions.

The aim of the following section is to define the edge
length of the largest cube enclosed in the dextrous
workspace of the Orthoglide and the edge length of
the largest square enclosed in the dextrous workspace
of the UraneSX, as well as the location of their respec-
tive centers for both mechanisms. This is done using an
interval analysis method. Unlike numerical computing
methods, such a method allows to prove formally that
the velocity amplification factors lie in the predefined
range [ψmin ψmax] in a given subpart of the Cartesian
workspace.

Two algorithms are described to define (i) a set of
boxes in the Cartesian workspace in which the velocity
amplification factors remain under the prescribed val-
ues, and (ii) the largest cube enclosed in the dextrous
workspace.

4.1 Box verification

A basic tool of the algorithm is a module M(B) that
takes as input a Cartesian box B and whose output is:

• either that for any point in the box the eigenvalues
lie in the range [σmin, σmax]

• or that for any point in the box one of the eigenval-
ues is either lower than σmin or larger than σmax

• or that the two previous conditions does not hold
for all the points of the box i.e. that for some
points the eigenvalues lie in the range [σmin, σmax]
while this is not true for some other points

The first step of this module consists in considering
an arbitrary point of the box (e.g. its center) and to
compute the eigenvalues at this point: either all of
them lie in the range [σmin, σmax] or at least one of
them lie outside this range.

In the first case if we are able to check that there
is no point in B such that one of the eigenvalues at
this point is be equal to σmin or σmax, then we can
guarantee that for any point in B the eigenvalues will
be in the range [σmin, σmax]. Indeed assume that at a
given point B the lowest eigenvalue is lower than σmin:
this implies that somewhere along the line joining this
point to the center of the box the lowest eigenvalue will
be exactly σmin. To perform this check we substitute
σmin to the unknown in the characteristic polynomial
of JJT to get a polynomial in x, y, z only. We now
have to check if there exists some values for these three
cartesian coordinates that cancel the polynomial, be-
ing understood that these values have to define a point
belonging to B: this is done by using an interval anal-
ysis algorithm from the ALIAS library [21].

Assume now that at the center of the box the largest
eigenvalue is greater than σmax. If there is no point in
B such that one of the eigenvalues is equal to σmax,
then we can guarantee that for any point in B the
largest eigenvalue will always be greater than σmax.
This check is performed by using the same method as
in the previous case. Hence the M module will return:

• 1: if for all points in B the eigenvalues lie
in [σmin, σmax] (hence B is in the dextrous
workspace)

• -1: if for all points in B either the largest eigen-
value is always greater than σmax or the lowest
eigenvalue is lower than σmin (hence B is outside
the dextrous workspace).

• 0: in the other cases i.e. parts of B may be either
outside or inside the dextrous workspace

4.2 Determination of the dextrous workspace

The dextrous workspace W is here defined as the loci
of the points for which square real roots of the eigenval-
ues of the matrix JJT , i.e. the velocity transmission
factors, lie within the predefined range [σmin, σmax].
The eigenvalues are determined by solving the third
degree characteristic polynomial of the matrix JJT .

The polynomial is only defined for the points within
the intersection I of the three cylinders defined by

x2 + y2 ≤ L x2 + z2 ≤ L y2 + z2 ≤ L

for the Orthoglide, and,

(x−R+ r)2 + y2 ≤ L

(x− (R − r)/2)
2

+
(

y − (R− r)
√

3/2
)2

≤ L

(x− (R − r)/2)2 +
(

y + (R− r)
√

3/2
)2

≤ L
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for the UraneSX.
To solve numerically the above equations and to

compare the two mechanisms, the length of the legs
is normalized, i.e. we set L = 1.

4.3 Algorithm

We will now describe a method for determining a cube
that is enclosed in the workspace of both mechanisms,
whose edge length is 2W and such that there is no other
cube enclosed in the workspace with an edge length of
2(W + α), where α is an accuracy threshold fixed in
advance.

The first step is to determine the largest cube en-
closed in the workspace with a center located at (0,0,0).
This is done by using the M module on the Cartesian
box Binit [−kα, kα], [−kα, kα], [−kα, kα] where k is an
integer initialized to 1. Each time the M module re-
turns 1 for Binit (which means that the cube with edge
length 2kα is enclosed in the dextrous workspace) we
double the value of k. If this module returns -1 for
a value of k larger than 1 this implies that the cube
with edge length kα/2 lie in the dextrous workspace
while the cube with edge length kα does not. Hence
we restart the process with k = k/2 + 1.Otherwise we
have determined that the cube with edge length 2kα
is enclosed in the dextrous workspace, while the cube
with edge length 2(k+ 1)α does not. The value 2kα is
hence an initial value for W .

We then use the following algorithm for determining
the largest cube enclosed in the dextrous workspace.
We start with the Cartesian box B0= [−L,L], [−L,L],
[−L,L] that enclose the workspace and we use a list of
Cartesian boxes L indexed by i with n elements:

1. If i > n EXIT

2. Using interval arithmetics, check if Bi contains
points such that a box centered at these points
with edge length W + α is fully enclosed in the
workspace.

(a) If the box does not contain such points dis-
card the box, set i to i+ 1 and restart.

(b) If the box contains points that belong and
point that does not belong to the workspace,
check if the box has at least one range that is
larger than α. If not, there is no point in the
box that can be the center of a cube with
edge length at least W + α and that is en-
closed in the workspace. Hence we may dis-
card this box. If yes bissect the box along one
of this range, thereby creating 2 new boxes
that are stored at the end of L. Set i to i+1
and restart.

3. At this stage the box Bi contains only points that
may be the center of a cube with edge length at
least W + α and fully enclosed in the workspace.

4. If the maximal width of the box is lower or equal
to α, use the procedure described for the center at
(0,0,0) to determine the largest cube centered at
the center of the box that lie within the dextrous

λ Center LWorkspace

0.00 (-0.0178,-0.0045) 0.510
0.05 (-0.0179,-0.0022) 0.470
0.10 (-0.0225,-0.0031) 0.420
0.15 (-0.0245,-0.0018) 0.370
0.20 (-0.0211,-0.0033) 0.320

Table 1: Variations of the edge length of the

square workspace for the UraneSX mechanism

workspace. If this procedure provides a cube with
edge length larger than W , update W . Set i to
i+ 1 and restart.

5. If the maximal width of the box is greater than
α use the procedure described for the center at
(0,0,0) to determine the largest cube centered at
the center of the box that lie within the dextrous
workspace. If this procedure provides a cube with
edge length larger than W , update W . Select a
variable of the box that has a range larger than
α, bissect the box, thereby creating 2 new boxes
that are stored at the end of L. Set i to i+ 1 and
restart.

This procedure ensures to determine a cube with edge
length W that is enclosed in the workspace and in the
dextrous workspace, while there is no such cube with
edge length W + α.

4.4 Design parameters and results

To compare the two mechanisms, the leg length L is set
to 1 and the bounds on the velocity factor amplification
are ψ = [0.5 2] with α = 0.001. For the UraneSX, it
is necessary to define two additional lengths, r and
R. However, the edge length of the workspace only
depends on R− r.

For the Orthoglide, we found out that the largest
cube has its center located at (0.086, 0.086, 0.086) and
that its edge length is LWorkspace = 0.644.

For the UraneSX, the design parameters are those
defined in [15], which we have normalized to have L =
1, i.e. r = 3/26 and R = 7/13. To compare the
two mechanisms, we increase the value of R such that
R′ = R + λ with λ = [0.0, 0.2]. For R < 7/13, the
constraints on the velocity amplification factors are not
satisfied.

The optimal value ofR′ is obtained for λ = 0, i.e. for
the design parameters defined in [15] for an industrial
application. To expand this square workspace in the
z-direction, the range limits must be equal to the edge
length of the square plus the range variations necessary
to move throughout the square in the x− y plane.

The constraints on the velocity amplification factors
used for the design of the Orthoglide are close to those
used for the design of the UraneSX, which is an indus-
trial machine tool. For the same length of the legs, the
size of the cubic workspace is larger for the Orthoglide
than for the UraneSX.

For the Orthoglide, the optimization puts the serial
and parallel singularities far away from the Cartesian
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workspace [16]. The UraneSX has no parallel singu-
larities due to the design parameters (R − r < L),
but serial singularity cannot be avoided with the pre-
vious optimization function. To produce the motion in
the z-direction, the range limits of the linear joints are
set such that the constraints on the velocity amplifica-
tion factors are not satisfied throughout the Cartesian
workspace.

5 Conclusions

Two 3-DOf translational PKM are compared in this
paper: the Orthoglide and the UraneSX. The dex-
trous workspace is defined as the part of the Carte-
sian workspace where the velocity amplification fac-
tors remain within a predefined range. The dex-
trous workspace is really available for milling tool
paths because the performances are homogeneous in
it. The largest cube for the Orthoglide and the
largest square for the UraneSX enclosed in the dex-
trous workspace are computed using an interval analy-
sis based method. This method is interesting because
it allows to prove formally whether in a subpart of the
Cartesian workspace the velocity amplification factors
remain within a predefined range or not. These results
can be used to design partially these mechanisms for
milling applications.
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