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Nonlinear SDEs driven by Lévy processes and related PDEs

Benjamin Jourdain∗, Sylvie Méléard†, Wojbor A. Woyczynski‡

July 18, 2007

Abstract

In this paper we study general nonlinear stochastic differential equations, where the usual
Brownian motion is replaced by a Lévy process. We also suppose that the coefficient mul-
tiplying the increments of this process is merely Lipschitz continuous and not necessarily
linear in the time-marginals of the solution as is the case in the classical McKean-Vlasov
model. We first study existence, uniqueness and particle approximations for these stochastic
differential equations. When the driving process is a pure jump Lévy process with a smooth
but unbounded Lévy measure, we develop a stochastic calculus of variations to prove that the
time-marginals of the solutions are absolutely continuous with respect to the Lebesgue mea-
sure. In the case of a symmetric stable driving process, we deduce the existence of a function
solution to a nonlinear integro-differential equation involving the fractional Laplacian.

Key words: Particle systems; Propagation of chaos; Nonlinear stochastic differential
equations driven by Lévy processes; Partial differential equation with fractional Laplacian;
Porous medium equation; McKean-Vlasov model.

MSC 2000: 60K35, 35S10, 65C35.

This paper studies the following nonlinear stochastic differential equation:

{

Xt = X0 +
∫ t
0 σ(Xs− , Ps)dZs, t ∈ [0, T ],

∀s ∈ [0, T ], Ps denotes the probability distribution of Xs.
(1)

We assume that X0 is a random variable with values in Rk, distributed according to m, (Zt)t≤T

a Lévy process with values in Rd, independent of X0, and σ : Rk ×P(Rk) → Rk×d, where P(Rk)
denotes the set of probability measures on Rk. Notice that the classical McKean-Vlasov model,
studied for instance in [22], is obtained as a special case of (1) by choosing σ linear in the second
variable and Zt = (t, Bt), with Bt being a (d− 1)-dimensional standard Brownian motion.

The first section of the paper is devoted to the existence problem and particle approxima-
tions for (1). Initially, we address the case of square integrable both, the initial condition X0,
and the Lévy process (Zt)t≤T . Under these assumptions the existence and uniqueness problem
for (1) can be handled exactly as in the Brownian case Zt = (t, Bt). The nonlinear stochas-
tic differential equation (1) admits a unique solution as soon as σ is Lipschitz continuous on
Rk×P2(R

k) endowed with the product of the canonical metric on Rk and the Vaserstein metric d
on the set P2(R

k) of probability measures with finite second order moments. This assumption is
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much weaker than the assumptions imposed on σ in the classical McKean-Vlasov model, where
it is also supposed to be linear in its second variable, that is, σ(x, ν) =

∫

Rk ς(x, y)ν(dy), for a
Lipschitz continuous function ς : Rk × Rk → Rk×d. Then, replacing the nonlinearity by the
related interaction, we define systems of n interacting particles. In the limit n→ +∞, we prove,
by a trajectorial propagation of chaos result, that the dynamics of each particle approximates the
one given by (1). Unlike in the very specific McKean-Vlasov model, where the universal C/

√
n

rate of convergence corresponds to the central limit theorem, under our general assumptions on
σ, the rate of convergence turns out to depend on the spatial dimension k.

In the next step, the square integrability assumption is relaxed. However, to compensate
for its loss, we assume a reinforced Lischitz continuity of σ : the Vaserstein metric d on P(Rk)
is replaced by its smaller and bounded modification d1 defined below. Then, choosing square
integrable approximants of the initial variable and the Lévy process, we prove existence for (1).
Uniqueness remains an open question.

In the second section, we deal with the issue of absolute continuity of Pt when Z is a
pure jump Lévy process with infinite intensity. For the sake of simplicity of the exposition,
we restrict ourselves to the one-dimensional case k = d = 1. When σ does not vanish and
admits two bounded derivatives with respect to its first variable, and the Lévy measure of Z
satisfies some technical conditions, we prove that, for each t > 0, Pt has a density with respect
to the Lebesgue measure on R. The proof depends on a stochastic calculus of variations for
the SDEs driven by Z which we develop by generalizing the approach of Bichteler-Jacod [4],
(see also Bismut [5]), who dealt with the case of homogeneous processes with a jump measure
equal to the Lebesgue measure. In our case, the nonlinearity induces an inhomogeneity in time
and the jump measure is much more general, which introduces additional difficulties making
the extension nontrivial. Graham-Méléard [11] developed similar techniques for a very specific
stochastic differential equation related to the Kac equation. In that case, the jumps of the process
were bounded. In our case, unbounded jumps are allowed and we deal with the resulting possible
lack of integrability of the process X by an appropriate conditioning.

In the third section, we keep the assumptions made on σ in the second section, and
assume that the driving Lévy process Z is symmetric and α-stable. Then, we apply the absolute
continuity results obtained in Section 2 to prove that the solutions to (1) are such that for
t > 0, Pt admits a density pt with respect to the Lebesgue measure on the real line. In addition,
calculating explicitly the adjoint of the generator of X, we conclude that the function pt(x) is a
weak solution to the nonlinear Fokker-Planck equation

{

∂tpt(x) = Dα
x (|σ(., pt)|αpt(.))(x)

limt→0+ pt(x)dx = m(dx),
,

where, by a slight abuse of the notation, σ(., pt) stands for σ(., pt(y)dy), the limit is understood
in the sense of the narrow convergence, and Dα

x = −(−∆)α/2 denotes the spatial, spherically
symmetric fractional derivative of order α defined here as a singular integral operator,

Dα
xf(x) = K

∫

R

(

f(x+ y) − f(x) − 1{|y|≤1}f
′(x)y

) dy

|y|1+α
,

where K is a positive constant. For

σ(x, ν) = (gε ∗ ν(x))s with ε > 0, gε(x) =
1√
2πε

e−
x2

2ε and s > 0,

one obtains the nonlocal approximation ∂tpt = Dα
x ((gε∗pt)

αspt) of the fractional porous medium
equation ∂tpt = Dα

x (pαs+1
t ), the physical interest of which is discussed at the end of the paper.
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Other nonlinear evolution equations involving generators of Lévy processes, such as fractional
conservation laws have been studied via probabilistic tools in, e.g., [13], and[14].

Notations : Throughout the paper, C will denote a constant which may change from
line to line. In spaces with finite dimension, the Euclidian norm is denoted by | |. Let P(Rk)
denote the set of probability measures on Rk, and P2(R

k) – the subset of measures with finite
second order moments. For µ, ν ∈ P2(R

k), the Vaserstein metric is defined by the formula,

d(µ, ν) = inf

{

(
∫

Rk×Rk

|x− y|2Q(dx, dy)

)1/2

: Q ∈ P(Rk × Rk) with marginals µ and ν

}

.

It induces the topology of weak convergence together with convergence of moments up to order
2. The modified Vaserstein metric on P(Rk) defined by the formula,

d1(µ, ν) = inf

{

(
∫

Rk×Rk

|x− y|2 ∧ 1Q(dx, dy)

)1/2

: Q ∈ P(Rk × Rk) with marginals µ and ν

}

,

simply induces the topology of weak convergence.

1 Existence of a nonlinear process

We first address the case when both, the initial condition X0 and Z are square integrable, before
relaxing these integrability conditions later on.

1.1 The square integrable case

In this subsection we assume that the initial condition X0, and the Lévy process (Zt)t≤T , are
both square integrable : E(|X0|2+|ZT |2) < +∞. Under this assumption, the following inequality
generalizes the Brownian case (see, [20], Theorem 66, p.339) :

Lemma 1 Let p ≥ 2 be such that E(|ZT |p) < +∞. There is a constant Cp such that, for any
Rk×d-valued process (Ht)t≤T predictable for the filtration Ft = σ(X0, (Zs)s≤t), ∀t ∈ [0, T ],

E

(

sup
s≤t

∣

∣

∣

∣

∫ s

0
HudZu

∣

∣

∣

∣

p)

≤ Cp

∫ t

0
E(|Hs|p)ds.

Because of this inequality for p = 2, the results obtained for the classical McKean-Vlasov
model driven by a standard Brownian motion still hold. First, we state and prove

Proposition 2 Assume that X0 and (Zt)t≤T are square integrable, and that the mapping σ is
Lipschitz continuous when Rk × P2(R

k) is endowed with the product of the canonical topology
on Rk and the Vaserstein metric d on P2(R

k). Then equation (1) admits a unique solution
such that E

(

supt≤T |Xt|2
)

< +∞. Moreover, if for some p > 2, E(|X0|p + |ZT |p) < +∞, then
E
(

supt≤T |Xt|p
)

< +∞.

Proof : We generalize here the pathwise fixed point approach well known in the classical
McKean-Vlasov case (see, Sznitman [22]). Let D denote the space of càdlàg functions from [0, T ]
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to Rk, and P2(D) the space of probability measures Q on D such that
∫

D
supt≤T |Yt|2Q(dY ) <

+∞. Endowed with the Vaserstein metric DT (P,Q) where, for t ≤ T ,

Dt(P,Q) = inf

{

(∫

D×D

sup
s≤t

|Ys −Ws|2R(dY, dW )

)1/2

: R ∈ P(D × D) with marginals P and Q

}

,

P2(D) is a complete space.

For Q ∈ P(D) with time-marginals (Qt)t∈[0,T ], in view of Lebesgue’s Theorem, the distance

d(Qt, Qs) ≤
∫

D

|Yt − Ys|2Q(dY )

converges to 0, as s decreases to t (respectively, d(Qt− , Qs) ≤
∫

D
|Yt− − Ys|2Q(dY ) converges to

0, as s increases to t; here Qt− = Q ◦ Y −1
t− is the weak limit of Qs as s → t−). Therefore, the

mapping t ∈ [0, T ] → Qt is càdlàg when P2(R
k) is endowed with the metric d. As a consequence,

for fixed x ∈ Rk, the mapping t ∈ [0, T ] → σ(x,Qt) is càdlàg. Hence, by a multidimensional
version of Theorem 6, p. 249, in [20], the standard stochastic differential equation

XQ
t = X0 +

∫ t

0
σ(XQ

s− , Qs)dZs, t ∈ [0, T ]

admits a unique solution.

Let Φ denote the mapping on P2(D) which associates the law of XQ with Q. Let us check
that Φ takes its values in P2(D). For K > 0, we set τK = inf{s ≤ T : |XQ

s | ≥ K}. By Lemma 1
and the Lipschitz property of σ, one has

E

(

sup
s≤t

|XQ
s∧τK

|2
)

≤ C

(

E(|X0|2) +

∫ t

0
E
(

1{s≤τK}|σ(XQ
s , Qs) − σ(0, δ0)|2 + |σ(0, δ0)|2

)

ds

)

≤ C

(

E(|X0|2) +

∫ t

0
E

(

sup
r≤s

|XQ
r∧τK

|2
)

ds+ t

∫

D

sup
t≤T

|Yt|2Q(dY ) + t|σ(0, δ0)|2
)

.

By Gronwall’s Lemma, one deduces that

E

(

sup
s≤T

|XQ
s∧τK

|2
)

≤ C

(

E(|X0|2) + |σ(0, δ0)|2 +

∫

D

sup
t≤T

|Yt|2Q(dY )

)

,

where the constant C does not depend on K. Letting K tend to +∞, one concludes by Fatou’s
Lemma that
∫

D

sup
s≤T

|Ys|2dΦ(Q)(Y ) = E

(

sup
s≤T

|XQ
s |2
)

≤ C

(

E(|X0|2) + |σ(0, δ0)|2 +

∫

D

sup
t≤T

|Yt|2Q(dY )

)

.

(2)
Observe that a process (Xt)t∈[0,T ], such that E

(

supt≤T |Xt|2
)

< +∞, solves (1) if and only if its
law is a fixed-point of Φ. So, to complete the proof of the Proposition, it suffices to check that
Φ admits a unique fixed point.

By a formal computation, which can be made rigorous by a localization procedure similar
to the one utilized above, for P,Q ∈ P2(D) one has

E

(

sup
s≤t

|XP
s −XQ

s |2
)

≤ C

∫ t

0
E(|σ(XP

s− , Ps) − σ(XQ
s−
, Qs)|2)ds

≤ C

∫ t

0
E

(

sup
r≤s

|XP
r −XQ

r |2
)

+ d2(Ps, Qs)ds.
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By Gronwall’s Lemma, one deduces that, ∀t ≤ T,

E

(

sup
s≤t

|XP
s −XQ

s |2
)

≤ C

∫ t

0
d2(Ps, Qs)ds.

Since D2
t (Φ(P ),Φ(Q)) ≤ E(sups≤t |XP

s −XQ
s |2), and d(Ps, Qs) ≤ Ds(P,Q), the last inequality

implies, ∀t ≤ T,

D2
t (Φ(P ),Φ(Q)) ≤ C

∫ t

0
D2

s(P,Q)ds.

Iterating this inequality, and denoting by ΦN the N -fold composition of Φ, we obtain that,
∀N ∈ N∗,

D2
T (ΦN (P ),ΦN (Q)) ≤ CN

∫ T

0

(T − s)N−1

(N − 1)!
D2

s(P,Q)ds ≤ CNTN

N !
D2

T (P,Q).

Hence, for N large enough, ΦN is a contraction which entails that Φ admits a unique fixed point.

If, for some p > 2, E(|X0|p + |ZT |p) < +∞, a reasoning similar to the one used in the
derivation of (2), easily leads to the conclusion that the constructed solution (Xt)t≤T of (1) is
such that

E

(

sup
s≤T

|Xs|p
)

≤ C



E(|X0|p) + |σ(0, δ0)|p + E

(

sup
s≤T

|Xs|2
)p/2



 < +∞.

Our next step is to study pathwise particle approximations for the nonlinear process. Let
((Xi

0, Z
i))i∈N∗ denote a sequence of independent pairs with (Xi

0, Z
i) distributed like (X0, Z). For

each i ≥ 1, let (Xi
t)t∈[0,T ] denote the solution given by Proposition 2 of the nonlinear stochastic

differential equation starting from Xi
0 and driven by Zi :

{

Xi
t = Xi

0 +
∫ t
0 σ(Xi

s− , Ps)dZ
i
s, t ∈ [0, T ]

∀s ∈ [0, T ], Ps denotes the probability distribution of Xi
s

. (3)

Replacing the nonlinearity by interaction, we introduce the following system of n interacting
particles

{

Xi,n
t = Xi

0 +
∫ t
0 σ(Xi,n

s−
, µn

s−)dZi
s, t ∈ [0, T ], 1 ≤ i ≤ n,

where µn = 1
n

∑n
j=1 δXj,n denotes the empirical measure

. (4)

Since for ξ = (x1, . . . , xn), and ζ = (y1, . . . , yn) in Rnk, one has

d





1

n

n
∑

j=1

δxj
,
1

n

n
∑

j=1

δyj



 ≤





1

n

n
∑

j=1

|xj − yj|2




1/2

=
1√
n
|ξ − ζ|. (5)

Existence of a unique solution to (4), with finite second order moments, follows from Theorem
7, p. 253, in [20]. Our next result establishes the trajectorial propagation of chaos result for the
interacting particle system (4).
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Theorem 3 Under the assumptions of Proposition 2,

lim
n→+∞

sup
i≤n

E

(

sup
t≤T

|Xi,n
t −Xi

t |2
)

= 0

Moreover, under additional assumptions, the following two explicit estimates hold :

• If E(|X0|k+5 + |ZT |k+5) < +∞, then

sup
i≤n

E

(

sup
t≤T

|Xi,n
t −Xi

t |2
)

≤ Cn−
2

k+4 ; (6)

• If σ(x, ν) =
∫

Rk ς(x, y)ν(dy), where ς : Rk×Rk → Rk×d is a Lipschitz continuous function,
then

sup
i≤n

E

(

sup
t≤T

|Xi,n
t −Xi

t |2
)

≤ C

n
, (7)

where the constant C does not depend on n.

The proof of the first assertion relies on the following

Lemma 4 Let ν be a probability measure on Rk such that
∫

Rk |x|2ν(dx) < +∞ , and νn =
1
n

∑n
j=1 δξj

denote the empirical measure associated with a sequence (ξi)i≥1 of independent ran-
dom variables with law ν. Then, ∀n ≥ 1,

E
(

d2 (νn, ν)
)

≤ 4

∫

Rk

|x|2ν(dx), and lim
n→+∞

E
(

d2 (νn, ν)
)

= 0.

Proof of Lemma 4 : By the strong law of large numbers, as n tends to ∞, almost surely
νn converges weakly to ν and, ∀i, j ∈ {1, . . . , k},

∫

Rk xiνn(dx) (resp.
∫

Rk xixjνn(dx)) converges
to
∫

Rk xiν(dx) (resp.
∫

Rk xixjν(dx)). Since the Vaserstein distance d induces the topology of
simultaneous weak convergence and convergence of moments up to order 2, one deduces that
almost surely, d(νn, ν) converges to 0, as n tends to ∞. Hence, to conclude the proof of the
first assertion, it is enough to check that the random variables (d2(νn, ν))n≥1 are uniformly
integrable. To see that note the inequality

d2(νn, ν) ≤ 2

n

n
∑

j=1

|ξj |2 + 2

∫

Rk

|x|2ν(dx).

The right-hand side is nonnegative and converges almost surely to 4
∫

Rk |x|2ν(dx), as n → ∞.
Since its expectation is constant, and equal to the expectation of the limit, one deduces that the
convergence is also in L1. As a consequence, for n ≥ 1, the random variables in the right-hand
side, and therefore in the left-hand side, are uniformly integrable.
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Proof of Theorem 3 : Let Pn = 1
n

∑n
j=1 δXj denote the empirical measure of the independent

nonlinear processes (3). By a formal computation, which can be made rigorous by a localization
argument similar to the one made in the proof of Proposition 2, one has, ∀t ≤ T,

E

(

sup
s≤t

|Xi,n
s −Xi

s|2
)

≤C
∫ t

0
E
(

|σ(Xi,n
s , µn

s ) − σ(Xi
s, P

n
s )|2

)

ds

+ C

∫ t

0
E
(

|σ(Xi
s, P

n
s ) − σ(Xi

s, Ps)|2
)

ds.

In view of the Lipschitz property of σ, the estimate (5), and the exchangeability of the couples

(Xi,Xi,n)1≤i≤n, the first term of the right is smaller than C
∫ t
0 E

(

supr≤s |Xi,n
r −Xi

r|2
)

ds. By

Gronwall’s Lemma, and the Lipschitz assumption on σ, one deduces that

E

(

sup
t≤T

|Xi,n
t −Xi

t |2
)

≤ C

∫ T

0
E
(

∣

∣σ
(

Xi
s, P

n
s

)

− σ(Xi
s, Ps)

∣

∣

2
)

ds ≤ C

∫ T

0
E(d2(Pn

s , Ps))ds.

The first assertion then follows from Lemma 4, the upper-bounds of the second order moments
given in Proposition 2, and by Lebesgue’s Theorem.

The second assertion is deduced from the upper-bounds for moments of order k + 5 com-
bined with the following restatement of Theorem 10.2.6 in [21] :

E
(

d2 (Pn
s , Ps)

)

≤ C

(

1 +

√

∫

Rk

|y|k+5Ps(dy)

)

n−
2

k+4 ,

where the constant C only depends on k. The precise dependence of the upper-bound on
∫

Rk |y|k+5Ps(dy) comes from a carefull reading of the proof given in [21].

Finally, if, as in the usual McKean-Vlasov framework (see [22]), σ(x, ν) =
∫

Rk ς(x, y)ν(dy),

where ς = (ςab)a≤k,b≤d : Rk×Rk → Rk×d is Lipschitz continuous, then E

(

∣

∣σ
(

Xi
s, P

n
s

)

− σ(Xi
s, Ps)

∣

∣

2
)

is equal to

k
∑

a=1

d
∑

b=1

1

n2

n
∑

j,l=1

E

([

ςab(X
i
s,X

j
s ) −

∫

Rk

ςab(X
i
s, y)Ps(dy)

] [

ςab(X
i
s,X

l
s) −

∫

Rk

ςab(X
i
s, y)Ps(dy)

])

.

Since, by independence of the random variables X1
s , . . . ,X

n
s with common law Ps, the expecta-

tion in the above summation vanishes as soon as j 6= l, the third assertion of Theorem 3 easily
follows.

Remark 5

• Observe the lower estimate

d(νn, ν) ≥
(∫

Rk

min
1≤j≤n

|ξj − x|2ν(dx)
)1/2

≥ inf
(y1,...,yn)∈(Rk)n

(∫

Rk

min
1≤j≤n

|yj − x|2ν(dx)
)1/2

.

Moreover, according to the Bucklew and Wise Theorem [6], if ν has a density ϕ with

respect to the Lebesgue measure on Rk which belongs to L
k

2+k (Rk), then, as n tends to
infinity,

n1/k inf
(y1,...,yn)∈(Rk)n

(
∫

Rk

min
1≤j≤n

|yj − x|2ϕ(x)dx

)1/2

7



converges to Ck‖ϕ‖ k
2+k

, where the constant Ck only depends on k. Hence, one cannot

expect E(d2(νn, ν)) to vanish quicker than Cn−2/k.

Therefore, if ν → σ(x, ν) is merely Lipschitz continuous for the Vaserstein metric, one

cannot expect E

(

supt≤T |Xi,n
t −Xi

t |2
)

to vanish quicker than Cn−2/k. The rate of con-

vergence obtained in (6) is not far from being optimal at least for a large spatial dimension
k. Nevertheless, in the McKean-Vlasov framework, where the structure of σ is very spe-
cific, one can overcome this dependence of the convergence rate on the dimension k, and
recover the usual central limit theorem rate.

• The square integrability assumption on the initial variable X0 can be relaxed if σ is Lip-
schitz continuous with Rk × P(Rk) endowed with the product of the canonical topology
on Rk and the modified Vaserstein metric d1 on P(Rk). Indeed, one may then adapt the
fixed-point approach in the proof of Proposition 2 by defining P as the space of probability
measures on D, and replacing sups≤t |Ys−Ws|2 by sups≤t |Ys−Ws|2∧1 in the definition of
Dt(P,Q). This way, one obtains that the nonlinear stochastic differential equation (1) still
admits a unique solution even if the initial condition X0 is not square integrable. More-
over, for any probability measure ν on Rk, if νn is defined as above, E(d2

1(νn, ν)) remains
bounded by one, and converges to 0 as n tends to infinity. Therefore, the first assertion in
Theorem 3 still holds.

The next subsection is devoted to the more complicated case when the square integrability
assumption on the Lévy process (Zt)t≤T is also relaxed.

1.2 The general case

In this section, we impose no integrability conditions, either on the initial condition X0, or on the
Lévy process (Zt)t≤T . Let us denote by m ∈ P(Rk) the distribution of the former. According
to the Lévy-Khintchine formula, the infinitesimal generator of the latter can be written, for
f ∈ C2

b (Rd), in the form

Lf(z) =
1

2

d
∑

i,j=1

aij∂
2
zi,zj

f(z) + b.∇f(z) +

∫

Rd

[

f(z + y) − f(z) − 1{|y|≤1}y.∇f(z)
]

β(dy),

where a = (aij)1≤i,j≤d is a non-negative symmetric matrix, b a given vector in Rd, and β a
measure on Rd satisfying the integrability condition

∫

Rd(1 ∧ |y|2)β(dy) < +∞.

To deal with non square integrable sources of randomness, we impose a stronger continuity
condition on σ, namely, we assume that σ is Lipschitz continuous when Rk ×P(Rk) is endowed
with the product of the canonical topology on Rk and the modified Vaserstein metric d1 on
P(Rk). Notice that, under this assumption, for each x ∈ Rk, the mapping ν ∈ P(Rk) → σ(x, ν)
is bounded.

In order to prove existence of a weak solution to (1), we introduce a cutoff parameter
N ∈ N∗, and define a square integrable initial random variable XN

0 = X01{|X0|≤N}, and a square

integrable Lévy process (ZN
t )t≤T by removing the jumps of (Zt)t≤T larger than N :

ZN
t = Zt −

∑

s≤t

1{|∆Zs|>N}∆Zs.

8



Let (XN
t )t∈[0,T ] denote the solution given by Proposition 2 of the nonlinear stochastic differential

equation starting from XN
0 and driven by (ZN

t )t∈[0,T ] :

{

XN
t = XN

0 +
∫ t
0 σ(XN

s− , P
N
s )dZN

s , t ∈ [0, T ]

∀s ∈ [0, T ], PN
s denotes the probability distribution of XN

s

. (8)

We are going to prove that when the cutoff parameter N tends to ∞, then (XN
t )t∈[0,T ] converges

in law to a weak solution of (1). More precisely, let us denote by PN the distribution of
(XN

t )t∈[0,T ], and by (Yt)t∈[0,T ] the canonical process on D.

Proposition 6 The set of probability measures (PN )N∈N∗ is tight when D is endowed with
the Skorohod topology. In addition, any weak limit P , with time marginals (Pt)t∈[0,T ], of its
converging subsequences solves the following martingale problem :







P0 = m and ∀ϕ : Rk → R, C2 with compact support,
(

Mϕ
t = ϕ(Yt) − ϕ(Y0) −

∫ t
0 L[Ps]ϕ(Ys)ds

)

t∈[0,T ]
is a P -martingale

, (9)

where for each ν ∈ P(Rk), and any x ∈ Rk,

L[ν]ϕ(x) =
1

2

k
∑

i,j=1

(σaσ∗(x, ν))ij∂
2
xi,xj

ϕ(x) + (σ(x, ν)b).∇ϕ(x)

+

∫

Rd

[

ϕ (x+ σ(x, ν)y) − ϕ(x) − 1{|y|≤1}σ(x, ν)y.∇ϕ(x)
]

β(dy)ds. (10)

Proof : Let us first remark that for N ∈ N∗, and for a fixed x ∈ Rk, the mapping t ∈ [0, T ] →
σ(x, PN

t ) is càdlàg and bounded by a constant not depending on N . As a consequence, according
to Theorem 6 p. 249 [20], for a fixed M ∈ N∗, the stochastic differential equation

XN,M
t = XN∧M

0 +

∫ t

0
σ(XN,M

s− , PN
s )dZN∧M

s , t ∈ [0, T ],

admits a unique solution. Let us denote by PN,M the law of (XN,M
t )t∈[0,T ]. By trajectorial

uniqueness, ∀N ∈ N∗, ∀t ∈ [0, T ],
XN

t = XN,M
t ,

as long as |X0|∨supt∈]0,T ] |∆Zt| ≤M . The probability of the latter event tends to one as M tends
to infinity. Using both the necessary and the sufficient conditions of Prokhorov’s Theorem, one
deduces that the tightness of the sequence (PN )N∈N∗ is implied by the tightness of the sequence
(PN,M )N∈N∗ , for any fixed M ∈ N∗.

Let us now prove this last result by fixing M ∈ N∗. Using the boundedness of d1, one
easily checks that

sup
N∈N∗

E

(

sup
t≤T

|XN,M
t |2

)

< +∞. (11)

This implies tightness of the laws of the random variables
(

supt≤T |XN,M
t |

)

N∈N∗
. In order to

use Aldous’ criterion, we set ε, δ > 0, and introduce two stopping times S, and S̃, such that
0 ≤ S ≤ S̃ ≤ (S+δ)∧T . Let us also remark that, forK ∈ N∗, and bK = b+

∫

Rd y1{1<|y|≤K}β(dy),

9



the process
(

Z̃K
t = ZK

t − bKt
)

t∈[0,T ]
is a centered Lévy process and therefore a martingale. Now,

observe that

P

(

|XN,M

S̃
−XN,M

S |2 ≥ ε
)

≤P





∣

∣

∣

∣

∣

∫ S̃

S
σ(XN,M

s , PN
s )bN∧Mds

∣

∣

∣

∣

∣

2

≥ ε

4





+ P





∣

∣

∣

∣

∣

∫ S̃

S
σ(XN,M

s−
, PN

s )dZ̃N∧M
s

∣

∣

∣

∣

∣

2

≥ ε

4



 . (12)

Using the boundedness of the sequence (bN∧M )N∈N∗ , the Lipschitz property of σ with respect
to its first variable, and (11) combined with the inequalities of Markov and Cauchy-Schwarz,
one obtains that the first term of the right-hand-side is smaller than Cδ2/ε, where the constant
C does not depend on N . For the second term of the right-hand-side, one remarks that Doob’s
optional sampling Theorem, followed by the Lipschitz property of σ, and (11), imply that

E





∣

∣

∣

∣

∣

∫ S̃

S
σ(XN,M

s−
, PN

s )dZ̃N∧M
s

∣

∣

∣

∣

∣

2


 = E

(∫ S̃

S

[ k
∑

i=1

(σaσ∗)ii(X
N,M
s , PN

s )

+

∫

Rd

|σ(XN,M
s , PN

s )y|21{|y|≤N∧M}β(dy)

]

ds

)

≤ Cδ,

where C does not depend on N . By Markov’s Inequality, the second term of the right-hand-side
of (12) is smaller than Cδ/ε and, in view of Aldous’ criterion, we conclude that the sequence
(PN,M )N∈N∗ is tight.

Now, let us denote by P the limit of a converging subsequence of (PN )N∈N∗ that we still
index by N for simplicity’s sake. Also, let ϕ denote a compactly supported C2 function on Rk.
For p ∈ N∗, 0 ≤ s1 ≤ s2 ≤ . . . ≤ sp ≤ s ≤ t ≤ T , and a continuous and bounded function
ψ : (Rk)p → R , let F denote the mapping on P(D) defined by

F (Q) =

∫

D

(

ϕ(Yt) − ϕ(Ys) −
∫ t

s
L[Qu]ϕ(Yu)du

)

ψ(Ys1
, . . . , Ysp)Q(dY ).

For FN defined like F , but with 1{|y|≤N}β(dy) replacing β(dy) in the definition (10) of L[ν], one

has FN (PN ) = 0. Therefore

|F (PN )| = |F (PN ) − FN (PN )| ≤ 2(t− s)‖ψ‖∞‖ϕ‖∞
∫

Rd

1{|y|≥N}β(dy)
N→+∞−→ 0.

The mapping (x, ν) ∈ Rk × P(Rk) → L[ν]ϕ(x) is bounded, continuous in x for a fixed ν, and
continuous in ν, uniformly for x ∈ Rk. Therefore, as soon as s1, . . . , sp, s, t do not belong to the
at most countable set {u ∈]0, T ] : P (∆Yu 6= 0) > 0}, then F is continuous and bounded at point
P which implies F (P ) = limN→+∞ F (PN ) = 0. In view of the right continuity of u → Yu and
Lebesgue’s theorem, this equality still holds without any restriction on s1, . . . , sp, s, t. Hence,
(Mϕ

t )t∈[0,T ] is a P -martingale. Since the sequence (XN
0 )N∈N∗ converges in distribution to X0,

P0 = m, which concludes the proof.

The above existence result for the martingale problem (9) implies an analogous existence
statement for the corresponding nonlinear Fokker-Planck equation.
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Proposition 7 Let P denote a solution of (9). Then the time marginals (Pt)t∈[0,T ] solve the
initial value problem

∂tPt = L∗[Pt]Pt, P0 = m, (13)

in the weak sense, where, for ν ∈ P(Rk), L∗[ν] denotes the formal adjoint of L[ν] defined by the
following condition: ∀φ,ψ C2 with compact support on Rk,

∫

Rk

L∗[ν]ψ(x)ϕ(x)dx =

∫

Rk

ψ(x)L[ν]ϕ(x)dx.

Moreover, the standard stochastic differential equation

XP
t = X0 +

∫ t

0
σ(XP

s− , Ps)dZs (14)

admits a unique solution (XP
t )t∈[0,T ] and, for each t ∈ [0, T ], XP

t is distributed according to Pt.

Proof : The first assertion follows readily from the constancy of the expectation of the P -
martingale (Mϕ

t )t∈[0,T ]. Existence and uniqueness for (14) follows from [20], Theorem 6 p. 249.

Now, if Qt denotes the law of XP
t for t ≥ 0, then (Qt)t≥0 solves

∂tQt = L∗[Pt]Qt, Q0 = m,

in the weak sense. Since (Pt)t≥0 also is a weak solution of this linear equation, by Theorem 5.2
[3], one concludes that ∀t ≤ T , Pt = Qt.

Remark 8 We have not been able to prove uniqueness for the nonlinear martingale problem
(9). However, our assumptions, and Theorem 6, p.249, in [20], ensure existence and uniqueness
for the particle system (4). Like in the proof of Proposition 6, one can check that the laws of the
processes X1,n, n ≥ 1, are tight. According to [22], this implies uniform tightness of the laws
πn of the empirical measures µn. For a fixed x ∈ Rk, the function ν → σ(x, ν) is continuous
and bounded when P(Rk) is endowed with the weak convergence topology. Then one can prove
that the limit points of the sequence (πn)n give full weight to the solutions of the nonlinear
martingale problem (9).

2 Absolute continuity of the marginals

In this section we restrict ourselves to the one-dimensional case k = d = 1, and assume that
Z is a pure jump Lévy process with a Lévy measure β which admits a density, say β1, in the
neighborhood of the origin, that is

β(dy) = 1|y|≤1β1(y)dy + 1|y|>1β(dy).

We set β1(y) = 0, for |y| > 1. Then

Zt =

∫

(0,t]×R

y Ñ1(ds, dy) +

∫

(0,t]×R

y N2(ds, dy), (15)

where N1, and N2, are two independent Poisson point measures on R+ × R with intensity
measures equal, respectively, to 1|y|≤1β1(y)dy, and 1|y|>1β(dy), and Ñ1 is the compensated
martingale measure of N1.

We work here
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• either under the assumptions of Subsection 1.1, i.e., E(|X0|2 + |ZT |2) < +∞ and Lipschitz
continuity of σ on R × P2(R) endowed with the product of the Euclidean metric and the
Vaserstein metric,

• or with the general assumptions of Subsection 1.2, i.e., no integrability conditions on Z and
X0, and Lipschitz continuity of σ on R×P(R) endowed with the product of the Euclidean
metric and the modified Vaserstein metric d1.

Propositions 2 and 6 ensure the existence of a probability measure solution P of (9). According
to Proposition 7, there is a unique pathwise solution X (which is then unique in law), to the
stochastic differential equation

Xt = X0 +

∫

(0,t]×R

σ(Xs− , Ps) yÑ1(dy, ds) +

∫

(0,t]×R

σ(Xs− , Ps) yN2(dy, ds), (16)

and, for t ∈ [0, T ], Xt is distributed according to the time marginal Pt.

Roughly speaking, our goal is to prove that, for each t > 0, the probability measure Pt has
a density with respect to the Lebesgue measure as long as the measure β, restricted to [−1, 1],
has an infinite total mass due to an explosion of the density function β1(y) at 0. Indeed, we
have in this case an accumulation of small jumps immediately after time 0, which will imply the
absolute continuity of the law of Xt under suitable regularity assumptions on β1.

For this purpose we develop a stochastic calculus of variations for diffusions with jumps
driven by the Lévy process defined in (15). We thus generalize the approach developed by
Bichteler and Jacod [4] (also, see Bismut [5]), who considered homogeneous processes with a jump
measure equal to the Lebesgue measure. Here, the nonlinearity introduces an inhomogeneity in
time, and the jump measure is much more general, which complicates the situation considerably
and introduces additional difficulties. Graham and Méléard [11] developed similar techniques
for a very specific stochastic differential equation related to the Kac equation. In that case, the
jumps of the process were bounded. In our case, unbounded jumps are also allowed.

Our approach requires that we make the following standing assumptions on the coefficient
σ(x, ν), and the Lévy density β1:

Hypotheses (H):

1. The coefficient σ(x, ν) is twice differentiable in x.

2. There exist constants K1, and K2, such that, for each x, and ν,

|σ′x(x, ν)| ≤ K1, and |σ′′x(x, ν)| ≤ K2. (17)

3. For each x, and ν,

σ(x, ν) 6= 0. (18)

Hypotheses (H1):

1. The function β1 is twice continuously differentiable away from {0}.
2.

∫ 1

−1
β1(y)dy = +∞. (19)

3. There exists a non-negative and non-constant function k of class C1 on [−1, 1] such
that k(−1) = k(1) = 0, and such that
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•
∫ 1

−1
k2(y)β1(y)dy < +∞, (20)

• for all y ∈ [−1, 1],

sup
a∈[−K1,K1],λ∈[−1,1]

1

|λ|

∣

∣

∣

∣

β1(y + λ(1 + ay)k(y))

β1(y)
(1 + λ(ak(y) + (1 + ay)k′(y)) − 1

∣

∣

∣

∣

≤ 1

2
,

(21)

•

sup
a∈[−K1,K1]

∫ 1

−1

∣

∣

∣

∣

β′1(y)

β1(y)
(1 + ay)k(y) + ak(y) + (1 + ay)k′(y)

∣

∣

∣

∣

2

β1(y)dy < +∞,

(22)

•

sup
a∈[−K1,K1]

∫ 1

−1
sup

λ∈[−1,1]

( ∣

∣

∣

∣

β′′1 (y + λ(1 + ay)k(y))

β1(y)
(1 + λ(ak(y) + (1 + ay)k′(y))

∣

∣

∣

∣

2

k2(y)

+

∣

∣

∣

∣

β′1(y + λ(1 + ay)k(y))

β1(y)

∣

∣

∣

∣

2)

k2(y)β1(y)dy < +∞,

(23)

• for all y ∈ [−1, 1],

|k(y)| < 1

4(1 +K1)
; |k′(y)| < 1

4(1 +K1)
. (24)

The assumption (H13) on β1 is obviously technical, but the assumption (H12) is essential,
and cannot be avoided if one hopes to prove the absolute continuity result. The main example
satisfying assumptions (H1) is the symmetric stable process with index α ∈ (0, 2), for which
β(dy) = K dy/|y|1+α, as developed in Section 3.

Theorem 9 Consider the real-valued process X satisfying the nonlinear stochastic differential
equation (16). Assume that σ satisfies Hypotheses (H), and that β1 satisfies Hypotheses (H1).
Then the law of the real-valued random variable XT has a density with respect to the Lebesgue
measure.

The remainder of this section is devoted to the proof of Theorem 9 which will proceed
through a series of lemmas and propositions. Our aim is to show that PT has a density with
respect to the Lebesgue’s measure. Because of the compensated martingale term Ñ1 it would
be natural to work with square integrable processes. But the finiteness of E

(

supt≤T |Xt|2
)

is
not guaranteed because of the big jumps of N2 . So, to develop the relevant stochastic calculus
of variations in L2, we use a trick defining PT as the conditional law of (X0, N1, N2) given
(X0, N

T
2 ), where NT

2 denotes the restriction of the measure N2 to [0, T ] × R. Thus, in what
follows, the random variables considered being functions of (X0, N1, N2) we may define their
ET -expectations as the integral of the corresponding functions under PT . From now on, for
notational simplicity, every statement concerning ET , or PT , holds almost everywhere under the
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law of (X0, N
T
2 ), even if this fact is not mentioned explicitly. This conditioning allows us to use

the same techniques as if the process X were square integrable. More precisely, given NT
2 , there

are finitely many jump times and jump amplitudes of N2 on (0, T ] and we will denote them by
(T1, Y1), · · · , (Tk, Yk).

Lemma 10

ET (sup
t≤T

|Xt|2) < +∞. (25)

Proof : As usual, we localize via τn = inf{t > 0, |Xt| ≥ n}. Then, for t ≤ T ,

ET

(

sup
s≤t

|Xt∧τn |2
)

≤ C

(

|X0|2 +

∫ t∧τn

0

∫ 1

−1
|y|2
(

ET (|Xs|2) + σ2(0, Ps)

)

β1(y)dyds

+

k
∑

i=1

|Yi|2
(

ET (|XTi−|2) + σ2(0, PTi
)
)

1Ti≤t∧τn

)

≤ C

(

|X0|2 + sup
u∈[0,T ]

σ2(0, Pu)

(

1 +

k
∑

i=1

|Yi|2
)

+

∫ t∧τn

0
ET (|Xs|2)ds

+
k

sup
i=1

|Yi|2
∫ t∧τn

0
ET (|Xs−|2)

∫

|y|>1
N2(dy, ds)

)

.

At this point we apply Gronwall’s Lemma in its generalized form (with respect to the measure
ds+

∫

|y|>1N2(dy, ds), see, for example, Ethier and Kurz [10], p. 498). The result then follows.

Let us now explain our strategy to prove Theorem 9 before giving the technical details. We
are going to prove that there exists an a.s. positive random variable DXT such that ET (DXT ) <
+∞, and ∃C ∀φ ∈ C∞

c (R),
|ET (φ′(XT )DXT )| ≤ C‖φ‖∞, (26)

where C∞
c (R) denotes the space of infinitely differentiable functions with compact support on

the real line. Indeed, in the special case DXT = 1 this inequality implies that the conditional
law of XT given (X0, N

T
2 ) admits a density (see, for example, Nualart [17], p.79). If DXT 6= 1,

the law of XT under QT = DXT .PT

ET (DXT ) admits a density. But since DXT > 0, a.s., then QT is

equivalent to PT , and the conditional law of XT given (X0, N
T
2 ) still admits a density. Of course,

this implies that the law PT of XT admits a density.

We will prove inequality (26) employing the stochastic calculus of variations. Consider
perturbed paths of the process on the time interval [0, T ] and introduce a parameter λ ∈ [−1, 1],
sufficiently close to 0. The perturbed Poisson measure Nλ

1 will satisfy N0
1 = N1, and be such

that, for a well chosen PT -martingale (Gλ
t )t≤T , the law of its restriction to [0, T ] under Gλ

T .PT

will be equal to the law of N1 under PT . The process Xλ will be defined like X, only replacing
N1 by Nλ

1 in the stochastic differential equation. Then, for sufficiently smooth functions φ, we
will have

ET (φ(XT )) = ET (Gλ
Tφ(Xλ

T )). (27)

Differentiating in λ at λ = 0, in a sense that we yet have to define, we will obtain

ET (φ′(XT )DXT ) = −ET (DGTφ(XT )), (28)
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where DXT = d
dλX

λ
T |λ=0, and DGT = d

dλG
λ
T |λ=0. Then one easily deduces (26) with C =

ET (|DGT |).
Let us describe the perturbation we are interested in. Let g be an increasing function of

class C∞
b (R), equal to x on [−1

2 ; 1
2 ], equal to 1, for x ≥ 1, and to −1, for x ≤ −1. Note that

‖g‖∞ ≤ 1, and that g(x)x > 0, for x ∈ R∗.

Now, we define the predictable function v : Ω × [0, T ] × [−1, 1] 7→ R via the formula

v(s, y) = 1{s>S}(1 + yσ′x(Xs−, Ps)) g(σ(Xs−, Ps)) k(y) (29)

where S is a stopping time that we are going to choose later on in order to ensure that DXT > 0,
a.s. (see the discussion before Proposition 15). It is easy to verify that the function y 7→ v(t, y)
is of class C1 on [−1, 1], and in what follows we will denote its derivative by v′(t, y), Also, for
every ω, t, and y,

|v(t, y)| ≤ (1 +K1)k(y) and |v′(t, y)| ≤ K1k(y) + (1 +K1)|k′(y)|. (30)

For λ ∈ [−1, 1], let us introduce the perturbation function

γλ(t, y) = y + λv(t, y). (31)

We can easily check that, for every ω, and t, the map y 7→ γλ(t, y) is an increasing bijection
from [−1, 1] into itself, since by (24) and (30), |v′| ≤ 1

2 , and k(−1) = k(1) = 0.

Let us denote by Nλ
1 the image measure of the Poisson point measure N1 via the mapping

γλ defined, for any Borel subset A of [0, T ] × [−1, 1], by the integral

Nλ
1 (A) =

∫

1A(t, γλ(t, y))N1(dy, dt).

We also introduce the function

V λ(s, y) =
β1(y + λv(s, y))

β1(y)
(1 + λv′(s, y)), (32)

which appears below in the definition of the process Gλ (in Proposition 12). As a preliminary
step, we obtain the following estimates concerning V λ.

Lemma 11 There exists a constant C such that, for almost all ω, and for all s ∈ [0, T ],

sup
λ,y∈[−1,1]

1

λ
|V λ(s, y) − 1| ≤ 1

2
, (33)

sup
λ∈[−1,1]

1

λ2

∫ 1

−1
|V λ(s, y) − 1|2β1(y)dy ≤ C, (34)

sup
λ∈[−1,1]

1

λ4

∫ 1

−1

∣

∣

∣

∣

V λ(s, y) − 1 − λ
d

dλ
V λ(s, y)/λ=0

∣

∣

∣

∣

2

β1(y)dy ≤ C. (35)

Proof : Inequality (33) follows from (21). Also, one has

d

dλ
V λ(s, y) = v′(s, y)

β1(y + λv(s, y))

β1(y)
+
β′1(y + λv(s, y))

β1(y)
v(s, y)(1 + λv′(s, y)),

(36)
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and

d2

dλ2
V λ(s, y) = v2(s, y)(1 + λv′(s, y))

β′′1 (y + λv(s, y))

β1(y)
+ 2

β′1(y + λv(s, y))

β1(y)
v(s, y)v′(s, y).

(37)

Since, for λ ∈ [−1, 1], we have estimates,

∣

∣

∣

∣

V λ(s, y) − 1

λ

∣

∣

∣

∣

2

≤ 2

∣

∣

∣

∣

d

dλ
V λ(s, y)/λ=0

∣

∣

∣

∣

2

+
2

λ2

∣

∣

∣

∣

V λ(s, y) − 1 − λ
d

dλ
V λ(s, y)/λ=0

∣

∣

∣

∣

2

,

and
∣

∣

∣

∣

V λ(s, y) − 1 − λ
d

dλ
V λ(s, y)/λ=0

∣

∣

∣

∣

2

≤ λ4

4
sup

µ∈[−1,1]

∣

∣

∣

∣

d2

dµ2
V µ(s, y)

∣

∣

∣

∣

2

,

one deduces (35) (resp. (34)) from (23), and (24)(resp. (22), (23), and (24)).

We are now ready to introduce the promised earlier definition of the process Gλ.

Proposition 12 (i) For every λ ∈ [−1, 1], the stochastic differential equation

Gλ
t = 1 +

∫

(0,t]×R

Gλ
s−(V λ(s, y) − 1)Ñ1(dy, ds), (38)

has a unique solution Gλ which is a strictly positive martingale under PT and such that

sup
λ∈[−1,1]

ET

(

sup
t≤T

|Gλ
t |2
)

< +∞. (39)

(ii) The law of Nλ
1 under Pλ

T = Gλ
T .PT is the same as the law of N1 under PT .

Proof : (i) Thanks to (34), the stochastic integral Mλ
t =

∫

(0,t]×R
(V λ(s, y)−1)Ñ1(dy, ds) is well

defined and is a PT square integrable martingale. The unique solution to (38) is the exponential

martingale Gλ
t = E(Mλ)t = eM

λ
t
∏

0<s≤t(1+∆Mλ
s )e−∆Mλ

s given by the Doléans-Dade formula.

Using (33), we remark that the jumps of Mλ are more than −1/2 so that Gλ
t is positive

for each t. Moreover, using (34), Doob’s inequality and Gronwall’s Lemma, we deduce from (38)
that (39) holds.

(ii) Let us denote µ(dy, dt) = 1|y|≤1β1(y)dydt, and compute the image measure γλ(V λ.µ).
For a Borel subset A of [0, T ] × [−1, 1], we have

γλ(V λ.µ)(A) =

∫

1A(t, y + λv(t, y))V λ(t, y)β1(y)dydt

=

∫

1A(t, y′)
β1(y

′)

β1(y)
(1 + λv′(t, y))β1(y)

dy′

1 + λv′(t, y)
dt

=

∫

1A(t, y′)β1(y
′)dy′dt = µ(A), (40)

where y′ = y + λv(t, y). Hence

γλ(V λ.µ) = µ. (41)
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Since N1 is independent from (X0, N
T
2 ), the compensator of N1 under PT is µ. By the Girsanov’s

theorem for random measures (cf. Jacod and Shiryaev [12], p. 157), its compensator under
Pλ

T = Gλ
T .PT is V λ.µ and thus, the compensator of Nλ

1 = γλ(N1) is equal to γλ(V λ.µ) = µ.
We have thus proven that the compensator of Nλ

1 under Pλ
T is µ, and the second assertion in

the proposition follows.

Next, we study the differentiability of Gλ with respect to the parameter λ, at λ = 0.

Proposition 13 (i) The process

DGt =

∫

(0,t]×R

d

dλ
V λ(s, y)/λ=0Ñ1(dy, ds) =

∫

(0,t]×R

(

v′(s, y) +
β′1(y)

β1(y)
v(s, y)

)

Ñ1(dy, ds)

(42)

is well defined, and such that

ET (sup
t≤T

|DGt|2) < +∞. (43)

(ii) The process Gλ is L2-differentiable at λ = 0, with the derivative DG which is under-
stood in the following sense:

ET

(

sup
t≤T

|Gλ
t − 1 − λDGt|2

)

= o(λ2), a.s., (44)

as λ tends to 0.

Proof : (i) Thanks to (36) and (22), for almost all ω, and all s ∈ [0, T ],

∫ 1

−1

∣

∣

∣

∣

d

dλ
V λ(s, y)/λ=0

∣

∣

∣

∣

2

β1(y)dy ≤ C. (45)

Therefore the process DGt is well defined and satisfies (43).

(ii) Moreover, one has

ET

(

sup
t≤T

|Gλ
t − 1 − λDGt|2

)

≤ C

∫

(0,t]×R

ET

(

(

Gλ
s

(

V λ(s, y) − 1
)

− λ
d

dλ
V λ(s, y)/λ=0

)2
)

β1(y)dyds

≤ C

∫

(0,t]×R

ET

(

(

Gλ
s

(

V λ(s, y) − 1 − λ
d

dλ
V λ(s, y)/λ=0

))2
)

β1(y)dyds

+λ2C

∫

(0,t]×R

ET

(

(

d

dλ
V λ(s, y)/λ=0)

)2

(Gλ
s − 1)2

)

β1(y)dyds.

Now, according to (35) and (39), we obtain that

∫

(0,t]×R

ET

(

(

Gλ
s (V λ(s, y) − 1 − λ

d

dλ
V λ(s, y)/λ=0)

)2
)

β1(y)dyds ≤ Cλ4t.
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Furthermore, by (45),

∫

(0,t]×R

ET

(

(

d

dλ
V λ(s, y)/λ=0)

)2

(Gλ
s − 1)2

)

β1(y)dyds ≤
∫ t

0
ET ((Gλ

s − 1)2)ds,

and using (34) and (39), we may show that, for each t ≤ T ,

ET ((Gλ
t − 1)2) =

∫

(0,t]×R

ET ((Gλ
s (V λ(s, y) − 1))2)β1(y)dyds ≤ Cλ2.

This concludes the proof.

In the next step we define the perturbed stochastic differential equation. Let us recall that
the probability measures Pt are fixed and are considered as time-dependent parameters. Thus
the process X is a function FP (X0, N1, N2) of the triplet (X0, N1, N2).

Define Xλ := FP (X0, N
λ
1 , N2). Hence, using Proposition 12 (ii), the law of Xλ under Pλ

T

is equal to the law of X under PT . A simple computation shows that Xλ is a solution of the
stochastic differential equation

Xλ
t = X0 +

∫

(0,t]×R

y σ(Xλ
s−, Ps)

(

Nλ
1 (dy, ds) − β1(dy)ds

)

+

∫

(0,t]×R

y σ(Xλ
s−, Ps)N2(dy, ds)

= X0 +

∫

(0,t]×R

(y + λv(s, y)) σ(Xλ
s−, Ps)

(

N1(dy, ds) − V λ(s, y)β1(dy)ds
)

+

∫

(0,t]×R

y σ(Xλ
s−, Ps)N2(dy, ds), ( since γλ(V λ.µ) = µ)

= X0 +

∫

(0,t]×R

yσ(Xλ
s−, Ps)Ñ1(dy, ds) + λ

∫

(0,t]×R

σ(Xλ
s−, Ps)v(s, y)Ñ1(dy, ds)

+

∫

(0,t]×R

y σ(Xλ
s−, Ps)N2(dy, ds) −

∫

(0,t]×R

(y + λv(s, y))σ(Xλ
s−, Ps)(V

λ(s, y) − 1)β1(y)dyds.

(46)

Using (20) for the second term, the fact that
∫ 1
−1(y

2 + k2(y))β1(y)dy < +∞, (34), and the
Cauchy-Schwarz inequality for the last term, we easily prove that equation (46) has a unique
pathwise solution.

Let us now show that Xλ is differentiable in λ, at λ = 0, in the L2-sense. More precisely
we have the following

Proposition 14

(i) ET

(

sup
t≤T

|Xλ
t −Xt|4

)

≤ Cλ4. (47)

(ii) ET

(

sup
t≤T

|Xλ
t −Xt − λDXt|2

)

= o(λ2), (48)

as λ tends to 0, where DX is a solution of the affine stochastic differential equation

DXt =

∫

(0,t]×R

yσ′x(Xs−, Ps)DXs− Ñ1(dy, ds) +

∫

(0,t]×R

σ(Xs−, Ps)v(s, y)Ñ1(dy, ds)
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+

∫

(0,t]×R

yσ′x(Xs−, Ps)DXs− N2(dy, ds) −
∫

(0,t]×[−1,1]
y σ(Xs−, Ps)(β1(y)v

′(s, y) + β′1(y)v(s, y))dyds.

(49)

Proof : In order to prove assertion (i), we need the following moment estimate :

sup
λ∈[−1,1]

ET

(

sup
t≤T

|Xλ
t |4
)

< +∞. (50)

It relies on the following classical estimation (see, [4], Lemme (A.14)):

ET





(

∫

(0,t]×R

Hsρ(y)Ñ1(dy, ds)

)4


 ≤ C

(

(∫ 1

−1
ρ2(y)β1(y)dy

)2

+

∫ 1

−1
ρ4(y)β1(y)dy

)

×
∫ t

0
ET

(

sup
u≤s

|Hu|4
)

ds, (51)

for any predictable process H, and any measurable function ρ : [−1, 1] 7→ R such that the right-
hand side is finite. Conditioning by NT

2 , the times and the amplitudes of jumps of N2 on (0, t]
are given by (T1, Y1), · · · , (Tk, Yk), and

ET

(∣

∣

∣

∣

∫ t

0
yσ(Xλ

s−, Ps)N2(dy, ds)

∣

∣

∣

∣

4)

≤ C
k
∑

i=1

Y 4
i

(

ET (|Xλ
Ti−|

4) + σ4(0, PTi
)
)

≤ C
k

sup
i=1

|Yi|4
(

sup
u∈[0,T ]

σ4(0, Pu) +

∫ t

0

∫

|y|>1
ET (|Xλ

s−|4)N2(dy, ds)

)

.

Applying (51) with ρ(y) = y, and ρ(y) = k(y), (34) and Gronwall’s Lemma with respect to the
measure ds+

∫

|y|>1N2(dy, ds), we easily check (50) and deduce

sup
λ∈[−1,1]

ET

(

sup
t≤T

|σ(Xλ
t , Pt)|4

)

< +∞.

Now, we write Xλ
t − Xt using (16) and (46). Assertion (i) is obtained following an analogous

argument.

To prove (ii) we need to isolate the term Zλ
t = Xλ

t −Xt − λDXt, and as in [4], Theorem
(A.10), we write

Xλ
t −Xt − λDXt

=

∫

(0,t]×R

y Zλ
s−σ

′
x(Xs−, Ps)(Ñ1(dy, ds) +N2(dy, ds))

+

∫

(0,t]×R

y
(

σ(Xλ
s−, Ps) − σ(Xs−, Ps) − σ′x(Xs−, Ps)(X

λ
s− −Xs−)

)

(Ñ1(dy, ds) +N2(dy, ds))

+

∫

(0,t]×R

λv(s, y)
(

σ(Xλ
s−, Ps) − σ(Xs−, Ps)

)

Ñ1(dy, ds)

−
∫

(0,t]×R

y σ(Xs, Ps)

(

V λ(s, y) − 1 − λ
d

dλ
V λ(s, y)/λ=0

)

β1(y)dyds

−
∫

(0,t]×R

y
(

σ(Xλ
s , Ps) − σ(Xs, Ps)

)

(V λ(s, y) − 1)β1(y)dyds

−
∫

(0,t]×R

λ v(s, y)σ(Xλ
s , Ps)(V

λ(s, y) − 1)β1(y)dyds.
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Under Hypotheses (H) and (H1) all the integral terms, except the first one, are of order
λ2. Indeed, for the second term, we use Taylor’s expansion of σ, and (47); for the third term,
we use (20), and (47); for the fourth we use the Cauchy-Schwarz inequality, and (35); for the
fifth term, we use the Cauchy-Schwarz inequality, (34), and (47); for the sixth term, we use
Cauchy-Schwarz inequality, (34), and (20). Then, as previously, using Gronwall’s Lemma for
the conditional expectation, we obtain the result.

The term DXt requires our special attention. Observe that, after integration by parts (in
the variable y), the last term in (14) cancels the compensated part of

∫

(0,t]×R

σ(Xs−, Ps)v(s, y)Ñ1(dy, ds),

and one obtains

DXt =

∫ t

0
DXs−dKs + Lt (52)

where

Kt =

∫

(0,t]×R

y σ′x(Xs−, Ps)Ñ1(dy, ds) +

∫

(0,t]×R

y σ′x(Xs−, Ps)N2(dy, ds), (53)

Lt =

∫

(0,t]×R

σ(Xs−, Ps) v(s, y) N1(dy, ds). (54)

As in [12], Theorem 4.61, p. 59, or in [4], we can solve (52) explicitely. The jumps ∆Ks are of
the form yσ′x(Xs, Ps). Thus 1+∆Ks may be equal to 0 and then the Doleans-Dade exponential

E(K)t = eKtΠ0<s≤t(1 + ∆Ks)e
−∆Ks

vanishes from the first time when ∆Ks = −1. We follow [4] to show that DXT 6= 0, but the
strict positivity (which has not been proved in the latter) necessitates a careful analysis.

Let us define the sequence of stopping times S1 = inf{t > 0,∆Kt ≤ −1}, Sk = inf{t >
Sk−1,∆Kt ≤ −1}, S0 = 0. Since σ′x is bounded, there is a finite number of big jumps on the
time interval [0, T ], so that there exists an n such that Sn ≤ T < Sn+1 = ∞, and P(Sn = T ) = 0.

Solving equation (52) gives

DXt = E(K −KSk)t

(

DXSk
+

∫

(Sk,t]
(1 + ∆Ks)

−1E(K −KSk)−1
s−dLs

)

if Sk ≤ t < Sk+1, and t ≤ T, (55)

where KSk
t = KSk∧t. In particular,

DXT = E(K −KSn)T

(

DXSn +

∫

(Sn,T ]
(1 + ∆Ks)

−1E(K −KSn)−1
s−dLs

)

.

Because of the definition of Sn, the exponential martingale E(K − KSn)s is non-negative on
[Sn, T ]. If the perturbation v did not vanish before time Sn, it would not be clear how to
control the sign of DXSn . That is why we choose S = Sn in (29) :

v(s, y) = 1{s>Sn}(1 + y σ′x(Xs−, Ps)) k(y) g(σ(Xs−, Ps))

so that DXSn = 0. For this choice, we obtain
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Proposition 15 We have DXT > 0, almost surely.

Proof : One has DXT = E(K −KSn)TYn, where Yn =
∫

(Sn,T ](1 + ∆Ks)
−1E(K −KSn)−1

s−dLs.

Since N1 and N2 are independent, the sets of jumps are almost surely distinct and then
1 + ∆Ks can be replaced by 1 every time the jump of K comes from a jump of N2. So,

Yn =

∫

(Sn,T ]×[−1,1]
hn(s, y)N1(ds, dy),

where

hn(s, y) = E(K −KSn)−1
s−(1 + yσ′x(Xs−, Ps))

−1v(s, y)σ(Xs−, Ps)

= E(K −KSn)−1
s−k(y)σ(Xs−, Ps)g(σ(Xs−, Ps)) ≥ 0.

Let us consider the set An = {(ω, s, y), hn(ω, s, y) > 0} and define the stopping time τ = inf{t >
Sn,
∫

(Sn,t]×[−1,1] hn(s, y)N1(ds, dy) > 0} = inf{t > Sn,
∫

(Sn,t]×[−1,1] 1An(s, y)N1(ds, dy) > 0}.

Using the definitions of v and Sn+1, one knows that, if Sn(ω) < s ≤ T ∧ Sn+1(ω), then

(ω, s, y) ∈ An ⇔ σ(Xs−(ω), Ps) 6= 0,

which is always the case in view of Hypothesis (H).

On the other hand,
∫

(Sn,τ ]×[−1,1] 1An(s, y)N1(ds, dy) ≤ 1,

so E

(

∫

(Sn,τ ]×[−1,1] 1An(s, y)N1(ds, dy)
)

≤ 1 and, for ω in a set of probability 1,

∫

(Sn,τ ]×[−1,1]
1An(s, y)β1(y)dyds < +∞.

These two remarks, and the fact the
∫ 1
−1 β1(y)dy = +∞, imply that τ = Sn, almost surely. So

Yn is strictly positive. Therefore DXT is strictly positive as well and the proof is complete.

We are now in a position to complete the proof of Theorem 9.

Proof of Theorem 10 : For φ ∈ C∞
b (R), we differentiate the expression (27) in the L2-sense

with respect to λ, at λ = 0, and hence, we obtain the ”integration-by-parts” formula (28). Then,
since ET |DGT | < +∞, we obtain (26), which concludes the proof.

3 The case of a symmetric stable driving process Z

In this section, we assume that the real-valued driving process Z is a symmetric stable process
with index α ∈ (0, 2), i.e., Z is given by (15) with β(dy) = K

|y|1+αdy, where K > 0 is a normaliza-

tion constant. The generator of this process is the fractional Laplacian (or, fractional symmetric
derivative) of order α on R :

Dα
xf(x) = K

∫

R

(

f(x+ y) − f(x) − 1{|y|≤1}f
′(x)y

) dy

|y|1+α
.

This operator may be defined alternatively via the Fourier transform F :

Dα
xv(x) = K ′F−1

(

|ξ|αF(v)(ξ)
)

(x), with K ′ > 0.

21



When σ : R×P(R) → R satisfies Hypotheses (H), it is possible to explicitly calculate the adjoint
L∗[ν] involved in the nonlinear Fokker-Planck equation (13). For smooth functions ϕ,ψ : R 7→ R,
one has

∫

R

L[ν]ϕ(x)ψ(x)dx = K

∫

R2

(

ϕ(x+ s(x)y) − ϕ(x) − 1{|y|≤1}s(x)yϕ
′(x)

) dy

|y|1+α
ψ(x)dx,

where s(x) = σ(x, ν). Setting z = −s(x)y, and observing that
∫

R

(

1{|z|≤s(x)} − 1{|z|≤1}

)

zdz
|z|1+α =

0, one gets

∫

R

(

ϕ(x+ s(x)y) − ϕ(x) − 1{|y|≤1}s(x)yϕ
′(x)

)

dy

|y|1+α

=

∫

R

(

ϕ(x− z) − ϕ(x) + 1{|z|≤1}zϕ
′(x)

)

|s(x)|α dz

|z|1+α
.

Since
∫

R

ϕ(x− z)[|s|αψ](x)dx =

∫

R

ϕ(x)[|s|αψ](x+ z)dx,

and
∫

R

ϕ′(x)[|s|αψ](x)dx = −
∫

R

ϕ(x)[|s|αψ]′(x)dx,

invoking Fubini’s theorem one concludes that

∫

R

L[ν]ϕ(x)ψ(x)dx = K

∫

R

ϕ(x)

∫

R

(

[|s|αψ](x + z) − [|s|αψ](x) − 1{|z|≤1}z[|s|αψ]′(x)

)

dz

|z|1+α
dx.

Therefore
L∗[ν]ψ(x) = Dα

x (|σ(., ν)|αψ(.))(x).

Moreover, the absolute continuity result given in Theorem 9 permits us to prove existence of a
function solution to the nonlinear Fokker-Planck equation.

Theorem 16 Let m ∈ P(R), and α ∈ (0, 2). Assume that the function σ(x, ν) satisfies hy-
potheses (H) and is Lipschitz continuous in its second variable when P(R) is endowed with the
modified Vaserstein metric d1. Then, there exists a function (t, x) ∈ (0, T ] × R 7→ pt(x) ∈ R+

such that, for each t ∈ (0, T ],
∫

R
pt(x)dx = 1 and, in the weak sense,

{

∂tpt(x) = Dα
x (|σ(., pt)|αpt(.))(x)

limt→0+ pt(x)dx = m(dx) for the weak convergence,
(56)

where, by a slight abuse of notation, σ(., pt) stands for σ(., pt(y)dy).

Proof : Existence of a measure solution (Pt)t∈[0,T ] to the nonlinear Fokker-Planck equation
follows from Propositions 6 and 7. So to conclude the proof, it is enough to exhibit a perturbation
function k(y) satisfying hypotheses (H1) with β1(y) = 1{|y|≤1}

K
|y|1+α . Then, by Theorem 9, for

each t ∈ (0, T ], we have Pt = pt(x)dx .

For γ > α
2 , and ε ∈ (0, 1/2), let kε denote the even function on [−1, 1] defined by

kε(y) =











y1+γ , for y ∈ [0, ε],

ε1+γ + (1 + γ)εγ(y − ε) − (1 + c)(y − ε)1+γ , for y ∈ [ε, 2ε]

(1 + γ − c)ε1+γ − c(1 + γ)εγ(y − 2ε), for y ∈ [2ε, 1],

,
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where c = (1+γ)ε
(1+γ)−ε(1+2γ) , so that kε(1) = 0. The function kε is non-negative and C1 on [0, 1],

satisfies (20) and, ∀y ∈ [−1, 1],

kε(y) ≤ (2 + γ)ε1+γ , |k′ε(y)| ≤ (1 + γ)max(1, c)εγ , and
kε(y)

|y| ≤ (1 + γ)εγ . (57)

In particular, for small enough ε, kε satisfes (21). Since

∣

∣

∣

∣

β′1(y)

β1(y)
(1 + ay)kε(y) + akε(y) + (1 + ay)k′ε(y)

∣

∣

∣

∣

2

β1(y) ≤ C

[

k2
ε(y)

y2
+ k2

ε(y) + (k′ε)
2(y)

]

β1(y)

∼ C ′|y|−(1+α−2γ),

in the neighbourhood of 0, (22) is satisfied as well. In the same way, in the neighbourhood of 0,

sup
a∈[−K1,K1],λ∈[−1,1]

( ∣

∣

∣

∣

β′′1 (y + λ(1 + ay)kε(y))

β1(y)
(1 + λ(akε(y) + (1 + ay)k′ε(y))

∣

∣

∣

∣

2

k2
ε(y)

+

∣

∣

∣

∣

β′1(y + λ(1 + ay)kε(y))

β1(y)

∣

∣

∣

∣

2)

k2
ε(y)β1(y) ≤ C

( |y|2+2γ

y4
+

1

y2

)

|y|1+2γ−α,

and (23) is satisfied.

Finally, for a ∈ [−K1,K1] and y, λ ∈ [−1, 1], by (57), for ε < ((1 +K1)(1 + γ))−1/γ ,

1

|λ|

∣

∣

∣

∣

β1(y + λ(1 + ay)kε(y))

β1(y)
(1 + λ(akε(y) + (1 + ay)k′ε(y)) − 1

∣

∣

∣

∣

=
1

|λ|
|1 − |1 + λ(1 + ay)kε(y)

y |1+α + λ(akε(y) + (1 + ay)k′ε(y))|
|1 + λ(1 + ay)kε(y)

y |1+α

≤ 1

(1 − (1 +K1)(1 + γ)εγ)1+α

[

(1 + α)(1 + (1 +K1)(1 + γ)εγ)α(1 +K1)(1 + γ)εγ

+K1(2 + γ)ε1+γ + (1 +K1)(1 + γ)max(1, c)εγ
]

,

and (24) is also satisfied for small enough ε.

Remark 17 One of the motivations for our work was to generalize the probabilistic approxi-
mation of the porous medium equation

∂tpt(x) = D2
x(pq

t (x)), q > 1, (58)

developed, among others, by Jourdain [9] to the fractional case where D2
x is replaced by Dα

x .
The equation (58), which describes percolation of gases through porous media, and which is
usually derived by combining the power type equation of state relating pressure to gas density
p, conservation of mass law, and so called Darcy’s law describing the local gas velocity as the
gradient of pressure, goes back, at least, to the 1930’s (see, e.g., Muskat [16]). The major steps
in the development of the mathematical theory of (58) were the discovery of the family of its
self-similar solutions by Barenblatt (see, [1], and [2]) who obtained this equation in the context
of heat propagation at the initial stages of a nuclear explosion, and an elegant uniqueness result
for (58) proved by Brézis and Crandall [7]. A summary of some of the newer developments in
the area of the standard porous medium equation can be found in a survey by Otto [18].
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However, in a number of recent physical papers, an argument was made that some of
the fractional scaling observed in flows-in-porous-media phenomena cannot be modeled in the
framework of (58). In particular, Meerschaert, Benson and Baeumer [15] replace the Lapla-
cian D2

x in (58) by the fractional Laplacian Dα
x while considering the linear case (q = 1) in a

multidimensional case of anomalous (mostly geophysical) diffusion in porous media, while Park,
Kleinfelter and Cushman [19] continue in this tradition and derive scaling laws and (linear)
Fokker-Planck equations for 3-dimensional porous media with fractal mesoscale.

On the other hand, Tsallis and Bukman [23] suggest an alternative approach to the anoma-
lous scaling problem (in porous media, surface growth, and certain biological phenomena) and
consider an equation of the general form

∂tp
r
t (x) = −Dx(F (x)pr

t (x)) +D2
x(pq

t (x)), r, q ∈ R, (59)

where F (x) is an external force. The authors manage to find exact solutions for this class of
equations using ingeniously the concept of Renyi (-Tsallis) entropy but, significantly, suggest
in the conclusion of their paper that it would be desirable to develop physically significant
models for which further unification can possibly be achieved by considering the generic case of
a nonlinear Fokker-Planck-like equation with fractional derivatives. This is what we endeavored
to do taking as our criterion of ”physicality” the existence of an approximating interacting
particle scheme. For the most obvious, simply-minded generalization, ∂tpt(x) = Dα

x (pq
t (x)), that

physical interpretation seems to be missing, or, at least, we were unable to produce it and, as a
result, our study lead us to settle on an equation like (56). Indeed for

σ(x, ν) = (gε ∗ ν(x))s with ε > 0, gε(x) =
1√
2πε

e−
x2

2ε and s > 0,

(56) writes ∂tpt = Dα
x ((gε ∗ pt)

αspt) which, for now, we are viewing as a ”physically justifiable”,
fractional, and strongly nonlinear “extension” of the classical porous medium equation. Of
course, this is only the beginning of the effort to understand these types of models.
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