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L ocalization of Bogolyubov Quasiparticlesin Interacting Bose-Einstein Condensates Subjected to
Correlated Random Potentials

P. Lugan, D. Clement, P. Bouyer, A. Aspect, and L. Sanchaerieia
Laboratoire Charles Fabry de I’ Institut d Optique, CNRS and Univ. Paris-Sud,
Campus Polytechnique, RD 128, F-91127 Palaiseau cedex, Francﬁ
(Dated: 19th July 2007)

We study the Anderson localization of Bogolyubov quasipkas in an interacting Bose-Einstein condensate
(with healing lengttt) subjected to a random potential (with finite correlatiamgihor). We derive analytically
the Lyapunov exponent as a function of the quasiparticle emomk and we study the localization maximum
kmax. For 1D speckle potentials, we find thatax o< 1/ wheng > or while kmax o< 1/0r Whené < og, and
that the localization is strongest whén~ or. Numerical calculations support our analysis and our egtm
indicate that the localization of the Bogolyubov quasiig#est is accessible in current experiments with ultracold
atoms.

PACS numbers: 05.30.Jp,03.75.Hh,64.60.Cn,79.60.Ht

One important issue in mesoscopic physics concerns thgotentials made of a series of impurities, i.e. for uncaesd
effects of disorder in systems where both quantum interferpotentials [2].
ences and particle-particle interactions play cruciasol It In this Letter, we present a general quantitative treatroknt
is known that multiple scattering of non-interacting quant  the localization of the BQPs in an interacting BEC with heal-
particles from a random potential leads to strong Andersoiihg length¢ in a weak random potential with arbitrary corre-
localization (AL) [d], for arbitrary weak disorder in 1D and [ation lengtho,. For weak disorder, we give an explicit trans-
2D and for strong-enough disorder in 3[p [2]. The problem isformation that allows us to map rigorously the many-body Bo-
more involved in the presence of interactions. Strong disor golyubov equations onto the Schrodinger equation for a non
in repulsively interacting Bose gases induces novel itsiga  interacting particle in a screened random potential, wiieh
quantum states, such as the Bdde [3] and Lifsfiits [4] glassegerive analytically. We calculate the Lyapunov exponerd as
For moderate disorder and interactions, the system forms gynction of the BQP wavenumbgifor a 1D speckle potential.
Bose-Einstein condensate (BE@) [4[]5. 6], and in this regimeFor a given ratic /o, we determine the wavenumbggay for
the disorder induces the depletion of the condensed and-sup&vhich the localization is maximum: We find that fors> o,
fluid fractions []7] and the damping of sound wavEs [8]. Emax ~ 1/€ while for ¢ < o, kmax ~ 1/0x. The absolute

These studies have direct applications to experiments oftaximum of localization is found whefi ~ o5, a situation
||qu|d 4He in porous med|a[[9]’ in particu|ar to understandWhere the finite-range correlations of the disorder haveeto b
the absence of superfluidity. Moreover, the realizationisf d taken into account. Numerical calculations support out-ana
ordered gaseous BECE[ E E 14] has renewed thysis. Finally, possibilities to observe the AL of the BQPs in
issue, due to an unprecedented control of the parameters @fseous BECs are discussed.
these systems. For instance, using optical speckle figlls [1  We consider al-dimensional Bose gas in a potentiair)
one can control the amplitude and design the correlatioo-fun with weak repulsive short-range atom-atom interactionarc
tion of the random potential almost at will. Speckle potalsti  acterized by the coupling constant Its physics is governed
with a correlation length of a fraction of a micron have beenby the many-body Hamiltonian
realized [1}4], opening possibilities for experimentaliés of

AL (18, L1). = / dr { (52 /2m)[(V0)*7 + (VV/7)?]
Transport processes in repulsively interacting BECs can
exhibit AL [[[7, [L§]. However, for BECs at equilibrium, +V(r)n + (g/2)d* — i} (1)

interaction-induced delocalizing effects dominate disor

induced localization, except for very weak interacti(ﬁhﬂb wherem is the atomic masgy is the chemical potential and
The ground state of an interacting BEC at equilibrium is thusd and# are the phase and density operators which fulfill the
extended. Beyond, one may wonder how the many-body (cokommutation relatiorii(r), §(r')] = ié(r — r’). According
lective) excitations of the BEC behave in the presence okweato the Bogolyubov-Popov theorﬂl@ 22], for small phase
disorder. In dilute BECs, these excitations corresponti¢o t gradients §%|V0|?/2m < p) and small density fluctuations
generation of quasiparticles (particle-hole pairs) descrby (672 < nc, wherene = (d) anddn = n — n¢), Hamilto-

the Bogolyubov theorymg]. In this case, the interplay of in nian @) can be diagonalized up to second order in the form
teractions and disorder is subtle and strong arguments indi = Eo+> e BIBU, WhereBV is the annihilation operator
cate that the Bogolyubov quasiparticles (BQP) are semsitivof the excitation (BQP) of energy,. The many-body ground

to a random potentiaicreened by the BEC density[[5]. This state of the Bose gas corresponds to a BEC with a uniform
problem has been addressed in the idealized case of randgrhase and a density governed by the Gross-Pitaevskii equa-
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tion (GPE): can be overcome by using appropriate linear comblnayﬁns
. of the f functions. The right choice turns out to bg =
= —h*V (\/n_C)/Qm\/TTc + V(I‘) + gnc(l‘)- ) i1/2fk :F1/2fk with pj, = 1+ 1/(k)? andk =

|k| Then, forV = 0, the equations fogiE are uncoupled
[see Egs. EEO)] and we recover the well-known plane-wave
solutions of wavevectok and energye, = pi(h?k?/2m)

0(r) = 2\/% > [fj(r) bl — h'c'} (3 |fd]. For weak but finite, inserting Eq. [{7) into Eqs[]&.6),
we find
= \/ne(r) Z[ ) by +hc}, (4)

Expanding) andér in the basis of the excitations:

h%k? h? 206V
TR B A e
and inserting these expressions into £h. (1), the Hamétoni )
reduces to the diagonal fordl = Eo+> e bi bl,, pro- + {V _ 3+ 0k f/] + 9)
vided that the functiong* fulfill the Bogolyubov-de Gennes 1+ p}
equations (BAGE)[23]: SRR R, 2ka ;
TP R T Tom Y R T 14,
[—(B?/2m)V2 +V + gne—p] f;f = e f,  (5)
_ 1
(R /2m)V? +V + 3gme— ] £ = cuffs (6) #y- 2 v] (10)
ith th lizati diti .
\}”dr e nfoJ[r(nz)i |]za Iin 05 cogqij;)n Equations[(9,30) are coupled at most by a term of the order of
tions [isﬁb) form a complete set to calculate the grounoV [since V| < |V]and2p,/(1 + pf) < 1]. This formula-

ion is thus suitable for perturbative approaches. It sthiel
rioted that the functiong’ andgk have very different behav-
lors owing to the different signs in the left-hand-side tefim

Here, we analyze the properties of the BQPs in the pres- Egs. @) ano@IO) Equat|om10) can be solved to the lowest or
ence of weak disorder. According to Eqg[]5,6), these are déjer i/ by a Green fur;;:etlon method similar to that used in
termined by the interplay of the disorddrY and the BEC  Ref. [§]: we findg (r) ~ oy ] dr'Ge, (r—r WV )g ('),
density backgroundh). LetV(r) be a weak random poten- where¢;, = ¢//1+ (k€)2. Equat|0n [P) cannot be solved
tial (V < u, see below) with a vanishing averad®§{ = 0) using the same method because the perturbation series di-
and a finite-range correlation functio(r) = VZc(r/ox),  verges. Nevertheless, from the solution §gr, we find that
wher_eVR = /(V?) is the standard deviat?on, and the cor- l9x /o] < 1f(/;g)2 |V| < |‘7|/M < 1. The coupling term in
relation length of/’. It has been shown in Refd] [B, 6] that E

g. @a) can thus be neglected to first ordemvl 1 and we are

the BEC density is extended for strong-enough repulsive i NSt with the closed equation
teractions (i.e. fo€ <« L, where¢ = h/\/4my is the healing
length andL the size of the BEC). More precisely, up to first (52 2+ + o (5212 +
order inVz /i, the solution of the GPE[|(2) reads (W/2m)V g +V{xlgic = (k7 /2m)gc. (1)

state (BEC) and excitations (BQPs) of the Bose gas. Therjf
using Egs. |]:E|4) one can compute all properties of flnlte
temperature or time-dependent BECs.

~ where
ne(r) = [p—V(r)l/g (7)
- 1+ 4(k€)? ~ 12
whereV (r) = [ dr'Ge(r—r')V (r') with G¢, the Green func- V() =V(r) - 1+ 2(k)2 (x). (12)
tion of the linearized GP 6]. The functiaf; is eas- . o o _
ily written in Fourier space[[34]Ge(q) = (2)~¥/2/[1 + Interest[ngly, Eq.@l) is smﬂar to .the Schrodmg_er etipra
(Iq/€)?]. Then, one finds for non-interacting bare particles with wavevedtgiin a ran-
dom potential’(r). This mapping allows us to determine the
{7(q) =V(a)/[1+ (lq/¢)?] (8) localization properties of the BQPs using standard methods

N for bare particles in 1D, 2D or 3[) [P5]. However, sirér)

so that, roughly speakind;(r) is obtained froni/(r) by sup-  depends on the wavevectkritself, the localization of the
pressing the short-wavelength components (i.e. the comp®QPs is dramatically different than that of bare particles a
nents with|q| larger than¢ —!). The potential/ (r) is thus a  discussed below.
smoothed potent|a|][6] Then, If is a homogeneous random  In the remainder of the Letter, we restrict ourselves to the
potential, so i9/, and according to Eq[|(7) the BEC density 1D case, for simplicity, but also because AL is expected to be
profile n¢ is random but extendeﬂ [E 6]. stronger in lower dlmenS|onE| [2]. It is also worth notingttha

In order to study the localization properties of the BQPs,the Lyapunov exponerit, is a self-averaging quantity in 1D
we have to solve the BAGHS [f,6), which is difficult in generalwhich can be computed in the Born approximation using the
because they are strongly coupled. We show however thaphase formalism approa.25] (see also F' [17]). We find
for a weak (possibly random) potentill(r), this difficulty T, = (v/27/8)(2m/h%k)?C(2k), whereC(q) is the Fourier



transform of the correlation function af(z), provided that TRfE gim
Iy < k [L§,[17.[2F]. Since&(q) < (|V(q)[?), the component org v
of V relevant for the calculation df, is V(¢ = 2k). From ‘

Egs. [B[1p), we find that
V(2k) = S(E)V (2k); S(kE) = 2(k€)?/[1 + 2(k€)?]

(13)
and the Lyapunov exponent of the BQP reads —
Ty = [S(kE)) 7k (14) [—
0.005

wherey;, = (vV27/32)(Va/p)?(0r/ k%) c(2k0y) is the Lya-
punov exponent for a bare particle with the same wavenumber
k L7, 231-

Let us summarize the validity conditions of the perturba-
tive approach presented here. It requires: (i) the smogthin
solution G’) to be valid (i.eV; < p); (ii) the coupling term  Figure 1: (color online) Density plot of the Lyapunov expohef
proportional tag; in Eq. (§) to be negligible (which is valid if ~the BQPs for a 1D speckle potential.

Ve < w); and (i) the phase formalism to be applicable. The

latter requiredy, <k, I.e. (Va/ 1) (00/€)"/* < (’f?j/z[l +  ing the corresponding reduced correlation functiofs) =
1/2(k€)?), which is valid for anyk if (Vi/u)(0%/€)"/? < 1. 7/2(1 — k/2)0(1 — x/2) where® is the Heaviside func-
Applying Eq. {I}#) to uncorrelated random potentialstigp ], into Eq. [1h), we find

[C(z) = 2D§(z) with 0p — 0, Vi — oo and2D =
V2o [ dzce(z) = cst], one recovers the formula fér, found (Vi % oxk2(1 — ko)
in Ref. ]. Our approach generalizes this result to poten- TR ; 1+ 2(k€)2)2
tials with finite-range correlations, which proves usefate L . .

which is plotted in F|g.|:|1. In order to test our gen-

uncorrelated random potentials are usually crude appm@xim ) .
P y PP eral approach on the basis of this example, we have per-

tions of realistic disorder, for which; can be significantly ¢ q ical calculati . direct int ti6
large. For instance, we will show below that&if < o, as ormec humerical cajculations using a direct integration o

: : : the BAGEs [(]6) in a finite but large box of siZe The
e.g. in the experiments reported in Refs] [L4, [L}.[1R[T3, 14] .
the behavior ofl';, versusk is dramatically affected by the Lyapunov expanents are exiracted from the asymptotic be-

finite-range correlations of the disorder. havior oflog[rk(2)/ri(zk)]/|2 — x|, wherez is the local-

Let us discuss the physical content of Eqs] [(11,12). Accord/Zation center and (z) is the envelope of the functiog;,
ingto Eqs. [H]G), the properties of the BQPs are determigied bobtamed numerically. The numerical data, averaged over 40

both the bare random potentidl and the BEC density in realizations of the disorder, are in excellent agreemettt wi
c . . . .
a non-trivial way. Equatior{ (} 1) makes their roles moregran formula {1§) as shown in Fid] 2. These results validate our

parent. Having in mind that the appearance of the smoothefappr(_)aCh‘ It should be noted hoyvever that the numerical cal-
potentialf/(z) in Eq. (1}) is reminiscent of the presence of cul_at|ons return BQP wavefuncﬂong th?t can t_)e strongl_y lo-
the meanfield interactiopn. in the BAdGEs [(]6), it appears cahzeg forllvgry S?alrll momenﬂa b-:fhls.gg discussed in
that the random potentidd(z), relevant for the BQPs, results more eta_l siha orthcoming pu X ication . J

from thescreening of the random potentidl (=) by the BEC Of special interest are the maximalgf, which correspond
density backgrouno[[S] More precisely, the express@) (13to the situations where the localization of a BQP is maximum.
for the Fourier component(2k), relevant' for the Lyapunov It is straightforward to show that, fo_r a fixed set Qf parame-
exponent of a BQP, shows that the screening strength depenﬁasrs(VR/“’ & o), I'x IS non-monotonic and has a single max-
on the wavenumbeék. In thefree-particleregime (k > 1/¢), '”.‘“m”fmax' in the range{O,.l/aR] (see F_|g|]2). This contrasts
we find that the Lyapunov exponent of a BQP equals that of é(‘”th the case of bare partlcl_es, for which th? Lyapunc_)v EXpo-
bare particle with the same wavenumbEf, (~ ), as ex- nent-, decreases monotonically as a f_unctlgrkoprowded
pected. In thephonon regime (k < 1/¢), the disorder is that C'(2kos) decreases versus(which is valid for a broad

strongly screened and we fiiith, < ~, i.e. the localization class of random potentiaIEIZS]). The existence of a loaaliz

of a BQP is much weaker than that of a bare patrticle. Thes’%(‘)n maximum versus the wavenumiseis thus specific to the

findings agree with and generalize the results obtained fro QPs and results from the strong screening of the disorder in

the transfer matrix method, which applies to random potenI € phonon regime. In general, the valuekgf,, shown in

tials made of a 1D random series&aécattererﬂO]. the inset of F|g[|2 versus the correlation length of the disor

Our approach applies to any weak random potential withder' depends on both andgg. In the limiting case where

a finite correlation length. As an important application, weor < &, We findkmay ~ ﬁg (1 - ng) so that the localiza-
examine now in more details the case of 1D speckle potertion is maximum near the crossover from the phonon regime
tials used in quantum gasefs J[10] f3, 14]. Insertto the free-particle regime as for uncorrelated potenfzdé

k.
5 2% son

(1 — ko)  (15)
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