
HAL Id: hal-00163677
https://hal.science/hal-00163677

Submitted on 17 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new instability for finite Prandtl number rotating
convection with free-slip boundary conditions

Yannick Ponty, Thierry Passot, Pierre-Louis Sulem

To cite this version:
Yannick Ponty, Thierry Passot, Pierre-Louis Sulem. A new instability for finite Prandtl number
rotating convection with free-slip boundary conditions. Physics of Fluids, 1997, 9 (1), pp.67-75. �hal-
00163677�

https://hal.science/hal-00163677
https://hal.archives-ouvertes.fr


ha
l-

00
16

36
77

, v
er

si
on

 1
 -

 1
7 

Ju
l 2

00
7

A new instability for finite Prandtl number rotating

convection with free-slip boundary conditions

Y. Ponty, T. Passot and P.L Sulem

CNRS URA 1362, Observatoire de la Côte d’Azur
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Abstract

Rolls in finite Prandtl number rotating convection with free-slip
top and bottom boundary conditions are shown to be unstable with
respect to small angle perturbations for any value of the rotation rate.
This instability is driven by the horizontal mean flow whose estimation
requires a special singular perturbation analysis.

PACS numbers: 47.27.Te, 47.20.Bp, 47.32.-y, 47.20.-Lz

1 Introduction

Rayleigh-Bénard convection in a plane layer heated from below and rotating
about a vertical axis, has been the object of special attention motivated
by both astrophysical and geophysical applications, and by the existence
of additional instabilities occuring in this system. In the case of free-slip
top and bottom boundary conditions, Küppers and Lortz [1] showed, using
by a perturbation analysis near threshold, that when in an infinite Prandtl
number fluid, the Taylor number (which measures the rotation rate) exceeds
the critical value 2285, two-dimensional rolls are unstable with respect to
perturbations of the form of a similar pattern rotated by an angle close to
58o. This instability which is also present with no-slip boundaries [2], leads
in the case of extended systems to the formation of chaotically evolving
patches of parallel rolls [3], [4], [5],[6],[7].

Convection at moderate Prandtl number with no-slip top and bottom
boundary conditions, was addressed in [8], [2] and [9], and the Küppers-
Lortz instability was shown to occur at a critical Taylor number lower than
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in the infinite Prandtl number limit. Free-slip boundaries were considered
by Swift (cited in [9]) who noted that the usual perturbative calculation of
the growth rate leads to a divergence in the limit of perturbations quasi-
parallel to the basic rolls. The present paper is mostly concerned with a
revisited analysis of this problem, leading to a uniformly valid expression of
the instability growth rate. We show in particular that for any finite Prandtl
number and rotation rate, straight parallel rolls are unstable when the angle
associated to the perturbation is small enough.

In Section 2, steady convective rolls in a rotating frame are constructed
perturbatively near threshold. Section 3 is devoted to the computation of
the instability growth rate for finite angle perturbation, an analysis which,
at finite Prandtl number, breaks down in the small angle limit. In Sec-
tion 4, we present a special analysis in the resulting small angle “boundary
layer”, where the interaction of the basic rolls with quasi-parallel pertur-
bations leads to almost space-independent contributions which become res-
onant in the zero angle limit. These terms are removed by prescribing a
quasi-solvability condition the marginal mode of quasi-constant horizontal
velocity. A uniform expression for the instability growth rate is then de-
rived and a new “small-angle instability” is obtained. The sensitivity of
the instability growth rate to the Prandtl and Taylor numbers is analyzed.
Qualitative features of this instability and its nonlinear development are
briefly described in Section 5.

2 Steady convective rolls in a rotating frame

The Boussinesq equations in a horizontal fluid layer heated from below and
rotating around a vertical axis ẑ, are written in the non-dimensional form

∆u + ẑϑ−∇Γ − τ ẑ × u = Pr
−1(u.∇u +

∂

∂t
u) (2.1)

∇.u = 0 (2.2)

∆ϑ+Raẑ.u = u.∇ϑ+
∂

∂t
ϑ, (2.3)

where the vertical diffusion time is taken as time unit. We assume a Prandtl
number Pr > 0.6766, to prevent over-stability [10]. The other parameters
are the Rayleigh number Ra and the square root τ of the Taylor number
(equal to twice the Rossby number) which, to be specific, is taken positive
(anti-clockwise rotation).

Proceeding as in [1], we introduce the operators Λ = ∇×(∇×.) and Υ =
∇× ., and express the velocity u = (u, v,w)t in terms of two scalar fields φ
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and ψ, in the form u = Λ(φẑ)+Υ(ψẑ) = (∂z∂xφ+∂yψ, ∂z∂yφ−∂xψ,−∆hφ)t,
where ∆h = ∂xx + ∂yy. Applying the operators ẑ.Λ and ẑ.Υ on eqs. (2.1)-
(2.3), we obtain

(U +RaG)X = Q(X,X) +
∂

∂t
V X, (2.4)

with

X =







φ

ψ

ϑ






, Q(X,X ′) =







Pr
−1ẑ.Λ(u · ∇u′)

−Pr
−1ẑ.Υ(u · ∇u′)

u · ∇ϑ′






, G =







0 0 0
0 0 0

−∆h 0 0






,

U =







∆2∆h −τ∂z∆h −∆h

τ∂z∆h ∆∆h 0
0 0 ∆






, V =







Pr
−1∆∆h 0 0

0 Pr
−1∆h 0

0 0 1






.

For free-slip boundary conditions, ϑ = φ = ∂zzφ = ∂zψ = 0 in the planes
z = ±1

2 .
A stationary solution of eq. (2.4) is computed perturbatively near the

convection threshold by expanding Ra = R0 + ǫR1 + ǫ2R2 + · · · and X =
ǫX1 + ǫ2X2 + ǫ3X3 + · · · . or, more explicitly, when taking into account the
boundary conditions satisfied by the individual components,

φ = ǫφ1 cos πz + ǫ2φ2 sin 2πz + · · · (2.5)

ψ = ǫψ1 sinπz + ǫ2(ψ0 + ψ2 cos 2πz) + · · · (2.6)

ϑ = ǫϑ1 cos πz + ǫ2ϑ2 sin 2πz + · · · . (2.7)

Introducing the linear operator L = U+R0G, we get at the successive orders
of the expansion,

LX1 = 0 (2.8)

LX2 = −R1GX1 +Q(X1,X1) (2.9)

LX3 = −(R1GX2 +R2GX1) +Q(X1,X2) +Q(X2,X1). (2.10)

For a solution in the form of two-dimensional rolls with a critical wavenum-
ber |~k1| = k, given by the real solution of

2(
k2

π2
)3 + 3(

k2

π2
)2 = 1 +

τ2

π4
, (2.11)
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the critical Rayleigh number is R0 = (k2+π2)3+τ2π2

k2 [10]. To simplify the
writing, we denote by

Z(α, β, γ) = (α cosπz, β sinπz, γ cos πz)t, (2.12)

vectors corresponding to fundamental modes in the vertical direction and
obeying the boundary conditions prescribed on X. An element of the null
space of L is then given by

v(~k) = Z(c1, c2, c3)e
i~k.~x, (2.13)

with c1 = 1, c2 = − τπ
k2

p
, c3 = R0k2

k2
p
, and k2

p = k2 + π2 =
√

R0

3 , and the

leading order solution reads

X1 = Av(~k1) + c.c., (2.14)

where the amplitude A will be determined by a solvability condition arising
at a higher order. For this purpose, it is convenient to introduce the inner
product

〈X,X ′〉 = R0

∫

φ∗φ′d~x+R0

∫

ψ∗ψ′d~x+

∫

ϑ∗ϑ′d~x, (2.15)

for which the operator L is self-adjoint.
Using the notation

Q(Xi,Xj) +Q(Xj ,Xi) = (1 + δij)(Q
(1)
i,j , Q

(2)
i,j , Q

(3)
i,j )t, (2.16)

we have in eq. (2.9),

Q(X1,X1) =









Q
(1)
1,1

Q
(2)
1,1

Q
(3)
1,1









=









0

2 τ
Pr
π2 k4

k2
p
(A2e2i~k1.~x + c.c.)

−2R0π
k4

k2
p

sin 2πz|A|2









. (2.17)

The solvability condition for eq. (2.9) (obtained by taking the inner product
of this equation with v(~k1)), requires R1 = 0. Defining the operator P =
∆3 + τ2∂zz −R0∆h, eq. (2.9) reduces to

∆hPφ2 = ∆Q
(1)
1,1 + τ∂zQ

(2)
1,1 + ∆hQ

(3)
1,1. (2.18)

The right hand side vanishing identically, we get ∆hφ2 = 0, since elements
of the null space of P , already included in φ1, are not needed in φ2.
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For the two other components of X2, one easily checks that ψ2 = 0,

ψ0 = Ψ0e
2i~k1.~x + c.c. and ϑ2 = Θ2 with Ψ0 = τπ2

8Prk2
p
A2 and Θ2 = R0k4

2πk2
p
|A|2.

This enable us to compute

Q(X1,X2) +Q(X2,X1) =







0
4k4π
Pr

Ψ0(A
∗ei

~k1.~x − 3Ae3i~k1.~x) sinπz + c.c.

2πk2Θ2Ae
i~k1.~x cos πz cos 2πz + c.c.






.

The solvability condition of eq. (2.10) then reduces to R2 = r2|A|
2 or

equivalently, ǫ2|A|2 = Ra−R0

r2
, with r2 = 1

2k2
p
(R0k

4 − τ2π4

Pr
2 ), which completes

the computation of the roll amplitude in terms of the distance to threshold.

3 The Küppers-Lortz instability

We assume that the steady rolls of wavevector ~k1 computed in Section 2
are subject to a perturbation X̃ in the form of rolls with an infinitesimal
amplitude and a wavevector ~k2 making with ~k1 an angle θ that it is enough
to consider in the range ]− π

2 ,
π
2 ]. We assume for the sake of simplicity that

the wavenumbers |~k1| and |~k2| are critical. When real, the growth rate σ of
this perturbation is given by

(U +RaG)X̃ = Q(X, X̃) +Q(X̃,X) + σV X̃. (3.1)

In order to compute σ = ǫσ1 + ǫ2σ2 + · · · perturbatively near threshold, we
also expand X̃ = X̃1 + ǫX̃2 + ǫ2X̃3 + · · · or, for the individual components,

φ̃ = φ̃1 cos πz + ǫφ̃2 sin 2πz + · · · (3.2)

ψ̃ = ψ̃1 sinπz + ǫ(ψ̃0 + ψ̃2 cos 2πz) + · · · (3.3)

ϑ̃ = ϑ̃1 cos πz + ǫϑ̃2 sin 2πz + · · · . (3.4)

Equation (3.1) leads to

LX̃1 = 0 (3.5)

LX̃2 = Q(X1, X̃1) +Q(X̃1,X1) + σ1V X̃1 (3.6)

LX̃3 = Q(X2, X̃1) +Q(X̃1,X2) +Q(X1, X̃2) +Q(X̃2,X1)

+σ1V X̃2 + σ2V X̃1 −R2GX̃1. (3.7)

Using a notation similar to (2.16), we define

Q(Xi, X̃j) +Q(X̃j ,Xi) = Qi,j̃ = (Q
(1)

i,j̃
, Q

(2)

i,j̃
, Q

(3)

i,j̃
)t. (3.8)
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Writing the solution of eq. (3.5) in the form X̃1 = Bv(~k2) + c.c., where B is
an arbitrary constant, we have in the right hand side of eq. (3.6),

Q1,1̃ =









j1
Pr
δ+h δ

−

h (AB∗ei
~k−.~x +ABei

~k+.~x) sin 2πz + c.c.
j2
Pr

(δ−h AB
∗ei

~k−.~x + δ+h ABe
i~k+.~x) + c.c.

j3(δ
+
h AB

∗ei
~k−.~x + δ−h ABe

i~k+.~x) sin 2πz + c.c.









, (3.9)

where we have introduced the wavevectors

~k± = ~k1 ± ~k2, (3.10)

and defined the numerical constants

j1 = −
3

2
πk2, j2 = −

τπ2k2

k2
p

, j3 =
R0k

2π

2k2
p

. (3.11)

Furthermore, the coefficient δ±h , given by ∆he
i~k±.~x = δ±h e

i~k±.~x, read

δ+h = −4k2 cos2 θ

2
, δ−h = −4k2 sin2 θ

2
. (3.12)

Since 〈v(~k2), Q(X1, X̃1) + Q(X̃1,X1)〉 = 0, while 〈v(~k2), V X̃1〉 6= 0, the
solvability condition for eq. (3.6) implies σ1 = 0. Straightforward algebra
then leads to

P∆hφ̃2 = ∆Q
(1)

1,1̃
+ τ∂zQ

(2)

1,1̃
+ ∆hQ

(3)

1,1̃
(3.13)

∆∆hψ̃2 = −τ∂z∆hφ̃2 (3.14)

∆∆hψ̃0 = Q
(2)

1,1̃
(3.15)

∆ϑ̃2 = Q
(3)

1,1̃
+R0∆hφ̃2. (3.16)

Solving in the form

φ̃2 = Φ̃+
2 ABe

i~k+.~x + Φ̃−

2 AB
∗ei

~k−.~x + c.c. (3.17)

ψ̃2 = Ψ̃+
2 ABe

i~k+.~x + Ψ̃−

2 AB
∗ei

~k−.~x + c.c. (3.18)

ψ̃0 = Ψ̃+
0 ABe

i~k+.~x + Ψ̃−

0 AB
∗ei

~k−.~x + c.c. (3.19)

ϑ̃2 = Θ̃+
2 ABe

i~k+.~x + Θ̃−

2 AB
∗ei

~k−.~x + c.c., (3.20)

we get
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Φ̃+
2 =

δ−
h

p+ ( j1
Pr
δ+ + j3) Φ̃−

2 =
δ+

h

p− ( j1
Pr
δ− + j3)

Ψ̃+
2 = −2πτ

δ−
h

p+δ+ ( j1
Pr
δ+ + j3) Ψ̃−

2 = −2πτ
δ+

h

p−δ− ( j1
Pr
δ− + j3)

Ψ̃+
0 = j2

Prδ+

h

Ψ̃−

0 = j2
Prδ−

h

Θ̃+
2 = R0

δ+

h
δ−
h

p+δ+ ( j1
P−rδ

+ + j3) + j3
δ−
h

δ+ Θ̃−

2 = R0
δ+

h
δ−
h

p−δ− ( j1
Pr
δ− + j3) + j3

δ+

h

δ− .

The coefficient δ± and p± defined by the condition ∆ei
~k±.~xT (2πz) = δ±ei

~k±.~xT (2πz)

and Pei
~k±.~xT (2πz) = p±ei

~k±.~xT (2πz), (where the function T stands for sine
or cosine), are given by

δ+ = −[4π2 + 4k2 cos2 θ

2
], (3.21)

δ− = −[4π2 + 4k2 sin2 θ

2
], (3.22)

p+ = −[4π2 + 4k2 cos2 θ

2
]3 − 4π2τ2 + 4k2R0 cos2

θ

2
, (3.23)

p− = −[4π2 + 4k2 sin2 θ

2
]3 − 4π2τ2 + 4k2R0 sin2 θ

2
, (3.24)

where the cos2 θ
2 and sin2 θ

2 contributions result from the action of the hori-

zontal Laplacian on ei
~k+.~x and ei

~k−.~x respectively.

An important observation is that the contribution Ψ̃−

0 AB
∗ei

~k−.~x to ψ̃2

(which disappears at infinite Prandtl number) diverges in the limit θ →
0, where it can be viewed as associated to a “mean flow” generated by
the rotation. This term is specific to free-slip boundary conditions and
has no equivalent when rigid boundaries are considered. The divergence
originates from the fact that in eqs. (3.13)-(3.16), the dynamics of the
mean flow is slaved to that of the leading convective mode. This “adiabatic
approximation” is valid at finite θ but breaks down in an “angular boundary
layer” near θ = 0, where time derivatives become relevant. Postponing to
Section 4 the analysis of this layer, we derive here the solvability condition
of eq. (3.7) for finite θ, by writing

〈v(~k2), GX̃1〉 =
1

2
c1c3k

2B∗ (3.25)

〈v(~k2), V X̃1〉 =
1

2
(R0Pr

−1c21k
2kp

2 −R0Pr
−1c22k

2 + c23)B
∗ (3.26)

〈v(~k2), (Q(X2, X̃1) +Q(X̃1,X2)〉 =
1

4
c21c

2
3k

4|A|2B∗. (3.27)

Furthermore

Q(X1, X̃2)+Q(X̃2,X1) = Z(q
(1)

1,2̃
, q

(2)

1,2̃
, q

(3)

1,2̃
)|A|2B∗e−i~k2.~x + c.c.+F3, (3.28)
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where F3 refers to non resonant terms proportional to sin 3πz or cos 3πz.
We also have

q
(1)

1,2̃
=

k4

2Pr
sin θ[(−Ψ̃+

2 + 2Ψ̃−

0 )(c1π
2 − c1k

2 − 2c1π
2 cos θ − 2c2π sin θ)

+(Ψ̃−

2 − 2Ψ̃+
0 )(c1π

2 − c1k
2 + 2c1π

2 cos θ + 2c2π sin θ)

+2Φ̃−

2 k
2
p(c2(1 − cos θ) + πc1 sin θ) − 2Φ̃+

2 k
2
p(c2(1 + cos θ) − πc1 sin θ)]

(3.29)

q
(2)

1,2̃
= −

k4

2Pr
[2Ψ̃−

0 (c1π(−1 + 2 cos θ − cos 2θ) + c2(sin θ − sin 2θ))

+2Ψ̃+
0 (c1π(−1 − 2 cos θ − cos 2θ) − c2(sin θ + sin 2θ))

+Ψ̃+
2 sin θ(−2c1π sin θ + c2(1 + 2 cos θ))

+Ψ̃−

2 sin θ(−2c1π sin θ − c2(1 − 2 cos θ))

+Φ̃+
2 (c2π(1 − cos 2θ) − π2c1(2 sin θ − sin 2θ))

+Φ̃−

2 (c2π(1 − cos 2θ) + π2c1(2 sin θ + sin 2θ))] (3.30)

q
(3)

1,2̃
=

k2

2
[Θ̃2

−
(c1π(1 + cos θ) + c2 sin θ) + Θ̃2

+
(c1π(1 − cos θ) − c2 sin θ)]

+
k2

2
c3[Ψ̃

+
2 + 2Ψ̃+

0 − Ψ̃−

2 − 2Ψ̃−

0 ] sin θ. (3.31)

It follows that

〈v(~k2), Q(X1, X̃2) +Q(X̃2,X1)〉 =
1

2
(R0c1q

(1)

1,2̃
+R0c2q

(2)

1,2̃
+ c3q

(3)

1,2̃
)|A|2B∗,

(3.32)
and finally

σ = ǫ2σ2 = ǫ2
r2c1c3k

2 − (1
2c

2
1c

2
3k

4 +R0c1q
(1)

1,2̃
+R0c2q

(2)

1,2̃
+ c3q

(3)

1,2̃
)

R0Pr
−1c21k

2kp
2 −R0Pr

−1c22k
2 + c23

|A|2,

(3.33)

where ǫ2|A|2 can be expressed as
2k2

p

R0k4−
τ2π4

P2
r

(Ra −R0).

Since in the limit θ → 0, Ψ̃−

0 diverges like sin−2 θ
2 , the quantity q

(l)

1,2̃
with

l = 1, 2, 3, scales like sin θ
2Ψ̃−

0 ∼ sin−1 θ
2 , and the growth rate behaves like

σ ∼
τπ2k2|A|2

2k2
pPr

ǫ2

sin θ
2

, (3.34)

indicating a breakdown of the above asymptotics at finite Prandtl numbers,
in the case of small angle perturbations.
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Pushing the θ-expansion at the next order, (as needed in Section 4), we
write

σ ∼ [−η +
τπ2k2

2k2
pPr

(2ξ +
1

sin θ
2

)]ǫ2|A|2, (3.35)

with

η =
r2

R0

k2
p

(1 + 1
Pr

(1 − 2τ2π2

R0k2 ))
(3.36)

and

ξ = −
τπ2

Prk2
pk

2(1 + 1
Pr

(1 − 2τ2π2

R0k2 ))
, (3.37)

the latter coefficient collecting contributions originating from Ψ̃−

0 .
The divergence shown in eq. (3.34) was noted in [9]. It indicates that the

above analysis should be viewed as an outer expansion, and that a different
scaling is required for small θ. In the following, the growth rate given by eq.
(3.33) will thus be denoted σouter.

4 The small-angle instability

The small angle divergence of the stream function ψ0 ∼ ǫ sin−2 θ
2 and of the

growth rate σouter ∼ ǫ2 sin−1 θ
2 , indicates that new scalings in ǫ are expected

in an angular boundary layer near θ = 0. Denoting by ǫα the thickness of
this layer, by ǫβ the amplitude of Ψ0 and by ǫγ the magnitude of the growth
rate in this layer, the matching of the “outer” and “inner” regions requires
β = 1− 2α and γ = 2− α. Since, in the inner region, the time derivative in
the mean flow equation (whose presence will remove the divergence) becomes
comparable to the viscous term when γ = 2α, we get α = 2

3 , β = −1
3 and

γ = 4
3 .

Furthermore, when expanding eq. (2.4) inside the boundary layer, the
parameter ǫ appears not only through the horizontal Fourier modes of X1

whose amplitudes scale like entire powers of ǫ, but also through the angular
dependence of the operators involved in this equation. We are thus led to
expand

σ = ǫσ1 + ǫ
4

3σ 4

3

+ ǫ
5

3σ 5

3

+ ǫ2σ2 + ǫ
7

3σ 7

3

+ ǫ
8

3σ 8

3

+ · · · (4.1)

and

X̃ = ǫ−
1

3 Ỹ
−

1

3

+ Ỹ0 + X̃1 + ǫ
1

3 Ỹ 1

3

+ ǫ
2

3 Ỹ 2

3

+ ǫX̃2 + ǫ
4

3 X̃ 4

3

+ ǫ
5

3 X̃ 5

3
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+ǫ2X̃3 + ǫ
7

3 X̃ 7

3

+ ǫ
8

3 X̃ 8

3

+ ǫ3X̃4 + · · · (4.2)

where terms of the form Ỹµ = Ψ̃µB
∗Aei

~k−.~x(0, 1, 0)t + c.c., are introduced
to cancel almost resonant contributions resulting from the interaction of the
basic rolls with quasi-parallel perturbations. As seen later, in the boundary
layer, σ can be complex.

Substituting (4.2) and (4.1) in eq. (3.1) and concentrating on perturba-
tions such that the angle θ between the wavevectors ~k1 and ~k2 is of order
ǫ

2

3 , we obtain the following hierarchy.
• At order ǫ0,

LX̃1 = 0, (4.3)

leading to
X̃1 = v(~k2)B + c.c.. (4.4)

• At order ǫ,

LX̃2 =







0

−4j2k2

Pr
ABei

~k+.~x

−4j3k
2AB∗ei

~k−.~x sin 2πz






+ σ1BV v(~k2) + c.c. . (4.5)

The solvability condition reads

ǫσ1 = 0, (4.6)

and the solution is given by

X̃2 =







0

Ψ̃+
0 ABe

i~k+.~x

Θ̃2
−
AB∗ei

~k−.~x sin 2πz






+ c.c. (4.7)

with Ψ̃+
0 = − j2

4k2Pr
and Θ̃−

2 = j3
k2

π2 .

• At order ǫ
4

3 ,

ǫ
4

3LX̃ 4

3

= ǫ
2

3 sin θΨ̃∗

−
1

3

|A|2Bei
~k2.~xZ(−

k4k2
p

Pr
,
k4c2

Pr
,−k2c3)

+ǫ
4

3σ 4

3

V Bv(~k2) + c.c.+ NR, (4.8)

where NR collects non-resonant terms. The solvability condition is

ǫ
4

3σ 4

3

= ǫk2 sin θ|A|2ǫ−
1

3 Ψ̃∗

−
1

3

. (4.9)
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• At order ǫ
5

3 ,

ǫ
5

3LX̃ 5

3

= ǫ sin θΨ̃∗

0|A|
2Bei

~k2.~xZ(−
k4k2

p

Pr
,
k4c2

Pr
,−k2c3)

+ǫ
5

3σ 5

3

V Bv(~k2) + c.c. + NR. (4.10)

The solvability of this equation requires

ǫ
5

3σ 5

3

= ǫk2 sin θ|A|2Ψ̃∗

0. (4.11)

• At order ǫ2,

ǫ2LX̃3 = ǫ2Q1̃,2 + ǫ2Z(q̄
(1)

1,2̃
, q̄

(2)

1,2̃
, q̄

(3)

1,2̃
)|A|2Bei

~k2.~x

+ǫ
2

3 sin θΨ̃∗

−
1

3

ei
~k2.~x|A|2BZ(−2

k4

Pr
c2π sin θ ,

k4

Pr
c1π(sin

θ

2
− sin

3θ

2
) , 0)

+ǫ
4

3 sin θΨ̃∗
1

3

|A|2Bei
~k2.~xZ(−

k4k2
p

Pr
,
k4c2

Pr
,−k2c3)

−ǫ2R2GX̃1 + ǫ2σ2V Bv(~k2) + c.c. + NR, (4.12)

where

(q̄
(1)

1,2̃
, q̄

(2)

1,2̃
, q̄

(3)

1,2̃
) = (0, 4

k4

Pr
c1πΨ̃+

0 , k
2c1πΘ̃−

2 ) (4.13)

denotes the limit as θ → 0 of the vector (q
(1)

1,2̃
, q

(2)

1,2̃
, q

(3)

1,2̃
) from which the

contributions coming from Ψ−

0 have been removed. The solvability condition
reads

ǫ2σ2 = −η|A|2ǫ2 + 2ǫ
2

3 ξk2 sin θ sin
θ

2
|A|2Ψ̃−∗

−
1

3

+ ǫ
4

3 k2 sin θ|A|2Ψ̃−∗
1

3

, (4.14)

where

η = −
r2c1c3k

2 − (1
2c

2
1c

2
3k

4 +R0c1q̄
(1)

1,2̃
+R0c2q̄

(2)

1,2̃
+ c3q̄

(3)

1,2̃
)

R0Pr
−1c21k

2kp
2 −R0Pr

−1c22k
2 + c23

(4.15)

identifies with the expression given in eq. ( 3.36). The coefficient ξ is given
by eq. (3.37).

Combining the solvability conditions (4.6), (4.9), (4.11) and (4.14), we
are led to express the growth rate

σinner = ǫ
4

3σ 4

3

+ ǫ
5

3σ 5

3

+ ǫ2σ2, (4.16)
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in terms of the “mean flow”

Ψ = ǫ−
1

3 Ψ̃∗

−
1

3

+ Ψ̃∗

0 + ǫ
1

3 Ψ̃∗
1

3

, (4.17)

in the form

σinner = ǫk2 sin θ|A|2(1 + 2ξ sin
θ

2
)Ψ − ǫ2η|A|2, (4.18)

where subdominant corrections have been neglected.
In order to estimate the mean flow Ψ, we push the ǫ-expansion of eq.

(2.4) at higher orders, where the beating of the perturbation with the basic

solution produces contributions of the form ei(
~k1−

~k2).~x which become space-
independent and thus resonant in the small θ limit. Consequently, uniform
boundedness of the solutions requires, in addition to the usual solvability
conditions, the prescription of “quasi-solvability conditions” aimed to elim-
inate terms which are strictly resonant only for θ = 0. This approach is
similar to that used by Ablowitz and Benney [11] when dealing with the
small-amplitude divergence of the Whitham modulation analysis for nonlin-
ear dispersive waves (see also [12]). These authors modify the (algebraic)
dispersion relation by means of additional corrective terms determined by
a constraint which becomes an actual solvability condition in the small am-
plitude limit, thus transforming the algebraic dispersion relation arising in
Whitham’s theory, into a partial differential equation for the wave ampli-
tude. In the context of rotating convection, we include contributions Ỹn

proportional to ei(
~k1−

~k2).~x in the perturbation expansion, which are deter-
mined by cancelling them with the terms displaying the same functional
dependence and originating from the beating of the basic rolls with quasi-
parallel perturbations. Like in the small-amplitude limit of nonlinear waves,
this condition becomes an actual solvability in the limit θ → 0. In both
instances, the singularity is prevented by removing slaving conditions: that
of the amplitude with respect to the phase in the case of waves, or that of
the mean flow with respect to the convective modes in the present problem
(compare eqs. (3.14) and (4.25) below).

• At order ǫ
7

3 ,

ǫ
7

3LX̃ 7

3

+









ǫδ−h Θ̃−

2 AB
∗ei

~k−.~x sin 2πz

ǫ−
1

3 δ−h
2
Ψ̃

−
1

3

AB∗ei
~k−.~x + c.c.

0









=

ǫ
7

3 [Q
1, 4̃

3

] + ǫ









j1
Pr
δ+h δ

−

h (AB∗ei
~k−.~x +ABei

~k+.~x) sin 2πz + c.c.
j2
Pr
δ−h AB

∗ei
~k−.~x + c.c.

j3δ
−

h ABe
i~k+.~x sin 2πz + c.c.









+

12











0

ǫ
4

3σ∗4
3

P−1
r δ−h ǫ

−
1

3 Ψ̃
−

1

3

AB∗ei
~k−.~x + c.c.

0









+

ǫ sin θΨ̃∗

0e
i ~k2.~x|A|2BZ(−2

k4

Pr
c2π sin θ ,

k4

Pr
c1π(sin

θ

2
− sin

3θ

2
) , 0) +

+ǫ
5

3 sin θΨ̃∗
2

3

Aei
~k2.~xZ(−

k4k2
p

Pr
,
k4c2

Pr
,−k2c3) + ǫ

7

3σ 4

3

V X̃2 + ǫ
7

3σ 7

3

V X̃1,

(4.19)

where [Q
1, 4̃

3

] denotes the leading order of Q(X1, X̃ 4

3

)+Q(X̃ 4

3

,X1). Although

X̃ 4

3

contains terms proportional to e±i~k2.~x, the resulting contributions of the

form ei
~k−.~x in Q

1, 4̃
3

are preceded by a factor proportional to sin2 θ
2 and thus

not included in [Q
1, 4̃

3

]. The quasi-solvability condition thus reads

− ǫσ 4

3

P−1
r δ−h Ψ̃∗

−
1

3

+ ǫ−
1

3 δ−h
2
Ψ̃∗

−
1

3

− ǫδ−h j2P
−1
r = 0. (4.20)

• At order ǫ
8

3 ,

ǫ
8

3LX̃ 8

3

+







0

−P−1
r δ−h ǫ

4

3σ 4

3

Ψ̃∗
0 + δ−h

2
Ψ̃∗

0 − P−1
r ǫ

4

3σ 5

3

Ψ̃∗

−
1

3

0






= [Q 5̃

3
,1
] +









0

ǫ2 8
Pr
k4Ψ0(Bǫ

−
1

3 Ψ̃∗

−
1

3

ei
~k+.~x + c.c.) sin θ cos2 θ

2

0









+

ǫ
4

3 sin θΨ̃∗
1

3

ei
~k2.~x|A|2BZ(−2

k4

Pr
c2π sin θ ,

k4

Pr
c1π(sin

θ

2
− sin

3θ

2
) , 0).

(4.21)

The quasi-solvability condition is

− P−1
r ǫ−

4

3σ 4

3

δ−h Ψ̃∗

0 + δ−h
2
Ψ̃∗

0 − P−1
r ǫ

5

3σ 5

3

δ−h (ǫ−
1

3 Ψ̃∗

−
1

3

) = 0 (4.22)

where, as previously, [Q 5̃

3
,1
] does not contribute.

• At order ǫ3,

ǫ3LX̃4 = ǫ3[Q1,3̃ +Q3,1̃ +Q2,2̃] − ǫ3R3GX̃1 − ǫ3R2GX̃2 + ǫ3(σ2V X̃2 + σ3V X̃1)
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−(0 , ǫ
1

3 δ−h
2
Ψ̃∗

1

3

AB∗e−i~k−.~x + c.c. , 0)t

+(0 , P−1
r δ−h ǫ

5

3 (σ2Ψ̃
∗

−
1

3

+ σ 4

3

Ψ̃∗
1

3

+ σ 5

3

Ψ̃∗

0)AB
∗e−i~k−.~x + c.c. , 0)t, (4.23)

with the quasi-solvability condition

δ−h
2
(ǫ

1

3 Ψ̃−∗
1

3

)−P−1
r ǫ2σ2δ

−

h (ǫ−
1

3 Ψ̃∗

−
1

3

)−P−1
r ǫ

4

3σ 4

3

δ−h (ǫ
1

3 Ψ̃∗
1

3

)−P−1
r ǫ

5

3σ 5

3

δ−h Ψ̃∗

0 = 0.

(4.24)
Combining eqs. (4.20), (4.22) and (4.24), we get, up to subdominant

contributions,

− P−1
r σinnerΨ + δ−h Ψ = ǫP−1

r j2 (4.25)

which together with eq. (4.18), constitute a closed system. Solving the
resulting quadratic equation for the growth rate, we obtain two solutions

σ±inner =
1

2
(−ǫ2η|A|2 − 4k2Pr sin2 θ

2
) ±

1

2

[

(ǫ2η|A|2 − 4k2Pr sin2 θ

2
)2 − 4ǫ2k2 sin θ|A|2j2(1 + 2 sin

θ

2
ξ)

]
1

2

.

(4.26)

where η, ξ and j2 are defined by eqs. (3.36), (3.37) and (3.11). This expres-
sion covers several regimes

(i) For θ ∼ ǫ
2

3 ,

σ±inner ∼
1

2
(−4k2Pr sin2 θ

2
) ±

1

2

[

(4k2Pr sin2 θ

2
)2 − 4ǫ2k2 sin θ|A|2j2

]
1

2

.

(4.27)
In this range, σ+

inner > 0 for θ > 0 (θ < 0) if τ > 0 (resp. τ < 0) for any
finite value of the Prandtl number (still assuming Pr > 0.6766) and of the
Taylor number.

(ii) When θ ≫ ǫ
2

3 ,

σ+
inner ∼ σmatch = [−η +

τπ2k2

2k2
pPr

(2ξ +
1

sin θ
2

)]ǫ2|A|2, (4.28)

and matches the limit of σouter as θ → 0. Similarly,

σ−inner ∼ −4k2Pr sin2 θ

2
(4.29)

is negative and becomes of order unity outside the boundary layer.
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(iii) For θ ∼ ǫ2,

σ±inner ∼
1

2
(−ǫ2η|A|2) ±

1

2

[

(ǫ2η|A|2)2 − 4ǫ2k2 sin θ|A|2j2
] 1

2
. (4.30)

and for θ = 0, σ+
inner vanishes, while σ−inner(0) = −ǫ2η|A|2.

We thus obtain a uniform representation for θ ∈]− π
2 ,

π
2 ], of the instability

growth rate near the convection threshold, of the form

σ+ = σ+
inner + σouter − σmatch. (4.31)

where the various terms arising in the right-hand-side of eq. (4.31) are given
by eq. (3.33), (4.26) and (4.28). The influence of various parameters like
the Prandtl number and the rotation rate on the stength of the instability,
is illustrated in the following figures.

Figure 1 shows the variation of the eigenvalues σ± with the angle θ of
the perturbation for Pr = 2, ǫ = 0.1 and τ = 10. For anti-clockwise rotation
and finite Prandtl number, the growth rate σ+ is positive for small enough
positive angles θ. There is also a range of negative angles, where there are
two complex conjugate eigenvalues, with negative real parts. The dashed line
represents the outer solution σouter which diverges in the limit θ → 0. The
other eigenvalue σ− which, as ǫ→ 0, becomes marginal in a neighborhood of
θ = 0, is of order unity outside the angular boundary layer. It thus cannot
be computed perturbatively for θ order unity but, being always negative or
complex with a negative real part, it cannot lead to an instability.

Figure 2 displays the growth rate σ+ for τ = 38, ǫ = 0.1 and various
values of the Prandtl number for positive angles. We observe that both
the range of unstable angles and the maximal growth rate decrease when
the Prandtl number is increased. At Pr = 10, the small angle instability
and the Küppers-Lortz instability (around θ = 50o) can be separated, in
contrast with the case of smaller Prandtl numbers (e.g. Pr = 5) where all
the angles 0 < θ ≤ 64o are unstable. For this rotation rate, only the small
angle instability survives at Prandtl number Pr = 15. It becomes hardly
visible at Pr = 50. Indeed, as the Prandtl number goes to infinity, the
negative eigenvalue σ− has a limit, while the outer expansion σ+

outer extends
towards θ = 0 where it asymptotically reaches the value σ−(0), the inner
range reducing to the vertical axis.

Figure 3 shows the variation of the instability growth rate with the ro-
tation rate τ , for Pr = 15 and ǫ = 0.1. For τ = 10, only the small angle
instability is present. The Küppers-Lortz instability (again localized around
θ = 58o) arises for τ ≈ 40 and is strongly amplified as τ is increased.
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Figure 4a displays for ǫ = 0.1, the critical value of the rotation rate τ
for the onset of the Küppers-Lortz instability, as a function of the Prandtl
number, as long as the latter is large enough for the two instabilities to be
separated. Figure 4b shows the most unstable angle (in degrees) for the
Küppers-Lortz instability, versus the Prandtl number, for a rotation rate
corresponding to the onset of the instability.
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Figure 1: Instability growth rates σ+ and σ− or their real part r when
complex conjugate (full line), together with the diverging “outer solution”
(dashed line), versus the perturbation angle θ (in degrees), for P = 10,
τ = 10 and ǫ = 0.1.
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Figure 2: Growth rate σ+, versus the perturbation angle θ > 0, for τ = 38,
ǫ = 0.1 and different values Pr = 5, 10, 25, 50 of the Prandtl number.
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Figure 3: Growth rate σ+, versus the perturbation angle θ > 0, for P = 15,
ǫ = 0.1 and different values τ = 10, 40, 60, 100 of the rotation rate τ .
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Figure 4: Küppers-Lortz instability boundary in the (Pr, τ)-plane (a), and
angle associated to the unstable perturbation at the critical Taylor number
versus the Prandtl number (b).

5 Nature of the instability and nonlinear develop-

ments

We showed in Section 4 that in a rotating horizontal fluid layer with mod-
erate Prandtl number, limited by top and bottom free-slip boundaries, con-
vective rolls are linearly unstable with respect to perturbations in the form
of rolls making a small angle with that of the basic pattern. This instabil-
ity occurs even when the rotation rate is too low for the existence of the
Küppers-Lortz instability. It is related to the divergence of the growth rate
(3.34) which, at finite Prandtl number, occurs when the direction of the
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wavevector of the perturbation, approaches that of the basic rolls. We here
chosed the associated wavenumbers to be critical, but the effect survives
whatever their values.

The above instability was obtained in an infinite domain. Its persistence
with lateral boundaries requires the presence of a large number of rolls,
and thus a convective cell with a large aspect ratio µ−1. The mesh size in
Fourier space scaling like µ, the minimum angle θ between two wavevectors,
behaves like µ1/2. Since for the small-angle instability σ ∼ ǫ4/3 and θ ∼ ǫ2/3,
it follows that σ ∼ µ, a growth rate intermediate between that (of order
unity) of a pure amplitude instability and a phase instability, for which σ

scales like µ2.
As shown in [18] and [19] in the absence of rotation, that of parallel rolls

may also be unstable (for wavenumbers larger than critical) to a skewed-
varicose instability whose growth rate also varies like the inverse aspect ratio
µ, a scaling resulting from the strong magnitude of the mean flow in the case
of free-slip boundary conditions. This instability is however not captured by
the present formalism since the roll distortions involved in this instability
cannot be represented within the class of perturbations (superposition of
two families of straight rolls), we have considered.

In order to investigate the relation between the small-angle and the
skewed-varicose instabilities, and to analyze their nonlinear developments, a
system of equations in the spirit of the Swift-Hohenberg equation, but cou-
pling the leading vertical mode to the mean flow, was derived by a systematic
perturbation expansion near threshold [13]. This system which preserves
the rotational invariance of the problem, generalizes equations obtained by
Manneville [14] at finite Prandtl number in the absence of rotation. In a sim-
plified version where the non-local couplings are suppressed and only a few
representative nonlinear terms are retained, it is also consistent with models
used in [15] and [16] for rotating convection at infinite Prandtl number. A
similar model was considered in [17].

As discussed in [13], the phase equation derived in the context of the
generalized Swift Hohenberg equations, shows that the skewed varicose in-
stability occurring without rotation near onset, becomes asymmetric with
respect to the angle of the phase perturbation, in the presence of rotation.
This model also shows that both the asymmetric skewed varicose and the
small angle instabilities lead, by means of reconnection to a progressive ro-
tation of the convective rolls in the direction of the external rotation, an
effect of the mean flow which develops shear layers.

We are thus, led to conclude that the small-angle divergence of the
Küppers-Lortz instability growth rate pointed out in [9], results from the
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presence of a small-angle instability, which can be identified as an asym-
metric skewed-varicose instability. In contrast with the (symmetric) skewed
varicose instability arising without rotation, the asymetric one developing
in presence of rotation exists whatever value of the basic roll wavenumber.
Both instabilities are produced by the mean flow and deaseapear in the limit
of infinite Prandtl numbers.
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