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We study the Anderson localization of Bogolyubov quasiparticles in an interacting Bose-Einstein condensate
(with healing lengthξ) subjected to a random potential (with finite correlation lengthσR). We derive analytically
the Lyapunov exponent as a function of the quasiparticle momentumk and we study the localization maximum
kmax. For 1D speckle potentials, we find thatkmax ∝ 1/ξ whenξ ≫ σR while kmax ∝ 1/σR whenξ ≪ σR, and
that the localization is strongest whenξ ∼ σR. Numerical calculations support our analysis and our estimates
indicate that the localization of the Bogolyubov quasiparticles is accessible in current experiments with ultracold
atoms.

PACS numbers: 05.30.Jp,03.75.Hh,64.60.Cn,79.60.Ht

One important issue in mesoscopic physics concerns the
effects of disorder in systems where both quantum interfer-
ences and particle-particle interactions play crucial roles. It
is known that multiple scattering of non-interacting quantum
particles from a random potential leads to strong Anderson
localization (AL) [1], for arbitrary weak disorder in 1D and
2D and for strong-enough disorder in 3D [2]. The problem is
more involved in the presence of interactions. Strong disorder
in repulsively interacting Bose gases induces novel insulating
quantum states, such as the Bose [3] and Lifshits [4] glasses.
For moderate disorder and interactions, the system forms a
Bose-Einstein condensate (BEC) [4, 5, 6], and in this regime,
the disorder induces the depletion of the condensed and super-
fluid fractions [7] and the damping of sound waves [8].

These studies have direct applications to experiments on
liquid 4He in porous media [9], in particular to understand
the absence of superfluidity. Moreover, the realization of dis-
ordered gaseous BECs [10, 11, 12, 13, 14] has renewed this
issue, due to an unprecedented control of the parameters in
these systems. For instance, using optical speckle fields [15]
one can control the amplitude and design the correlation func-
tion of the random potential almost at will. Speckle potentials
with a correlation length of a fraction of a micron have been
realized [14], opening possibilities for experimental studies of
AL [16, 17].

Transport processes in repulsively interacting BECs can
exhibit AL [17, 18]. However, for BECs at equilibrium,
interaction-induced delocalizing effects dominate disorder-
induced localization, except for very weak interactions [5, 6].
The ground state of an interacting BEC at equilibrium is thus
extended. Beyond, one may wonder how the many-body (col-
lective) excitations of the BEC behave in the presence of weak
disorder. In dilute BECs, these excitations correspond to the
generation of quasiparticles (particle-hole pairs) described by
the Bogolyubov theory [19]. In this case, the interplay of in-
teractions and disorder is subtle and strong arguments indi-
cate that the Bogolyubov quasiparticles (BQP) are sensitive
to a random potentialscreened by the BEC density [5]. This
problem has been addressed in the idealized case of random

potentials made of a series of impurities, i.e. for uncorrelated
potentials [20].

In this Letter, we present a general quantitative treatmentof
the localization of the BQPs in an interacting BEC with heal-
ing lengthξ in a weak random potential with arbitrary corre-
lation lengthσR. For weak disorder, we give an explicit trans-
formation that allows us to map rigorously the many-body Bo-
golyubov equations onto the Schrödinger equation for a non-
interacting particle in a screened random potential, whichwe
derive analytically. We calculate the Lyapunov exponent asa
function of the BQP wavenumberk for a 1D speckle potential.
For a given ratioξ/σR, we determine the wavenumberkmax for
which the localization is maximum: We find that forξ ≫ σR,
kmax ∼ 1/ξ while for ξ ≪ σR, kmax ∼ 1/σR. The absolute
maximum of localization is found whenξ ∼ σR, a situation
where the finite-range correlations of the disorder have to be
taken into account. Numerical calculations support our anal-
ysis. Finally, possibilities to observe the AL of the BQPs in
gaseous BECs are discussed.

We consider ad-dimensional Bose gas in a potentialV (r)
with weak repulsive short-range atom-atom interactions, char-
acterized by the coupling constantg. Its physics is governed
by the many-body Hamiltonian

Ĥ =

∫
dr

{
(~2/2m)[(∇θ̂)2n̂ + (∇

√
n̂)2]

+V (r)n̂ + (g/2)n̂2 − µn̂
}

(1)

wherem is the atomic mass,µ is the chemical potential and
θ̂ andn̂ are the phase and density operators which fulfill the
commutation relation[n̂(r), θ̂(r′)] = iδ(r − r′). According
to the Bogolyubov-Popov theory [19, 21, 22], for small phase
gradients (~2|∇θ|2/2m ≪ µ) and small density fluctuations
(δn̂ ≪ nc, wherenc = 〈n̂〉 and δn̂ = n̂ − nc), Hamilto-
nian (1) can be diagonalized up to second order in the form
Ĥ = E0 +

∑
ν ǫν b̂†ν b̂ν , wherêbν is the annihilation operator

of the excitation (BQP) of energyǫν . The many-body ground
state of the Bose gas corresponds to a BEC with a uniform
phase and a density governed by the Gross-Pitaevskii equa-
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tion (GPE):

µ = −~
2∇2(

√
nc)/2m

√
nc + V (r) + gnc(r). (2)

Expandinĝθ andδn̂ in the basis of the excitations:

θ̂(r) =
−i

2
√

nc(r)

∑

ν

[
f+

ν (r) b̂†ν − h.c.
]

(3)

δn̂(r) =
√

nc(r)
∑

ν

[
f−

ν (r) b̂ν + h.c.
]
, (4)

and inserting these expressions into Eq. (1), the Hamiltonian
reduces to the diagonal form̂H = E0 +

∑
ν ǫν b̂†ν b̂ν , pro-

vided that the functionsf±
ν fulfill the Bogolyubov-de Gennes

equations (BdGE) [23]:
[
−(~2/2m)∇2 + V + gnc − µ

]
f+

ν = ǫνf−
ν (5)

[
−(~2/2m)∇2 + V + 3gnc − µ

]
f−

ν = ǫνf+
ν , (6)

with the normalization condition∫
dr

[
f+

ν (r)f−
ν′ (r)∗ + f−

ν (r)f+
ν′(r)∗

]
= 2δν,ν′ . Equa-

tions (2,5-6) form a complete set to calculate the ground
state (BEC) and excitations (BQPs) of the Bose gas. Then,
using Eqs. (3,4), one can compute all properties of finite
temperature or time-dependent BECs.

Here, we analyze the properties of the BQPs in the pres-
ence of weak disorder. According to Eqs. (5,6), these are de-
termined by the interplay of the disorder (V ) and the BEC
density background (nc). Let V (r) be a weak random poten-
tial (Ṽ ≪ µ, see below) with a vanishing average (〈V 〉 = 0)
and a finite-range correlation function,C(r) = V 2

R c(r/σR),
whereVR =

√
〈V 2〉 is the standard deviation, andσR the cor-

relation length ofV . It has been shown in Refs. [5, 6] that
the BEC density is extended for strong-enough repulsive in-
teractions (i.e. forξ ≪ L, whereξ = ~/

√
4mµ is the healing

length andL the size of the BEC). More precisely, up to first
order inVR/µ, the solution of the GPE (2) reads

nc(r) = [µ − Ṽ (r)]/g (7)

whereṼ (r) =
∫

dr′Gξ(r−r′)V (r′) with Gξ, the Green func-
tion of the linearized GPE [4, 6]. The functionGξ is eas-
ily written in Fourier space [24]:Gξ(q) = (2π)−d/2/[1 +
(|q|ξ)2]. Then, one finds

Ṽ (q) = V (q)/[1 + (|q|ξ)2] (8)

so that, roughly speaking,̃V (r) is obtained fromV (r) by sup-
pressing the short-wavelength components (i.e. the compo-
nents with|q| larger thanξ−1). The potential̃V (r) is thus a
smoothed potential [6]. Then, ifV is a homogeneous random
potential, so is̃V , and according to Eq. (7), the BEC density
profilenc is random but extended [4, 6].

In order to study the localization properties of the BQPs,
we have to solve the BdGEs (5,6), which is difficult in general
because they are strongly coupled. We show however that,
for a weak (possibly random) potentialV (r), this difficulty

can be overcome by using appropriate linear combinationsg±
k

of the f±
k

functions. The right choice turns out to beg±
k

=

±ρ
±1/2
k f+

k
+ ρ

∓1/2
k f−

k
with ρk =

√
1 + 1/(kξ)2 andk =

|k|. Then, forV = 0, the equations forg±
k

are uncoupled
[see Eqs. (9,10)] and we recover the well-known plane-wave
solutions of wavevectork and energyǫk = ρk(~2k2/2m)
[19]. For weak but finiteV , inserting Eq. (7) into Eqs. (5,6),
we find

~
2k2

2m
g+
k

= − ~
2

2m
∇2g+

k
− 2ρkṼ

1 + ρ2
k

g−
k

+

[
V − 3 + ρ2

k

1 + ρ2
k

Ṽ

]
g+
k

(9)

−ρ2
k

~
2k2

2m
g−
k

= − ~
2

2m
∇2g−

k
− 2ρkṼ

1 + ρ2
k

g+
k

+

[
V − 1 + 3ρ2

k

1 + ρ2
k

Ṽ

]
g−
k

. (10)

Equations (9,10) are coupled at most by a term of the order of
V [since |Ṽ | ≤ |V | and2ρk/(1 + ρ2

k) ≤ 1]. This formula-
tion is thus suitable for perturbative approaches. It should be
noted that the functionsg+

k
andg−

k
have very different behav-

iors owing to the different signs in the left-hand-side terms in
Eqs. (9) and (10). Equation (10) can be solved to the lowest or-
der inṼR/µ by a Green function method similar to that used in
Ref. [6]: we findg−

k
(r) ≃ 2/ǫk

1+ρ2

k

∫
dr′Gξk

(r−r′)Ṽ (r′)g+
k

(r′),

whereξk = ξ/
√

1 + (kξ)2. Equation (9) cannot be solved
using the same method because the perturbation series di-
verges. Nevertheless, from the solution forg−

k
, we find that

|g−
k

/g+
k
| .

2/ǫk
1+(kξ)2 |Ṽ | < |Ṽ |/µ ≪ 1. The coupling term in

Eq. (9) can thus be neglected to first order inṼR/µ and we are
left with the closed equation

−(~2/2m)∇2g+
k

+ V(r)g+
k
≃ (~2k2/2m)g+

k
, (11)

where

V(r) = V (r) − 1 + 4(kξ)2

1 + 2(kξ)2
Ṽ (r). (12)

Interestingly, Eq. (11) is similar to the Schrödinger equation
for non-interacting bare particles with wavevectork, in a ran-
dom potentialV(r). This mapping allows us to determine the
localization properties of the BQPs using standard methods
for bare particles in 1D, 2D or 3D [25]. However, sinceV(r)
depends on the wavevectork itself, the localization of the
BQPs is dramatically different than that of bare particles as
discussed below.

In the remainder of the Letter, we restrict ourselves to the
1D case, for simplicity, but also because AL is expected to be
stronger in lower dimensions [2]. It is also worth noting that
the Lyapunov exponentΓk is a self-averaging quantity in 1D
which can be computed in the Born approximation using the
phase formalism approach [25] (see also Ref. [17]). We find
Γk = (

√
2π/8)(2m/~

2k)2C(2k), whereC(q) is the Fourier
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transform of the correlation function ofV(z), provided that
Γk ≪ k [16, 17, 25]. SinceC(q) ∝ 〈|V(q)|2〉, the component
of V relevant for the calculation ofΓk is V(q = 2k). From
Eqs. (8,12), we find that

V(2k) = S(kξ)V (2k); S(kξ) = 2(kξ)2/[1 + 2(kξ)2]
(13)

and the Lyapunov exponent of the BQP reads

Γk = [S(kξ)]2γk (14)

whereγk = (
√

2π/32)(VR/µ)2(σR/k2ξ4)c(2kσR) is the Lya-
punov exponent for a bare particle with the same wavenumber
k [17, 25].

Let us summarize the validity conditions of the perturba-
tive approach presented here. It requires: (i) the smoothing
solution (7) to be valid (i.e.̃VR ≪ µ); (ii) the coupling term
proportional tog−k in Eq. (9) to be negligible (which is valid if
ṼR ≪ µ); and (iii) the phase formalism to be applicable. The
latter requiresΓk ≪ k, i.e. (VR/µ)(σR/ξ)1/2 ≪ (kξ)3/2[1 +
1/2(kξ)2], which is valid for anyk if (VR/µ)(σR/ξ)1/2 ≪ 1.

Applying Eq. (14) to uncorrelated random potentials
[C(z) = 2Dδ(z) with σR → 0, VR → ∞ and 2D =
V 2

R σR

∫
dxc(x) = cst], one recovers the formula forΓk found

in Ref. [20]. Our approach generalizes this result to poten-
tials with finite-range correlations, which proves useful since
uncorrelated random potentials are usually crude approxima-
tions of realistic disorder, for whichσR can be significantly
large. For instance, we will show below that ifξ . σR, as
e.g. in the experiments reported in Refs. [10, 11, 12, 13, 14],
the behavior ofΓk versusk is dramatically affected by the
finite-range correlations of the disorder.

Let us discuss the physical content of Eqs. (11,12). Accord-
ing to Eqs. (5,6), the properties of the BQPs are determined by
both the bare random potentialV and the BEC densitync in
a non-trivial way. Equation (11) makes their roles more trans-
parent. Having in mind that the appearance of the smoothed
potentialṼ (z) in Eq. (12) is reminiscent of the presence of
the meanfield interactiongnc in the BdGEs (5,6), it appears
that the random potentialV(z), relevant for the BQPs, results
from thescreening of the random potentialV (z) by the BEC
density background [5]. More precisely, the expression (13)
for the Fourier componentV(2k), relevant for the Lyapunov
exponent of a BQP, shows that the screening strength depends
on the wavenumberk. In thefree-particle regime (k ≫ 1/ξ),
we find that the Lyapunov exponent of a BQP equals that of a
bare particle with the same wavenumber (Γk ≃ γk), as ex-
pected. In thephonon regime (k ≪ 1/ξ), the disorder is
strongly screened and we findΓk ≪ γk, i.e. the localization
of a BQP is much weaker than that of a bare particle. These
findings agree with and generalize the results obtained from
the transfer matrix method, which applies to random poten-
tials made of a 1D random series ofδ-scatterers [20].

Our approach applies to any weak random potential with
a finite correlation length. As an important application, we
examine now in more details the case of 1D speckle poten-
tials used in quantum gases [10, 11, 12, 13, 14]. Insert-

Figure 1: (color online) Density plot of the Lyapunov exponent of
the BQPs for a 1D speckle potential.

ing the corresponding reduced correlation function,c(κ) =√
π/2(1 − κ/2)Θ(1 − κ/2) whereΘ is the Heaviside func-

tion [17], into Eq. (14), we find

Γk =
π

8

(
VR

µ

)2
σRk

2(1 − kσR)

[1 + 2(kξ)2]2
Θ(1 − kσR) (15)

which is plotted in Fig. 1. In order to test our gen-
eral approach on the basis of this example, we have per-
formed numerical calculations using a direct integration of
the BdGEs (5,6) in a finite but large box of sizeL. The
Lyapunov exponents are extracted from the asymptotic be-
havior of log[rk(z)/rk(zk)]/|z − zk|, wherezk is the local-
ization center andrk(z) is the envelope of the functiong+

k ,
obtained numerically. The numerical data, averaged over 40
realizations of the disorder, are in excellent agreement with
formula (15) as shown in Fig. 2. These results validate our
approach. It should be noted however that the numerical cal-
culations return BQP wavefunctions that can be strongly lo-
calized for very small momentak. This will be discussed in
more details in a forthcoming publication [26].

Of special interest are the maxima ofΓk, which correspond
to the situations where the localization of a BQP is maximum.
It is straightforward to show that, for a fixed set of parame-
ters(VR/µ, ξ, σR), Γk is non-monotonic and has a single max-
imum,kmax, in the range[0, 1/σR] (see Fig. 2). This contrasts
with the case of bare particles, for which the Lyapunov expo-
nentγk decreases monotonically as a function ofk, provided
that C(2kσR) decreases versusk (which is valid for a broad
class of random potentials [25]). The existence of a localiza-
tion maximum versus the wavenumberk is thus specific to the
BQPs and results from the strong screening of the disorder in
the phonon regime. In general, the value ofkmax, shown in
the inset of Fig. 2 versus the correlation length of the disor-
der, depends on bothξ andσR. In the limiting case where

σR ≪ ξ, we findkmax ≃ 1√
2ξ

(
1 − σR/ξ

2
√

2

)
, so that the localiza-

tion is maximum near the crossover from the phonon regime
to the free-particle regime as for uncorrelated potentials[20].
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Figure 2: (color online) Lyapunov exponent of the BQPs for a 1D
speckle potential. The lines correspond to Eq. (15) and the points to
numerical results forξ = 1.25 × 10−5L, VR = 0.075µ andσR =√

3/2ξ (solid red line),σR = 3.7ξ (dashed blue line),σR = 0.4ξ
(dash-dotted green line). Inset: localization maximum versus the
ratio of the correlation length of the disorder to the healing length of
the BEC (the dash-dotted and dashed lines correspond to the limits
σR ≪ ξ andσR ≫ ξ respectively; see text).

For σR ≫ ξ however, we findkmax ≃ 2/3σR, so thatkmax is
no longer determined by the healing length but rather by the
correlation length of the disorder and lies deep in the phonon
regime. Fork > 1/σR, we find thatΓk vanishes. This de-
fines aneffective mobility edge due to the special long-range
correlations in speckle potentials which also appears for bare
particles [17, 27].

Finally, let us determine the absolute localization maxi-
mum. The Lyapunov exponentΓk decreases monotonically
versusξ andVR/µ. However, for fixed values ofVR/µ and
ξ, Γk has a maximum atσR =

√
3/2 ξ andk = ξ−1/

√
6

(see Fig. 1) and we find the corresponding localization length
(Lmax = 1/Γmax):

Lmax(ξ) = (512
√

6/9π)(µ/VR)
2ξ. (16)

Note that, at the localization maximum, we haveσR ∼ ξ,
so that the disorder cannot be approximated by a uncorre-
lated random potential and the long-range correlations must
be accounted for as in our approach. ForσR = 0.3µm [14]
and VR = 0.2µ, we find Lmax ≃ 280µm, which can be
smaller than the system size in disordered, ultracold Bose
gases [11, 14, 28].

In conclusion, we have presented a general treatment for the
AL of BQPs in an interacting BEC subjected to a random po-
tential with finite-range correlations. We have calculatedthe
Lyapunov exponents for a 1D speckle potential and we have
shown that the localization is strongest whenσR ∼ ξ. We
have found that the localization length can be smaller than the
size of the BEC for experimentally accessible parameters. We
expect that the AL of BQPs could be observed directly, for
instance as a broadening of the resonance lines in Bragg spec-
troscopy, a well mastered technique in gaseous BECs [29].

We thank M. Lewenstein, G. Shlyapnikov, and W. Zwerger
for useful comments on the manuscript. This work was sup-
ported by the French DGA, MENRT and ANR, and the Eu-

ropean Union QUDEDIS. The Atom Optics group at LCFIO
is a member of the Institut Francilien de Recherche sur les
Atomes Froids (IFRAF).
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