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The shape of high order correlation functions in CMB anisotropy maps

Tristan Brunier∗ and Francis Bernardeau†

Service de Physique Théorique, CEA/DSM/SPhT,
Unité de recherche associée au CNRS, CEA/Saclay 91191 Gif-sur-Yvette cédex, France.

We present a phenomenological investigation of non-Gaussian effects that could be seen on CMB
temperature maps. Explicit expressions for the temperature correlation functions are given for
different types of primordial mode couplings. We argue that a simplified description of the radial
transfer function for the temperature anisotropies allows to get insights into the general properties
of the bi and tri-spectra. The accuracy of these results is explored together with the use of the small
scale approximation to get explicit expressions of high order spectra. The bi-spectrum is found to
have alternate signs for the successive acoustic peaks. Sign patterns for the trispectra are more
complicated and depend specifically on the type of metric couplings. Local primordial couplings are
found to give patterns that are different from those expected from weak lensing effects.

I. INTRODUCTION

The standard inflationary models [1] have been very successful in explaining the basic features of the CMB observa-
tions: near scale invariant power spectrum of, to a good approximation, primordial Gaussian adiabatic perturbations.
These are undoubtedly important results that give support to the inflationary scheme. From another point of view it
is an uncomfortable situation since there is practically no possibility with the current data sets to distinguish different
models of inflations. The search of observational signatures beyond predictions from generic inflation is therefore
crucial for getting insights into the nature of the inflaton field or more generally into physics of the early Universe.
For instance trans-Planckian effects [2], presence of isocurvature modes [3–5] and non-Gaussian effects [6] could be-
tray some aspects of the inflationary physics. It is now well established that in standard inflation, e.g. single field
inflation with slow roll conditions, a minimal amount of non-Gaussianities is expected to be induced along the cosmic
evolution [6]. They simply come from the couplings of modes contained in the Einstein equations, that are intrinsi-
cally nonlinear in the fields. The more famous of those are the lensing effects on the CMB sky [7–9]. They indeed
can be seen as the effects of couplings between the gravitational potential on the last-scattering surface and those
present on the line-of-sights. Of course other local couplings exist that take place before or during the recombination
period. For instance Bartolo and collaborators in [6] derive the amplitude and nature of the superhorizon couplings
of the gravitational potentials in terms of their expected bi-spectrum. Its shape betrays the nature and shape of the
quadratic couplings in the Einstein equations that generically are expected to determine the types of couplings for
the modes that reenter the horizon.

For one-field inflation couplings at horizon crossing are rather generic and induce typically 10−5 effects in the
metric perturbations. Effects of such amplitude are expected to be marginally visible. They are however expected
to be altered by second order effects taking place at low redshift after horizon crossing. Except for the Sachs Wolfe
plateau or the lens effects, predictions of the observable intrinsic non-Gaussian effects are not known. They require
the computation of the physics of recombination up to second order. An enterprise still to be done.

There are however cases where significant mode couplings could survive the inflationary period. This is the case for
some flavors of the curvaton models [5]. This could also be the case in other models of multi-field inflation where a
transfer of modes, from isocurvature to adiabatic, is possible during or at the end of the inflationary period as described
in [10–12]. In this case no isocurvature modes are expected to survive, contrary to the case of the curvaton model,
and the models predict only adiabatic fluctuations the spectrum of which can be arbitrarily close to scale invariance.
However nothing prevents the initial isocurvature modes from developping significant non-Gaussian features which
may be transfered into those of the adiabatic fluctuations. Such a transfer mechanism has been described in details
in [13] where the resulting high order correlation properties are explicitly given.

In principle, the properties of the metric fluctuations entirely determine those of the temperature or polarization
CMB sky. However, the transcription of the properties of metric to properties in the observed temperature field
reveals involved for at least two reasons. First, it is to be noted that the transfer physics is naturally best encoded in
Fourier space where all modes evolve independently from one-another whereas the nonlinear couplings of Eq. (2) is
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local in real space. The second reason is that projection effects should be taken into account so that the modes that
are observed correspond to a collection of Fourier modes. The then simple functional forms (such those of Eqs. (7)
and (8) for instance) that are rather generically expected for the metric are then greatly altered. For instance the
sign of the three- and four-point correlation function may depend on scale. The aim of the investigations pursued
in this paper is to try to uncover simple prescriptions for the shape, e.g. angular dependence, of those quantities.
Comparison with the trispectra induced by weak lensing effects will also be presented.

The paper is divided as follows. In the second section we detail the couplings we assume for the primordial metric
fluctuations. In the third section we present the basic quantities that are required to describe the way the potential
fluctuations are transfered into the temperature fluctuations. We then take advantage of these results to present
the theoretical shapes of the bi- and tri-spectra of the temperature field in case for the models of potential high-
order correlation functions described in the previous paragraph. The following section is devoted to an attempt to
obtain a phenomenological description of the transfer function that gives insights into the angular dependence of these
correlation functions. The last section is devoted to computation in the small angle approximation. Calculations are
obviously much more straightforward in this limit which indeed corresponds to a regime where most of the observations
can be made.

II. A MODEL OF PRIMORDIAL NON-GAUSSIAN METRIC PERTURBATIONS

In the analysis pursued in this paper we assume that the primordial metric fluctuations are those expected in rather
generic models of multiple-field inflation, more specifically along the descriptions presented in [10, 11, 14]. In this
family of models, the surviving couplings in the metric, are expected to be, to a good approximation, equivalent to
those induced by the superposition of two stochastically independent fields, a Gaussian one and one obtained by a
non-linear transform of a Gaussian field with the same spectrum. In other words the local potential would read,

Φ(~x) = cosα Φ1(~x) + sinα F [Φ2(~x)] (1)

where ratio between the initial adiabatic and isocurvature fluctuations is described by the mixing angle α and where
the function F takes into account the self coupling of the field that gave rise to this part of the metric fluctuations. The
function F obviously depends on the details of the inflationary model in particular on the self interaction potential
along the transverse directions. As argued in [10] a natural choice is a quartic potential. In such a case, the function
F is characterized by two quantities. One is the amplitude of the coupling constant times Ne, the number of e-foldings
between horizon crossing of the observable modes and their transfer from isocurvature to adiabatic direction, the other
is related to the field value in the transverse direction Φ at our current Hubble scale. The latter actually corresponds
to a finite volume effect [14]. In this framework the function F then reads[32]

F(Φ) =
Φ + Φ

√

1 − µ3(Φ + Φ)2/3
, (2)

where µ3 is related to the self coupling of the field. For a coupling in λφ4/4 we have

µ3 ∼ −λNe/C2
2 (3)

where C2 is the amplitude of the metric fluctuation at super-Hubble scale, C2 ≈ 10−5. One important feature of this
description is that the non linear transform of the field is local in real space. This description has the advantage of
providing a full description of the model. This equation should however be used with care. It gives a good account
of the mode couplings only when the effective coupling constant λNe is small. It is therefore preferable to consider

the bi- and tri-spectra of the potential field. So let us define the spectrum P (k), bi- and tri-spectra, B(~k1, ~k2) and

T (~k1, ~k2, ~k3), of the potential field the following way,

〈Φ~k1
Φ~k2

〉 = δDirac(~k1 + ~k2) P (k1) (4)

〈Φ~k1
Φ~k2

Φ~k3
〉 = δDirac(~k1 + ~k2 + ~k3) B(~k1, ~k2, ~k3) (5)

〈Φ~k1
. . . Φ~k4

〉c = δDirac(~k1 + . . . + ~k4) T (~k1, ~k2, ~k3, ~k4), (6)

where the underscript c stands for the connected part of the corresponding ensemble average. As Φ1 and Φ2 have the
same power spectrum, if the nonlinear couplings of Φ2 are small then the power spectrum of the metric fluctuations
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is left unchanged (to corrections that are quadratic in the coupling parameter). Then for the form presented in Eq.
(2), for a small coupling parameter µ3 we have,

B(~k1, ~k2, ~k3) = ν2 [P (k1)P (k2) + perm.] (7)

with ν2 = sin3 α µ3Φ, Φ being a priori of the order of H being the value of the Hubble constant at horizon crossing,
and

T (~k1, ~k2, ~k3) = νstar
3 [P (k1)P (k2)P (k3) + perm.] + νline

3

[

P (k1)P (k2)P (|~k2 + ~k3|) + perm.
]

(8)

with νstar
3 = sin4 α µ3 and νline

3 = sin4 α µ2
3Φ

2
.

Note that if we are interested in the bispectrum, the parameter ν2 is identical to the parameter fNL usually used
to describe the nonlinear transform of the metric fluctuations [16]. It is to be noted however that whereas fNL is
expected of the order unity in single field inflation, ν2 can reach much larger values in multiple-field inflation. This is
one justification of the investigations presented in this paper.

We can see that the tri-spectrum contains two terms of different geometrical shapes. The relative importance of
these two terms depends in particular on the value of Φ. This ratio is naturally of order unity, but otherwise totally
unpredictable [33]. In the following we therefore consider the two cases and examine the consequences of both terms
on the temperature high order correlation functions.

III. EXPRESSIONS OF THE CORRELATION FUNCTIONS

In this section we set the basic relations that relate the primordial metric fluctuations to the temperature fluctua-
tions.

A. Radial transfer function

The observed temperature anisotropies are decomposed in a sum of spherical harmonics with coefficients a`m. The
inverse relation gives the expression of those coefficients as a function of the temperature fluctuation δT

T (γ̂) in the
direction γ̂ on the sky,

a`m =

∫

d2γ̂
δT

T
(γ̂)Y ∗

`m(γ̂). (9)

When the linear theory is applied to the metric and density fluctuations the coefficient a`m are linearly related to the
primordial metric fluctuations. In the following we will only take into account the existence of adiabatic fluctuations.
Then one can write,

a`m = 4π(−i)`

∫

d3~k

(2π)3/2
T`(k)Φ(~k)Y ∗

`m(k̂), (10)

where Φ(~k) is the three-dimensional Fourier transformed of the gravitational potential, T`(k) is the photon transfer

function and Y`m(k̂) are the spherical harmonics in the direction given by the unit vector k̂ = ~k/k.
The functions T`(k) encode all the micro-physics that takes place after horizon crossing until the photons reach the

observer. There is one well known limit case which corresponds to large-angular scales for vanishing curvature and
cosmological constant. In this limit indeed, the observed local temperature fluctuation is simply one third of the local
potential. This is the so-called Sachs-Wolfe effect [15]. In this case we simply have T`(k) = −1/3j`(kr∗) neglecting
the late and early Integrated Sachs Wolfe effects. Although the validity regime of this form is limited, it is worth
investigating since it corresponds to a case where only projections effects have to be taken into account.

One aim of this paper is to take advantage of the expression (10) to relate as accurately as possible the statistical
properties of the a`m to those of the potential field. To do so we found fruitful to introduce the radial transfer function.
Let us first decompose the gravitational potential intercepted on a sphere of radius r as

Φ(rγ̂) =
∑

`m

Φ`m(r)Y`m(γ̂). (11)
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Note that conversely

Φ`m(r) =

∫

d2γ̂Φ(rγ̂)Y ∗
`m(γ̂). (12)

In Fourier space, we then get

Φ(~k) =

∫

d3~x

(2π)3/2
Φ(~x)ei~k·~x , (13)

=
1

(2π)3/2

∑

`m

∫

r2dr d2γ̂ Φ`m(r)Y`m(γ̂)ei~k·~x. (14)

Using the decomposition of plane waves on a sphere

ei~k·~x = 4π
∑

LM

iLjL(kr)YLM (k̂)Y ∗
LM (γ̂), (15)

with ~x = rγ̂, one obtains

Φ(~k) = 4π
∑

L,l,M,m

iL
∫

dr

(2π)3/2
r2

∫

d2γ̂jL(kr)YLM (k̂)Y ∗
LM (γ̂)Φ`m(r)Y`m(γ̂), (16)

=

√

2

π

∑

`m

i`
∫

drr2j`(kr)Y`m(k̂)Φ`m(r). (17)

Conversely

Φ`m(r) = (−i)`

√

2

π

∫

d3kΦ(~k)j`(kr)Y ∗
`m(k̂). (18)

Hence Eq. (10) can be recast in

a`m =
2

π

∫

drR`(r)Φ`m(r), (19)

where the radial transfer function R`(r) is obtained through a radial Fourier transform of the initial Fourier space
transfer functions,

R`(r) =

∫

dkk2r2T`(k)j`(kr). (20)

Obviously the micro-physics of the recombination can equally be described by the functions T`(k) or by the functions
R`(r). However the latter are more directly related to the physics of recombination, which takes place over a short
range of radius, and one can therefore try to find approximate forms for their r dependence. The Sachs Wolfe regime
corresponds to a limit case for which,

RSW
` (r) = −π

6
δDirac(r − r∗). (21)

Before we propose approximate forms for R`(r) let us first detail how the statistical quantities we are interested in
are related to this function.

B. Power spectrum

We first want to express the ensemble average of products of a`ma∗
`′m′ as a function of the potential power spectrum

and the radial transfer function. Using Eq. (20) we naturally get

〈a`ma∗
`′m′〉 = δ``′δmm′

(

2

π

)3 ∫

dr r2

∫

dr′ r′2
∫

dk k2P (k)j`(kr)j`′(kr′)

∫

dk1 k2
1T`(k1)j`(k1r)

∫

dk2 k2
2T`′(k2)j`′(k2r

′), (22)
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5

where the integration over r′ may be performed if one takes advantage of
∫

dx x2j`(kx)j`(k
′x) =

π

2k2
δDirac(k − k′). (23)

Then temperature anisotropy power spectrum C`, defined as,

〈a`ma∗
`′m′〉 = (−1)m′〈a`ma`′−m′〉 = δ``′δmm′C` , (24)

reads

C` =

(

2

π

)2 ∫

drR`(r)ξ`(r) , (25)

where we define

ξ`(r) =

∫

dkk2P (k)T`(k)j`(kr). (26)

We will see now that the functional relation (25) can be generalized to higher order correlation functions.

C. Bispectrum

1. Full sky expression

We are interested in the ensemble average of the product of three a`m that should not vanish when the potential
field exhibits non-Gaussian properties. This correlation function formally reads,

〈a`1m1
a`2m2

a`3m3
〉 =

(

2

π

)3 ∫

dr1

∫

dr2

∫

dr3R`1(r1)R`2(r2)R`3(r3)〈Φ`1m1
(r1)Φ`2m2

(r2)Φ`3m3
(r3)〉 . (27)

The ensemble average that appears in the r.h.s. of this equation can be related to the potential bispectrum,

〈Φ`1m1
(r1)Φ`2m2

(r2)Φ`3m3
(r3)〉 = (−i)`1+`2+`3

(

2

π

)3/2 ∫

d3~k1 d3~k2 d3~k3 〈Φ(~k1)Φ(~k2)Φ(~k3)〉

j`1(k1r1)j`2(k2r2)j`3(k3r3) Y ∗
`1m1

(k̂1)Y
∗
`2m2

(k̂2)Y
∗
`3m3

(k̂3) . (28)

The Dirac distribution that appears in (5) can be rewritten as a Fourier transform

δDirac

(

~k1 + ~k2 + ~k3

)

=

∫

d3~x

(2π)3
ei(~k1+~k2+~k3)·~x , (29)

and then expanded into spherical Bessel functions with Eq. (15)

δDirac

(

~k1 + ~k2 + ~k3

)

= (4π)3
∫

d3~x

(2π)3

∑

L1,L2,L3,M1,M2,M3

iL1+L2+L3jL1
(k1x)jL2

(k2x)jL3
(k3x)

YL1M1
(k̂1)YL2M2

(k̂2)YL3M3
(k̂3)Y

∗
L1M1

(γ̂)Y ∗
L2M2

(γ̂)Y ∗
L3M3

(γ̂), (30)

where ~x = xγ̂. Using the form (7) for the expression of the bispectrum and inserting Eq. (30) into (28), we get

〈Φ`1m1
(r1)Φ`2m2

(r2)Φ`3m3
(r3)〉c = 8ν2

(

2

π

)3/2
(3)Gm1m2m3

`1 `2 `3

∫

dx x2

∫

dk1 k2
1j`1(k1r1)j`1(k1x)

∫

dk2 k2
2j`2(k2r2)j`2(k2x)

∫

dk3 k2
3j`3(k3r3)j`3(k3x)

[P (k1)P (k2) + P (k2)P (k3) + P (k3)P (k1)] , (31)

where the Gaunt integral is defined by

(3)Gm1m2m3

`1 `2 `3
=

∫

d2γ̂ Y`1m1
(γ̂)Y`2m2

(γ̂)Y`3m3
(γ̂) . (32)
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We integrate over the momenta ki which do not appear as an argument P (ki) in Eq. (31) and then perform the
integrations over two of the radial variables. Eq. (27) then becomes

〈a`1m1
a`2m2

a`3m3
〉c = 8ν2

(

2

π

)3/2
(3)Gm1m2m3

`1 `2 `3

∫

dr [R`1(r)ξ`2 (r)ξ`3 (r) + R`2(r)ξ`3 (r)ξ`1 (r) + R`3(r)ξ`1 (r)ξ`2 (r)] . (33)

The bispectrum is expressed in terms of the fundamental functions R` and ξ` that appeared in the computation of
the power spectrum. We shall see a diagrammatic interpretation of each of these terms in section III E. For instance,
the third term of Eq. (33) is diagrammatically represented in Fig. 1.

The expression (33) also involves geometrical factors encoded by the Gaunt integrals. In the following, we introduce
an estimator which should allow to define a reduced quantity. We also present the correspondence with the small angle
approximated bispectrum.

2. Estimator

Following [16, 17] an unbiased estimator of the angular averaged bispectrum may be chosen to be

B`1`2`3 =
∑

m1,m2,m3

(

`1 `2 `3

m1 m2 m3

)

a`1m1
a`2m2

a`3m3
, (34)

where the Wigner 3-j symbol is related to the Gaunt integral by

(3)Gm1m2m3

`1 `2 `3
=

√

(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(

`1 `2 `3

m1 m2 m3

) (

`1 `2 `3

0 0 0

)

. (35)

Using the equality

∑

m1,m2

(

`1 `2 `3

m1 m2 m3

) (

`1 `2 `′3
m1 m2 m′

3

)

=
δ`3,`′

3
δm3,m′

3

2`3 + 1
, (36)

we get

〈B`1`2`3〉c =

√

(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(

`1 `2 `3

0 0 0

)

b`1`2`3 , (37)

with the reduced bispectrum defined as

b`1`2`3 = 8ν2

(

2

π

)3/2 ∫

dr [R`1(r)ξ`2 (r)ξ`3 (r) + R`2(r)ξ`3 (r)ξ`1 (r) + R`3(r)ξ`1 (r)ξ`2 (r)] . (38)

The reduced bispectrum reveals convenient to describe the non-Gaussian part of the signal as it does not include the
overall geometrical factors.

It is also convenient to introduce a normalized bispectrum b̃`1,`2,`3 defined by

b̃`1`2`3 =
b`1`2`3

C`1C`2 + C`2C`3 + C`3C`1

, (39)

which reads in terms of the functions R`(r) and ξ`(r)

b̃`1`2`3 = 8

(

2

π

)3/2
ν2

C`1C`2 + C`2C`3 + C`3C`1

∫

dr [R`1(r)ξ`2 (r)ξ`3 (r) + R`2(r)ξ`3 (r)ξ`1 (r) + R`3(r)ξ`1 (r)ξ`2 (r)] .

(40)
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FIG. 1: Diagrammatic representation of the third term in the expression (33) of the bispectrum. Each line between a non-vertex

point (`i, mi) and a vertex (r, `3, m3) represents the term ξ`i
(r). The vertex value is ν2

(3)G
m1 m2 m3

`1 `2 `3
R`3 (r). The radial vertex

position should be integrated over and the whole graph should be multiplied by 8
(

2
π

)3/2
.

3. Small angle approximation

The reduced bispectrum encodes all the physical processes that lead to a non vanishing bispectrum. On the other
hand, the Gaunt integral that appears in Eq.(38) only carries an overall geometrical dependence and ensures that the
momenta `1, `2 and `3 satisfy the triangular inequalities.

It appears that this overall geometrical dependence translates into a simple momentum conservation in the flat sky

approximation (see Appendix C). Defining the quantity a(~̀) as in Appendix C, the bispectrum reads in the small
angle approximation

〈a(~̀1)a(~̀2)a(~̀3)〉c =
1

2π
b`1`2`3δDirac(~̀1 + ~̀

2 + ~̀
3) (41)

where b`1`2`3 is the reduced bispectrum defined in Eq. (38). The Dirac function imposes that the vectors ~̀
1, ~̀2 and

~̀
3 form a triangle whose lengths respectively match with `1, `2 and `3.
We now turn to the study of the tri-spectrum.

D. Trispectrum

1. Full sky expression

Generally the trispectrum reads

〈a`1m1
a`2m2

a`3m3
a`4m4

〉 =

(

2

π

)4 ∫

dr1

∫

dr2

∫

dr3

∫

dr4R`1(r1)R`2(r2)R`3(r3)R`4(r4)

〈Φ`1m1
(r1)Φ`2m2

(r2)Φ`3m3
(r3)Φ`4m4

(r4)〉 . (42)

From the expression (8), we will have 2 contributions. One star contribution, 〈a`1m1
. . . a`4m4

〉star due to the first
term and one line contribution, 〈a`1m1

. . . a`4m4
〉line, due to the second one. These denominations will actually become

much clearer in section III E where a diagrammatic representation of those terms is developed. For instance, only the
diagrams whose shape is drawn in Fig. 2 contribute to the line trispectrum, whereas the star trispectrum is made of
terms whose shape is drawn in Fig. 3.

For the line contribution, the connected four-point function of the potential is given by

〈Φ(~k1) . . . Φ(~k4)〉line
c = νline

3

∫

d3~k5 P (k5) [P (k1) + P (k2)] [P (k3) + P (k4)] δDirac

(

~k1 + ~k2 − ~k5

)

δDirac

(

~k3 + ~k4 + ~k5

)

+ (2 ↔ 3) + (2 ↔ 4) , (43)
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which entails using Eq. (30),

〈Φ`1m1
(r1)Φ`2m2

(r2)Φ`3m3
(r3)Φ`4m4

(r4)〉line
c = νline

3

28

π2

∑

L,M

(−1)MGm1m2M
`1 `2 L Gm3m4−M

`3 `4 L

∫

dx1dx2 x2
1 x2

2

{

∫

dk1 k2
1P (k1)j`1(k1r1)j`1(k1x1)

∫

dk2 k2
2j`2(k2r2)j`2(k2x1)

∫

dk3 k2
3P (k3)j`3(k3r3)j`3(k3x2)

∫

dk4 k2
4j`4(k4r4)j`4(k4x2)

∫

dk5 k2
5P (k5)jL(k5x1) jL(k5x2) + (1 ↔ 2) + (3 ↔ 4) +

(

1 ↔ 2
3 ↔ 4

)

}

+ (2 ↔ 3) + (2 ↔ 4) . (44)

Integrations over k2 and k4 in the first term impose x1 = r2 and x2 = r4 such as

〈Φ`1m1
(r1)Φ`2m2

(r2)Φ`3m3
(r3)Φ`4m4

(r4)〉line
c = νline

3 26
∑

L,M

(−1)MGm1m2M
`1 `2 L Gm3m4−M

`3 `4 L

∫

dk1 k2
1P (k1)j`1(k1r1)j`1(k1r2)

∫

dk3 k2
3P (k3)j`3(k3r3)j`3(k3r4)

∫

dk5 k2
5P (k5)jL(k5r2)jL(k5r4)

+ 11 other terms. . (45)

Using the definition of the radial transfer function (20), integrations over two of the radial variables may be
performed within the expression of the trispectrum which becomes

〈a`1m1
a`2m2

a`3m3
a`4m4

〉line
c = 82νline

3

(

2

π

)2
∑

L,M

(−1)MGm1m2M
`1 `2 L Gm3m4−M

`3 `4 L

{

∫

dr

∫

dr′R`1(r)ξ`2 (r)ζL(r, r′)R`3(r
′)ξ`4(r

′) + (1 ↔ 2) + (3 ↔ 4) +

(

1 ↔ 2
3 ↔ 4

)

}

+ (2 ↔ 3) + (2 ↔ 4) , (46)

where

ζL(r, r′) =

∫

dkk2P (k)jL(kr)jL(kr′) . (47)

Contrarily to the previous correlation functions, the expression of the trispectrum involves a third function which
only depends on the primordial power spectrum. We will see in section III E that this term has a diagrammatic
interpretation. For instance, the second term in Eq. (46) is diagrammatically represented in Fig. 2.

For the star contribution we have,

〈Φ`1m1
(r1)Φ`2m2

(r2)Φ`3m3
(r3)Φ`4m4

(r4)〉starc =
27

π
νstar
3

∫

d2γ̂Y ∗
`1m1

(γ̂)Y ∗
`2m2

(γ̂)Y ∗
`3m3

(γ̂)Y ∗
`4m4

(γ̂)

∫

dx x2

∫

dk1 k2
1j`1(k1r1)j`1(k1x)

∫

dk2 k2
2j`2(k2r2)j`2(k2x)

∫

dk3 k2
3j`3(k3r3)j`3(k3x)

∫

dk4 k2
4j`4(k4r4)j`4(k4x)

[P (k1)P (k2)P (k3) + 3 other terms] . (48)

The first term should be computed by integrating first over k4, which imposes x = r4. This gives

〈Φ`1m1
(r1)Φ`2m2

(r2)Φ`3m3
(r3)Φ`4m4

(r4)〉starc = 26 νstar
3

∫

d2γ̂Y ∗
`1m1

(γ̂)Y ∗
`2m2

(γ̂)Y ∗
`3m3

(γ̂)Y ∗
`4m4

(γ̂)

∫

dk1 k2
1P (k1)j`1(k1r1)j`1(k1r4)

∫

dk2 k2
2P (k2)j`2(k2r2)j`2(k2r4)

∫

dk3 k2
3P (k3)j`3(k3r3)j`3(k3r4) + 3 other terms . (49)
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The angular integral may be expressed as a function of Gaunt integrals

(4)Gm1m2m3m4

`1 `2 `3 `4
=

∫

d2γ̂Y`1m1
(γ̂)Y`2m2

(γ̂)Y`3m3
(γ̂)Y`4m4

(γ̂) =
∑

L,M

(−1)M (3)Gm1 m2 M
`1 `2 L

(3)Gm3 m4 −M
`3 `4 L . (50)

Using the same expansion as in the previous subsection, we get

〈a`1m1
a`2m2

a`3m3
a`4m4

〉starc = νstar
3

27

π

∑

L,M

(3)Gm1m2M
`1 `2 L

(3)Gm3m4−M
`3 `4 L (−1)M

∫

dr [R`1(r)ξ`2 (r)ξ`3 (r)ξ`4 (r) + 3 other terms] .

(51)
One of the terms in Eq. (51) is diagrammatically represented in Fig. 3.

The expressions 46 and 51 are in perfect agreement with [19] in the case of the trispectrum. Indeed, this formalism
can easily be extended to higher order terms. Any N-point correlation function may be expressed in terms of the three
functions R`, ξ` and ζL using some basic rules that are detailed in section III E and associated with a diagrammatic
description.

Before going further, we stress how to decouple the overall geometrical dependence given in terms of Gaunt integals
from the primordial signal. To do so, we build an estimator for the full-sky trispectrum and study its limit in the
small angle approximation.

2. Estimator

Following [16, 18], we write the trispectrum in a rotational invariant form

〈a`1m1
a`2m2

a`3m3
a`4m4

〉c =
∑

L,M

(−1)M

(

`1 `2 L
m1 m2 M

) (

`3 `4 L
m3 m4 −M

)

T `1 `2
`3 `4

(L) . (52)

Similarly to the bispectrum, an estimator for the connected part of the angular averaged trispectrum may be chosen
to be

T `1`2
`3`4

(L) = (2L + 1)
∑

all m

∑

M

(−1)M

(

`1 `2 L
m1 m2 M

) (

`3 `4 L
m3 m4 −M

)

a`1m1
a`2m2

a`3m3
a`4m4

− G`1`2
`3`4

(L), (53)

where G`1`2
`3`4

(L) is the estimator of the unconnected terms and is defined in such a way that T `1`2
`3`4

(L) vanishes for a

Gaussian field (see [18] for a discussion though the observable is not explicitly written in there),

G`1`2
`3`4

(L) = (2L + 1)
∑

all m

∑

M

(−1)M

(

`1 `2 L
m1 m2 M

) (

`3 `4 L
m3 m4 −M

)

{

(−1)m1+m3

(2`1 + 1)(2`3 + 1 + 2δ`1`3)
δm1−m2

δm3−m4
δ`1`2δ`3`4

∑

m′,m′′

(−1)m′+m′′

a`1m′a`1−m′a`3m′′a`3−m′′

+ (2 ↔ 3) + (2 ↔ 4)

}

. (54)

In the star configuration, we define the reduced averaged trispectrum start`1`2
`3`4

(L) as

starT `1`2
`3`4

(L) =
2L + 1

4π

√

(2`1 + 1)(2`2 + 1)(2`3 + 1)(2`4 + 1)

(

`1 `2 L
0 0 0

) (

`3 `4 L
0 0 0

)

start`1`2
`3`4

(L) . (55)

so that it takes the L-independent form

start`1`2
`3`4

= νstar
3

27

π

∫

dr [R`1(r)ξ`2 (r)ξ`3 (r)ξ`4 (r) + 3 other terms] . (56)
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The case of the line configuration is much involved since it implies three kinds of terms with different geometrical
configurations encoded by the Gaunt integrals. The line trispectrum takes the form

〈a`1m1
a`2m2

a`3m3
a`4m4

〉line
c =

∑

L,M

(−1)M

(

`1 `2 L
m1 m2 M

) (

`3 `4 L
m3 m4 −M

)

P `1 `2
`3 `4

(L) + (2 ↔ 3) + (2 ↔ 4) , (57)

with

P `1`2
`3`4

(L) =
2L + 1

4π

√

(2`1 + 1)(2`2 + 1)(2`3 + 1)(2`4 + 1)

(

`1 `2 L
0 0 0

) (

`3 `4 L
0 0 0

)

linet`1`2
`3`4

(L) . (58)

and the reduced trispectrum linet`1`2
`3`4

(L) is given by

linet`1`2
`3`4

(L) = 82νline
3

(

2

π

)2
{

∫

dr

∫

dr′R`1(r)ξ`2 (r)ζL(r, r′)R`3(r
′)ξ`4(r

′) + (1 ↔ 2) + (3 ↔ 4) +

(

1 ↔ 2
3 ↔ 4

)

}

. (59)

Using the link between the Wigner-6j and Wigner-3j symbols (see [18, 19, 27])
{

a b e
c d f

}

=
∑

αβγ

∑

δεφ

(−1)e+f+ε+φ

(

a b e
α β ε

) (

c d e
γ δ −ε

) (

a d f
α δ −φ

) (

c b f
γ β φ

)

, (60)

the quantity lineT `1 `2
`3 `4

(L) can be written as

lineT `1 `2
`3 `4

(L) = P `1 `2
`3 `4

(L) + (2L + 1)
∑

L′

(−1)`2+`3

{

`1 `2 L
`4 `3 L′

}

P `1 `3
`2 `4

(L′)

+(2L + 1)
∑

L′′

(−1)L+L′′

{

`1 `2 L
`3 `4 L′′

}

P `1 `4
`3 `2

(L′′) . (61)

The Wigner-6j symbol

{

a b e
c d f

}

represents a quadrilateral with sides (a, b, c, d) whose diagonal form the triangles

(a, d, f), (b, c, f), (c, d, e), (a, b, e) and vanishes if any of the related triangular inequalities are not fulfilled (see [27]).
Note that contrary to the star trispectrum, the line trispectrum is generically singular when L = 0. This is possible

if `1 = `2 and `3 = `4 (and symmetric cases) and is due to the expression (59) which is then logarithmically divergent
for a scale invariant power spectrum. This apparent divergence however does not appear in observable quantities such
that in Eq. (53). Indeed it can be easily checked that terms involving P `1`2

`3`4
(L = 0) and coming from the two terms

of (53) exactly cancel each other. Super-Hubble effects remain then unobservable.

Finally, we find convenient to introduce the normalized trispectra T̃ `1 `2
`3 `4

(L) defined as

T̃ `1 `2
`3 `4

=
T `1 `2

`3 `4
(L)

(C`1 + C`2)CL(C`3 + C`4)
. (62)

3. Small angle approximation

Using the notations of Appendix C, we can define the quantities a(~̀) for large enough multipoles so that the line
and star trispectra take the forms

〈a(~̀1)a(~̀2)a(~̀3)a(~̀4)〉starc =
1

(2π)2
δDirac(~̀1 + ~̀

2 + ~̀
3 + ~̀

4)
start`1 `2

`3 `4
(63)

and

〈a(~̀1)a(~̀2)a(~̀3)a(~̀4)〉line
c =

1

(2π)2
δDirac(~̀1 + ~̀

2 + ~̀
3 + ~̀

4)

∫

d2~L
[

δDirac(~̀1 + ~̀
2 − ~L)linet`1 `2

`3 `4
(L)

+δDirac(~̀1 + ~̀
3 − ~L)linet`1 `3

`2 `4
(L) + δDirac(~̀1 + ~̀

4 − ~L)linet`1 `4
`3 `2

(L)
]

.(64)

The Dirac functions ensures that the multipoles ~̀
1, ~̀2, ~̀3, ~̀4 form a quadrilateral. The star-trispectrum does not

depend on the shape of the quadrangle since it is enterely determined by the side lengths. Yet the line-trispectrum

not only depends on the side lengths but also on the diagonals ~L12 = ~̀
1 + ~̀

2, ~L13 = ~̀
1 + ~̀

3 and ~L14 = ~̀
1 + ~̀

4 of the
quadrilateral formed by the four multipoles.
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FIG. 2: Diagrammatic representation of the ”line” contribution to the trispectrum. Each line between a non-vertex point
(`i, mi) and a vertex (r, `, m) represents the term ξ`i

(r). Each line between the vertices (r, `2, m2) and (r′, `3, m3) represents
the term ζL(r, r′). (Here L is the total angular momentum from `1 and `2 or equivalently from `3 and `4). The vertex values

are ν2
(3)

G
m1 m2 M
`1 `2 L R`2 (r) and ν2

(3)
G

m3 m4 −M
`3 `4 L R`3 (r′). The radial positions of the vertices should be integrated over and the

internal momenta (L, M) should be summed over. The whole graph should be multiplied by 82
(

2
π

)2
.

FIG. 3: Diagrammatic representation of the ”star” contribution to the trispectrum. Each single line between (`i, mi) and the

vertex (r, `,m) represents the term ξ`i
(r). The vertex value at the point r is given by ν3

(4)
G

m1 m2 m3 m4

`1 `2 `3 `4
R`3 (r). The radial

position of the vertex should be integrated over. The whole graph should be multiplied by 27

π
.

E. Diagrammatic representations

The formal results obtained in the previous sections show that at least some aspects of the potential correlation
functions are preserved. That furthermore suggests general rules for the constructions of the N-point correlation
functions for the spherical harmonics coefficients. Let us start with basics rules for the potential correlation function.
Using a usual diagrammatic representation, assume that the following rules hold for any potential N -point function
〈Φ~k1

...Φ~kN
〉c for tree order or loop graphs:

• each vertex connecting ni lines contributes to a factor νni−1 and a Dirac distribution of the sum over all the
connected momenta,

• each external line carrying the momentum ki represents P (ki). For pi external lines connected to a vertex, the
contribution is a sum over configurations of the product of pi − 1 potential power spectra P (ki),

• each link between two vertices i and j should be formed by internal line. Each internal line stands for P (qi) and
imposes a momentum conservation through δDirac(qi + qj), where qi (respectively qj) is the internal momentum
out of the vertex i (respectively j).

To compute the induced N -point temperature correlation function, we use the basic relation

〈a`1m1
...a`NmN

〉 =

(

2

π

)3N/2

(−i)`1+...+`N

∫

dr1...drN R`1(r1)...R`N
(rN )
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∫

d3k1...d
3kN 〈Φ~k1

...Φ~kN
〉

j`1(k1r1)...j`N
(kNrN ) Y ∗

`1m1
(k̂1)...Y

∗
`N mN

(k̂N ) . (65)

In the expression of the potential N -point function, the momentum conservation at the vertex i with ni−pi external
lines and pi internal lines contributes as

∑

Li
1
,...,Li

ni
,Mi

1
,...,Mi

ni

iL
i
1+...+Li

ni
(4π)ni

(2π)3

∫

d3xi jLi
1
(k1xi)...jLi

ni−pi

(kni−pi
xi)jLi

ni−pi+1
(q1xi)...jLi

ni
(qpi

xi)

YLi
1
Mi

1
(k̂1)...YLi

ni−pi
Mi

ni−pi

(k̂ni−pi
)YLi

ni−pi+1
Mi

ni−pi+1
(q̂1)...YLi

ni
Mi

ni
(q̂pi

)

Y ∗
Li

1
Mi

1

(γ̂i)...Y
∗
Li

ni
Mi

ni

(γ̂i) , (66)

where k (q) stands for an external (internal) momentum.

Integration over the angles γ̂i will contribute with the overall geometrical factor (ni)GMi
1Mi

ni

Li
1
...Li

ni

. Integration over the

angles k̂i in Eq. (65) will impose Li
j = `j for all external momenta. Integrations over all the external momenta that do

not appear as P (ki) in the expansion Eq. (65) give π/2 δDirac(rj −xk) factors (see Eq. (23)) which are to be integrated
over xk. Only the term

∫

drjR`j
(rj) (67)

remains. Those terms are induced by a vertex in the potential correlation function and may be associated with vertices
at the positions rj that carry the momenta (`j , mj). For all the other external momenta, integrations lead to

∫

dri

∫

dki k2
i P (ki)R`i

(ri)j`i
(kiri)j`i

(kirk) ∝ ξ`i
(rk) . (68)

Those terms are easily understood as external lines attached to a vertex at the point rk as they correspond to external
lines in the potential correlation function. Each external line carries the momenta (`i, mi). One should note that ni

lines attached to a vertex in the potential correlation function correspond to ni−1 lines in the temperature correlation
function plus a vertex which carries an angular momentum.

Integration over any internal momentum qi will give through P (qi)δDirac(qi + qj) and Eq. (66):

∑

L,M

ζL(xi, xj)Y
∗
LM (γ̂i)YLM (γ̂j) , (69)

with L = Li
k = Lj

k′ and M = M i
k = −M j

k′ . These terms are involved as soon as an internal line connects two vertices
in the potential correlation function. In a diagrammatic representation of the temperature correlation function, they
may be represented by a double line (one carrying the azimuthal momentum +M , the other carrying −M) connecting
the vertices located at xi and xj .

Finally, if N is the number of external points and r is the number of vertex connecting n1, ..., nr lines respectively
in the potential correlation function, the numerical prefactor Aα for the temperature correlation function reads

Aα = νn1−1...νnr−1 2r+5N/2−4πN/2−r−2 . (70)

To summarize, the general temperature N -point function may be diagrammatically represented with the following
rules deduced from the basic diagrammatic rules

• each of the N harmonic coefficients a`i,mi
is represented either by an external line or by a vertex with a charge

(`i, mi),

• vertices are connected together by internal lines with arbitrary indices attached to them, being (Li, Mi) at one
end and (Li,−Mi) at the other one,

• one should then consider all the possible diagram configurations,

and the following correspondences allow the computation of any diagram

• each external line with indices (`i, mi) and attached to a vertex point at rj contibutes as ξ`i
(ri),
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• each internal line with indices (Li, Mi) and (Li,−Mi) connecting two vertices at the points ri and rj stands for
ζLi

(ri, rj),

• the weight of a vertex with indices (`i, mi) at the point ri to which ni lines of respective indices

(`i
1, m

i
1), . . . , (`

i
ni

, mi
ni

) are attached is νni
R`i

(ri)
(ni+1)Gmi

1...mi
ni

mi

`i
1

... `i
ni

`i
,

• if N is the number of external points and r is the number of vertices the numerical prefactor reads
(

2
π

)N/2 (4π)N+2r−2

(2π)3r = 2r+5N/2−4πN/2−r−2,

• the final value of the diagram is obtained after integration over the radial variables and summation over in the
internal indices Li and Mi.

Obviously, if those rules are applied to the diagrams of Figs. 1, 2 and 3, one recovers the expressions (33), (46)
and (51).

Those rules appear to be useful in the computation of any N-point correlation function in the temperature fluctu-
ations. They provide compact and simple expressions associated with diagrammatic interpretations.

Having established the forms of the temperature correlation functions, we pay attention in the following section to
the behaviors of the bi- and tri-spectra as functions of the multipoles and the configurations.

IV. SHAPES OF THE CORRELATION FUNCTIONS

The features of high order correlation functions in the temperature fluctuations are difficult to infer. However, at
large angular scales, the temperature and potential fluctuations are related in a very simple way because low multipoles
correspond to very few Fourier modes. Hence, in the Sachs-Wolfe limit (valid up to ` ∼ 20) the functional forms of
the temperature and potential correlation functions should be the same. On the contrary, temperature fluctuations
at small angular scales are induced by numerous Fourier modes of the potential: the initial distribution of potential
fluctuations is altered by projection effects. This renders the functional form of the temperature correlation functions
much more intricate. Before we explore general configurations, we first establish the explicit Sachs-Wolfe limits of the
bi- and tri-spectra and examine specific configurations.

A. The Sachs-Wolfe limits

The Sachs-Wolfe limits of the functions R`, ξ` read

RSW
` (r) = −π

6
δDirac(r − r∗) , (71)

ξSW
` (r∗) = −3π

2
CSW

` , (72)

whereas the vertex propagator contributes as

ζSW
L (r∗, r∗) =

∫

dk k2P (k)j2
L(kr∗) =

9π

2
CSW

L . (73)

From Eqs. (71)-(73), the Sachs-Wolfe limit of the reduced bispectrum takes the form

bSW
`1`2`3 = −24ν2

(π

2

)3/2
(

CSW
`1 CSW

`2 + perm.
)

, (74)

with `1, `2, `3 satisfying the triangular inequalities. As expected, the functional form of the temperature bispectrum
is the same as the potential bispectrum.

As the bispectrum scales as ∼ C2
` at large angular scales, the normalized bispectrum (39) reduces to a constant in

the Sachs-Wolfe limit

b̃SW
`1`2`3 = −24ν2

(π

2

)3/2

. (75)

Similar calculations can be done for the trispectra. In the line configuration, the reduced trispectrum takes the
Sachs-Wolfe limit

linet`1`2
`3`4

(L)SW = 9νline
3 (2π)3 CSW

L

(

CSW
`1 + CSW

`2

) (

CSW
`3 + CSW

`4

)

, (76)
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FIG. 4: Left panel: normalized bispectrum for an equilateral configuration b̃``` in a ΛCDM model (dashed line) and a sCDM
model (solid line) for ν2 = 1. The integrated Sachs Wolfe effect prevents the formation of a plateau at low ` in a ΛCDM model.
Both curves exhibit acoustic oscillations of roughly the same amplitude although acoutic pics seem to be larger in a ΛCDM
model. Right panel: `2(` + 1)2b``` in a ΛCDM model (dashed line) and a sCDM model (solid line) for ν2 = 1. The amplitude
of the bispectrum is greater in a ΛCDM model. Comparison between the two plots shows that the second peak (` ∼ 300) in

b̃``` is only due to the minimum of the C`’s.

while the L-independent star contribution gives

start`1`2
`3`4

SW = 9νstar
3 (2π)3

(

CSW
`1 CSW

`2 CSW
`3 + 3 other terms

)

. (77)

From Eqs. (76) and (77), we recover the functional form of the potential tri-spectra when `1, `2 and L on one hand
and `3, `4 and L on the other hand satisfy the triangle inequalities. One can note that the scaling of the temperature
trispectrum at large angular scales depends on the configuration: in the line configuration, the trispectrum scales as
∼ C2

l for a given L whereas it scales as ∼ C3
l in the star configuration. The shape of the temperature tri-spectrum

then depends on the type of mode couplings that are responsible for the potential tri-spectrum. The normalized
trispectra defined in Eq. (62) reduce in the Sachs-Wolfe limit to

linet̃`1`2
`3`4

(L) = 9νline
3 (2π)

3

[

1 +
(C`1 + C`3) CL13

(C`2 + C`4)

(C`1 + C`2) CL (C`3 + C`4)
+

(C`1 + C`4) CL14
(C`3 + C`2)

(C`1 + C`2) CL (C`3 + C`4)

]

, (78)

star t̃`1`2
`3`4

= 9νstar
3 (2π)

3 C`1C`2C`3 + 3 other terms

(C`1 + C`2) CL (C`3 + C`4)
. (79)

B. General case

In the previous paragraph it has been shown that the structure of the high order correlation functions for the
temperature field reproduces those of the potential in the Sachs Wolfe limit. In general however this is not the case
and the temperature correlation functions exhibit acoustic oscillations that depend on the geometric configuration [20].

For example, left panel of Fig 4 shows the normalized bispectrum for an equilateral configuration in a Λ-cold dark
matter model (ΛCDM) and a standard cold dark matter model (sCDM). A Sachs Wolfe plateau is expected in a
sCDM model while in a ΛCDM model, the integrated Sachs-Wolfe effect strongly contributes to the bispectrum at
low ` in such a way that the plateau is not visible any more. For greater `, say ` > 20, we can see the imprints of
acoustic oscillations on the behaviors of the bispectra which vanish for some values of `. The amplitudes of oscillations
of the normalized bispectra are comparable. As for the C`’s, the period of acoutic oscillations seems to be larger in a
ΛCDM model. The right panel of Fig 4 shows the bispectrum with a different normalization, i.e. `2(` + 1)2b```. We
can note the presence of a plateau at the same level for both bispectra in the low ` limit although the amplitude of
oscillations is greater in a ΛCDM model. Comparing the two normalizations, we can interpret the secondary peak of
the normalized bispectrum b̃``` at ` ∼ 300 as due to the minimum of the C`’s.

We have similarly computed linet̃ and start̃ for different configurations. Some of those results are displayed in
Figs. 5, 6 and 7 for the star (left panels) and line like mode couplings (center panels).

Fig. 5 corresponds to the losange configuration `1 = `2 = `3 = `4 = ` whereas Figs. 6 and 7 respectively correspond
to the configurations `1 = `2 = `, `3 = `4 = ` + 200 and `1 = `2 = `, `3 = `4 = ` + 300. The different curves
correspond to different losange shapes: L = `/10, L = `/2, L = `, L = 3`/2 and L = 2`. We can see very similar
behaviors of the trispectra: they all exhibit oscillations with an acoustic peak located at ` ∼ 300. The line and star
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FIG. 5: Plot of t̃``
``(L) as a function of ` for L = `/10 (dashed line), L = `/2 (dash-dotted line), L = ` (solid red line), L = 3`/2

(long-dash-dotted green line) and L = 2` (dotted blue line) for ν line
3 = νstar

3 = 1. The left panel represents the star trispectrum,
the center panel shows the line trispectrum and the trispectrum from lensing effects is plotted in the right panel.
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FIG. 6: Plot of t̃` `
`+200 `+200(L) as a function of ` for L = `/10 (dashed line), L = `/2 (dash-dotted line), L = ` (solid red line),

L = 3`/2 (long-dash-dotted green line) and L = 2` (dotted blue line) for ν line
3 = νstar

3 = 1. The left panel represents the star
trispectrum, the center panel shows the line trispectrum and the trispectrum from lensing effects is plotted in the right panel.

signals are larger in the low ` range and have roughly the same order of magnitude when ν line
3 ∼ νstar

3 . In the chosen
configurations, the trispectra both take positive values at least for ` < 500.

However, the line trispectrum is much larger than the star one for large ` as well as for low-L values. A significant
and specific dependence on the shape of the quadrilateral is clearly visible in these plots and may allow to distinguish
between the two types of mode couplings. In Figs. 6 and 7, we can see the L-dependence of the line trispectrum: for
` < 30, the signal is an increasing function of L while it decreases with L in the range 30 < ` < 150. This feature is
quite different from the star trispectrum whose signal is not a monotonic function of L.

The chosen configurations exhibit special points: for ` ∼ 30 for the line like mode coupling and ` ∼ 80 for the
star like one, the trispectra take values that do not depend on L. Note that for these points, the value of the
star trispectrum is very low contrary to the line trispectrum. However, we should stress that we only plotted some
specific configurations whose features may be quite different from other geometrical configurations. Exploring all the
configurations remain a daunting task although we expect some geometry to be much more sensitive to primordial
non-Gaussian signals [16].

C. Weak lensing effects

At the level of the temperature tri-spectra subtle differences can be observed depending on the nature of the
potential high order correlation functions. This is then interesting to compare those results with the temperature
trispectra induce by weak lensing lensing effects. As mentioned in the introduction, this effect is the dominant low
redshift second order coupling. For parity reason, one expects indeed the trispectrum - rather that the bispectrum
- to acquire a non negligeable value from lensing effects [7–9, 18]. Lensing effects amount to relate the observed

temperature contrast, δ̂T/T , to the primordial one, δT/T , through

δ̂T

T
(γ̂) =

δT

T
(γ̂ + δ~γ) , (80)



D
S

M
/S

P
h

T
-T

06
/0

04
 h

ttp
://

w
w

w
-s

ph
t.c

ea
.f

r/
ar

tic
le

s/
T

06
/0

04
/ 

16

5 10 50 100
l

0

1000

2000

3000

4000

normalized trispectrum

10 20 50 100 200
l

1000

2000

3000

4000

5000

6000

7000
normalized trispectrum

50 100 200
l

0

2·108

4·108

6·108

8·108

normalized trispectrum

FIG. 7: Plot of t̃` `
`+300 `+300(L) as a function of ` for L = `/10 (dashed line), L = `/2 (dash-dotted line), L = ` (solid red line),

L = 3`/2 (long-dash-dotted green line) and L = 2` (dotted blue line) for ν line
3 = νstar

3 = 1. The left panel represents the star
trispectrum, the center panel shows the line trispectrum and the trispectrum from lensing effects is plotted in the right panel.

where δ~γ is the lens induced displacement field. Usually, the displacement field is smaller than the angular scale under
interest so that we may Taylor expand the temperature contrast as

δT

T
(γ̂ + δ~γ) =

δT

T
(γ̂) + δ~γ · ∇δT

T
(γ̂) + o(δ~γ2) . (81)

The first non vanishing contribution to the connected trispectrum is given by

〈 δ̂T
T

(γ̂1)
δ̂T

T
(γ̂2)

δ̂T

T
(γ̂3)

δ̂T

T
(γ̂4)〉c = 〈∇i

δT

T
(γ̂1)

δT

T
(γ̂3)〉 〈∇j

δT

T
(γ̂2)

δT

T
(γ̂4)〉 〈δγ1i δγ2j〉 + 11 other terms , (82)

where the Einstein index summation was used. In the small angle approximation, the four-point function reads

〈 δ̂T
T

(γ̂1)
δ̂T

T
(γ̂2)

δ̂T

T
(γ̂3)

δ̂T

T
(γ̂4)〉c =

∫

d2`1

2π

d2`2

2π

d2`3

2π

d2`4

2π
δDirac(~̀1 + ~̀

2 + ~̀
3 + ~̀

4)e
i~̀1·γ̂1+i~̀2·γ̂2+i~̀3·γ̂3+i~̀4·γ̂4

∫

d2L
(

C`1
~̀
1 + C`2

~̀
2

)

·
~L

L2
× Cφφ

L ×
(

C`3
~̀
3 + C`4

~̀
4

)

·
~L

L2
δDirac(~̀1 + ~̀

2 − ~L)

+ (2 ↔ 3) + (2 ↔ 4) , (83)

where

Cφφ
L = − 1

(2π)2

∫ χCMB

0

dχ
w2(χ)

D2
0(χ)

Pδ

(

L

D0(χ)

)

. (84)

Here χ and D0(χ) are respectively the comoving distance and the comoving angular diameter distance from the
observer while Pδ is the matter power spectrum. The function w is a function of distances and strongly depends on
the cosmological parameters (see e.g. [7–9]). We define the reduced trispectrum as

lenst`1`2
`3`4

(L) = Cφφ
L

[

(

C`1
~̀
1 + C`2

~̀
2

)

·
~L

L2
×

[

C`3
~̀
3 + C`4

~̀
4

]

·
~L

L2

]

+Cφφ
L13

[

(

C`1
~̀
1 + C`3

~̀
3

)

·
~L13

L2
13

×
[

C`2
~̀
2 + C`4

~̀
4

]

·
~L13

L2
13

]

+Cφφ
L14

[

(

C`1
~̀
1 + C`4

~̀
4

)

·
~L14

L2
14

×
[

C`3
~̀
3 + C`2

~̀
2

]

·
~L14

L2
14

]

, (85)

and the normalized trispectrum reads

lenst̃`1`2
`3`4

(L) =lens t`1`2
`3`4

(L)
1

(C`1 + C`2) CL (C`3 + C`4)
. (86)

The normalized trispectrum due to lensing effects is plotted in the right panels of Figs. 5, 6 and 7 for different
configurations in a sCDM model using the outputs of the CMBFast code [30]. As expected, the contribution of weak
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FIG. 8: Comparison between the variations of the radial transfer function R`(r) (dashed line) and ξ`(r) (solid line) as functions
of r for different ` in a sCDM model. From the upper left panel to the lower right panel: ` = 6, ` = 50, ` = 110, ` = 300.

lensing occurs at small scales and globally increases with `. The signal is enhanced by large values of L whose value
triggs the positions of the acoustic peaks.

Weak lensing effects have a specific signature on the temperature trispectrum which is quite different from the
effects of primordial origin. The value of the trispectrum induced by weak lensing is much larger than the expected
ones from primordial non-Gaussianities for ν line

3 ∼ νstar
3 ∼ 1. In particular, comparable signals in the range ` < 50

would require ν3 ∼ 104 and even ν3 ∼ 106 for ` > 200.
The following sections aim at describing the general behaviors of correlation functions induced by primordial non-

Gaussian statistics.

V. PHENOMENOLOGICAL APPROACHES FOR THE RECONSTRUCTION OF THE CORRELATION

FUNCTIONS

As we saw in the previous sections, the correlation functions of the coefficients a`m are given in term of three
functions: the radial transfer function R`(r), the function ξ`(r) and the vertex propagator ζ`(r, r

′). Assuming a given
power spectrum the propagator ζ`(r, r

′) is a known function, peaked at r = r′ whereas R`(r) and ξ`(r) encode the
details of the microphysics and have to be computed numerically. The goal of this section is to describe the behaviors
of these functions in a simple way. As shown in Fig. 8, the variations of ξ`(r) with r are smoothed compared to
those of R`′(r) which peaks at the last scattering surface r = r∗. Given the shape of the radial transfer function,
it is then natural to expand it as a combination of a Dirac distribution, that would correspond to the Sachs Wolfe
limit, and its first derivatives or some equivalently smoothed functions. This expansion seems valid as soon as one
neglects the late integrated Sachs-Wolfe effect, which is not localized at the last scattering surface. This expansion
reduces to a description of the temperature anisotropies today through the knowledge of the first radial derivatives
of the gravitational potential on the last scattering surface: φ`m(r∗), φ′

`m(r∗), etc. This approach should be linked to
a multipole expansion in the strong coupling limit. The goal of the next subsection is to test the validity of such an
expansion.

A. Which expansions for the transfer functions?

Neglecting the integrated Sachs-Wolfe effect and assuming a nearly instantaneous recombination, the description
of the baryon-photon plasma dynamics is encoded by the first multipoles θ`(k, η∗) at the last scattering surface. The
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FIG. 9: Shape of g1 (left panel) and g2 (right panel) as a function of r/r∗ for ` = 10 (solid line) and ` = 100 (dashed line).

transfer function can be approximately written with the following expansion

T`(k) = θ0(k, η∗)j`(kr∗) + θ1(k, η∗)j
′
`(kr∗) + ... , (87)

where, to keep insights of the micro-physics in mind, the monopole and the dipole are very roughly given by expressions
such that (see [28] for a more accurate phenomenological description of the acoustic pics),

θ0(k, η∗) ' −1

3
cos(kcsη∗)e

−k2/k2
D (88)

θ1(k, η∗) ' − 1

3
√

3
sin(kcsη∗)e

−k2/k2
D . (89)

where the damping effect is schematically taken into account (and kD is the damping scale), η∗ is the conformal time
at which recombination occurs, cs is the sound of speed of the plasma at the last scattering surface.

In the following we propose to replace the expansion (87), where the coefficients are k dependent, by effective
l-dependent coefficients, e.g.,

T`(k) = A0(`)j`(kr∗) + A1(`)j
′
`(kr∗) + A2(`)j

′′
` (kr∗) + ... . (90)

This is justified from Eq. (87) by the fact that the Bessel functions, and their derivatives, peak at k ∼ `/r∗. Roughly
speaking we then expect that A0(`) ≈ θ0(`/r∗, η∗), A1(`) ≈ θ1(`/r∗, η∗). This will explain the rough behavior of these
coefficients. In the following though we will not take this identification into account any more.

The idea is then, that at least for large enough angular scales, such an expansion could provide a reasonable
description of the observed anisotropies when only a few terms are taken into account. Such a convergence is ensured
for Eq. (87) because the multipole decomposition at the last scattering surface is naturally ordered by a small parameter
k/τ̇ , where τ̇ is the recombination rate. Incidentally one can remark that the first term of Eq. (90) would correspond
to the Sach-Wolfe effect in the limit where A0 is independent on `. In the following though, we treat these coefficients
on a pure phenomenological footing. We will only assume that the decomposition (90) is sensible and provides us
with a good description of the transfer function.

Such an expansion implies the following form for the radial transfer function

R`(r) = A0(`)g0(r, r∗; `) + A1(`)g1(r, r∗; `) + A2(`)g2(r, r∗; `) + ... , (91)

with

gn(r, r∗; `) =

∫

dk k2r2 j`(kr)j
(n)
` (kr∗) . (92)

The g1 function is given in terms of the hypergeometric function 2F1 and corresponds to a `-dependent smoothing
of δ′Dirac(r − r∗). The expressions of g1 and g2 are given in appendix A and their shapes are shown for different ` in
Fig. 9. Note that g0(r, r∗; `) = δDirac(r − r∗)π/2r2∗.

To describe the effect of the expansion (90), it is necessary to know the coefficients Ai(`). We then adopt a
phenomenological approach in which these coefficients are determined from a comparison with the CMBFast code
results [30]. All the following results are obtained in a standard cold dark matter (sCDM) model, where the integrated
effect may be neglected.

In principle, one should be capable of extracting the coefficients A0, A1, A2,... by fitting the numerical radial
transfer function with a combination of the functions g0, g1, g2,... . However, this approach raises some issues. In
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FIG. 10: Shape of f0 (left panel), f1 (center panel) and f2 (right panel) as a function of r/r∗ for ` = 10 (solid line) and ` = 20
(dashed line) (sCDM model).

0 100 200 300 400
l

-0.2

0

0.2

0.4

0.6

0.8
A0

0 100 200 300 400
l

-1

-0.5

0

0.5

1
A1

0 100 200 300 400
l

-1

-0.5

0

0.5

1

A2

FIG. 11: Shapes of the coefficients A0 (left panel), A1 (center panel) and A2 (right panel) as functions of ` in a sCDM model.
These coefficients have been obtained from a fit of the standard CDM outputs of the CMBFast code with the ansatz Eq. (93) for
different choice of r∗. Solid line: r∗ = 11670 h−1 Mpc. Dashed line: r∗ = 11690 h−1 Mpc. Dotted dashed line: r∗ = 11700 h−1

Mpc.

particular, the determination of the coefficients Ai is extremely sensitive to the choice of r∗ because the functions gi

peak at the last scattering surface. On the other hand, the expansion (90) induces the following expansion of the
smoothed functions ξ`(r):

ξ`(r) = A0(`)f0(
r

r∗
; `) + A1(`)f1(

r

r∗
; `) + A2(`)f2(

r

r∗
; `) + ... , (93)

where, for a scale-invariant power spectrum,

fn(
r

r∗
; `) =

∫

dk

k
j`(kr)j

(n)
` (kr∗) . (94)

The functions fi are computed for i = 0, 1, 2 in appendix B and plotted in Fig. 10. Fitting the functions ξ`(r) with
a combination of the functions f0, f1 and f2 gives an accurate determination of the coefficients A0, A1 and A2.
The results are shown in Fig. 11. Comparisons with the expected coefficients A0 and A1 in Eqs. (88) and (89) for
typical values of cs and kD are shown in Fig. 12. We can see that the oscillations of the coefficients originate from
the oscillations of the first multipoles on the last scattering surface. As expected from the Sachs-Wolfe limit, A0(`)
reduces to the constant value ∼ −1/3 at low ` and A1(`), A2(`) → 0 when ` goes to zero. Note that neglecting the
early integrated Sachs-Wolfe effect in Eq. (87) for a sCDM model do not modify much the expected coefficient A0 at
low multipole values `. This would not be the case in a ΛCDM model for instance, where the integrated Sachs-Wolfe
effect would induce large values of A0 at low `.

B. Power spectrum

Given the coefficients Ap, the computation of the C`’s may be performed analytically. Integrating over the radial
coordinate r in Eq. (25) yields

C` =
2

π

∫

dk

k
T`(k)2 , (95)
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where we set a scale invariant power spectrum. Using the expansion (90) leads to

C` =
2

π

[

A2
0

2`(` + 1)
+

A2
1

6(` − 1)(` + 2)
+ A2

2

3`2 + 3`− 10

30`(`− 2)(` + 1)(` + 3)
− A0A2

3`(` + 1)

+A0A1
π(2` − 3)!!

(2` + 3)!!
+ A1A2

π(`2 + ` + 3)(2` − 5)!!

(2` + 5)!!
+ ...

]

, (96)

where higher order terms were not written explicitly as they are expected to be small corrections to this result. From
the above expression, we can see that all the terms involving AiAj are subdominant when i+ j is odd. This is a quite
general fact as we will see in the flat sky approximation (see appendix C). For sufficiently large `, only the dominant
terms contribute and the two-point function becomes

C` =
2

π`2

[

A2
0

2
+

A2
1

6
+

A2
2

10
− A0A2

3
+ ...

]

. (97)

Using the values of the previously obtained coefficients Ai, Eq. (97) appears to be a rough estimate of the power
spectrum as shown in Fig. 13.

As we have shown in the previous subsection, the computations of higher order correlation functions involve quite
cumbersome integrals over hypergeometric functions, which cannot be expressed analytically. To get an approximate
result, it would seem natural to expand ξ`(r) about r = r∗ with a Taylor expansion since its behavior is smoothed
compared to the radial transfer function’s. However this series expansion appears not to be valid in a sufficiently
wide region around r = r∗. As this approach does not allow to compute high order correlation functions, we should
use another approximation. For sufficiently large ` (` > 10 in practice), Fig. 13 shows that the two-point function is
well described only by the leading order terms in `. As the large ` approximation corresponds to small angular scales,
it also means that the sky is assumed to be locally flat so that projection effects reduce to a simple identification.
In the following we assume that the last scattering surface is properly described by a plan. Hence, the multipole
decomposition corresponds to a flat two-dimensional Fourier transform.

Using the expression of the temperature contrast

δT

T
(γ̂) =

∑

`,m

a`mY`m , (98)

we get

δT

T
(γ̂) =

∑

`,m

4π(−i)`

∫

d3k

(2π)3/2
T`(k)Φ(~k)Y`m(γ̂)Y ∗

`m(k̂) . (99)

The decomposition of the transfer function in terms of Bessel functions gives

δT

T
(γ̂) =

∑

p

∑

`,m

Ap(`)4π(−i)`

∫

d3k

(2π)3/2
j
(p)
` (kr∗)Φ(~k)Y`m(γ̂)Y ∗

`m(k̂) . (100)

Considering that the functions Ap(`) do not vary much compared to the oscillating Bessel functions, we can use
Eq. (15) to get

4π
∑

`,m

(−i)`j
(p)
` (kr∗)Y`m(γ̂)Y ∗

`m(k̂) =
1

kp

dp

drp∗
ei~k·~r∗ , (101)

with

~k = kz~uz + ~k⊥ , (102)

~r∗ = r∗γ̂ , (103)

~k · ~r∗ ' kzr∗ + ~̀ · γ̂ . (104)

The z-axis, whose unit vector ~uz is oriented towards us, supports the line of sight. Vectorial quantities belonging to

the plan which is orthogonal to the line of sight are indexed by a symbol ⊥. The vector ~̀ = ~k⊥/r∗ is defined as the
conjugated variable of the angle γ̂.
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FIG. 12: Comparison between the fitted coefficients (solide line) A0(`) (left panel) and A1(`) (right panel) and the roughly
estimated expected ones (dashed line) from Eqs. (88) and (89) with the typical values cs ∼ 10−1, r∗/η∗ ∼ 103 and kDr∗ ∼ 103.
Eqs. (88) and (89) give a rough estimate of the coefficients A0 and A1 and explain their oscillations with `.

The temperature contrast becomes

δT

T
(γ̂) =

∑

p

∫

d3k

(2π)3/2
ApΦ(~k)

dp

kp drp∗
e−i~k·~r∗ (105)

=
1

(2π)3/2 r3∗

∑

p

∫

dx d2~̀ Ap
(−i)p xp e−ix

(x2 + `2)p/2
Φ(~k)e−i~̀·γ̂ , with ~k =

x

r∗
~uz +

~̀

r∗
. (106)

and the two-point function reads

〈δT
T

(γ̂1)
δT

T
(γ̂2)〉 =

∑

p1,p2

∫

d2~̀

(2π)2
Fp1,p2

(`)Ap1
(`)Ap2

(`)e−i~̀·(γ̂1−γ̂2) , (107)

where

Fp1,p2
(`) = (−i)p1−p2

∫

dx

2π
P̃

(

√

x2 + `2
) xp1+p2

(x2 + `2)(3+p1+p2)/2
with P̃ (y) = r3∗P

(

y

r∗

)

. (108)

For a scale invariant power spectrum P̃ (y) = 1/y3, the following integrals

∫ +∞

−∞

dx
xp1+p2

(x2 + `2)(3+p1+p2)/2
=







0 if p1 + p2 is odd

2
1+p1+p2

1
`2 if p1 + p2 is even

(109)

lead to

〈δT
T

(γ̂1)
δT

T
(γ̂2)〉 =

2

π

∫

d2~̀

(2π)2
1

`2

[

A2
0

2
+

A2
1

6
+

A2
2

10
+

A2
3

14
+

A2
4

18
− A0A2

3
+

A0A4

5
− A1A3

5
− A2A4

7
+ ...

]

e−i~̀·(γ̂1−γ̂2) ,

(110)
which is in perfect agreement with Eq. (97) (see appendix C for the correspondence between flat sky and all sky
formalisms). As we highlighted, only terms AiAj with i + j even do contribute to the two point function. The
convergence of the series may be checked in Fig. 13 where we used the expansion (90) to A4.

The large ` limit together with the expansion (90) provides us with a more tractable formalism to express higher
order correlation functions. In the following, we explore the approximate behavior of the bispectrum through the very
first terms of the expansion (90).

C. Bispectrum

An accurate description of the bispectrum is a powerful tool towards discriminating among the inflationary mod-
els [21, 22] or understanding the primary or secondary nature of non-Gaussianities [23–26]. In this perspective, we
apply our expansion to explore the key features of the temperature three-point function which may be expressed as

〈δT
T

(γ̂1)
δT

T
(γ̂2)

δT

T
(γ̂3)〉c =

∑

p1,p2,p3

∫

d2~̀
1

2π

d2~̀
2

2π

d2~̀
3

2π
Ap1

Ap2
Ap3

Fp1,p2,p3
(`1, `2, `3) e−i~̀1·γ̂1e−i~̀2·γ̂2e−i~̀3·γ̂3δDirac

(

~̀
1 + ~̀

2 + ~̀
3

)

(111)
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FIG. 13: Reconstruction of the power spectra from the ansatz (90). The coefficient Ai are obtained from a fit of the standard
CDM outputs of the CMBFast code. Left panel: effect of the flat sky approximation on the power spectrum recontruction.
The solid black line shows the results from CMBFast. The red dashed line shows the results from Eq. (96) whereas the blue
dotted-dashed line is obtained from the flat sky approximation Eq. (97). Those two recontructed curves are in agreement with
each other for ` > 15. Right panel: reconstruction of the power spectrum with different degrees of approximation: expansion to
first order (contribution of A0 and A1 only) (dotted black line), to second order (long-dashed red line), to third order (dotted
dashed green line) and to fourth order (short-dashed blue line). The solid black line represents the expected result from the
CMBFast code.

with

Fp1,p2,p3
(`1, `2, `3) = ν2

(−i)p1+p2+p3

(2π)3/2

∫

dx1dx2dx3 δDirac (x1 + x2 + x3)

[

P̃ (
√

x2
1 + `2

1) xp1

1 e−ix1

(x2
1 + `2

1)
p1/2

P̃ (
√

x2
2 + `2

2) xp2

2 e−ix2

(x2
2 + `2

2)
p2/2

xp3

3 e−ix3

(x2
3 + `2

3)
p3/2

+ perm.

]

. (112)

From the changes of variables xi → −xi, one can see that the non-vanishing terms are those with p1 + p2 + p3 even.
In the special case where p3 = 0, both p1 and p2 should be even.

As the direct computation is uneasy, we decompose the Dirac function δDirac (x1 + x2 + x3) as in Eq. (29) to recast
the three-point function into

〈δT
T

(γ̂1)
δT

T
(γ̂2)

δT

T
(γ̂3)〉c =

ν2

(2π)3/2

∫

d2~̀
1

2π

∫

d2~̀
2

2π

∫

d2~̀
3

2π
δDirac

(

~̀
1 + ~̀

2 + ~̀
3

)

e−i(γ̂1·~̀1+γ̂2·~̀2+γ̂3·~̀3)b(`1,`2,`3) ,

(113)
with

b(`1,`2,`3) = B(`1,`2,`3) + B(`3,`1,`2) + B(`2,`3,`1) . (114)

For a scale invariant power spectrum

B(`1,`2,`3) =
4

`2
1`

2
2

A0(`1)A0(`2)A0(`3)

+2
`3

`1`2
b1 (`1, `2, `3) A1(`1)A0(`2)A1(`3) + (`1 ↔ `2)

+4
`3

`1`2
b1 (`3, `1, `2) A0(`1)A0(`2)A2(`3)

− 4

3`2
1`

2
2

A2(`1)A0(`2)A0(`3) + (`1 ↔ `2)

+
π2

2

`3

`1`2(`1 + `2 + `3)3
A1(`1)A1(`2)A2(`3)

−2

3

`3

`2
1`2

b2 (`1, `2, `3) A2(`1)A1(`2)A1(`3) + (`1 ↔ `2)
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FIG. 14: Normalized bispectrum for an equilateral configuration b̃``` in a sCDM model with ν2 = 1. The solid black line is
the expected bispectrum. The red dashed and the green dot-dashed lines are respectively the reconstructed bispectrum to first
and second order. The blue lines show the behavior of the coefficients A0(`) (dotted line) and A1(`) (long-dash-dotted line).

+
4

9

1

`2
1`

2
2

A2(`1)A2(`2)A0(`3)

−4

3

`3

`2
1`2

b2 (`1, `3, `2) A2(`1)A0(`2)A2(`3) + (`1 ↔ `2)

+
4

9

`3

`2
1`

2
2

b3 (`1, `2, `3) A2(`1)A2(`2)A2(`3) . (115)

We defined the following functions (see appendix B)

b1 (`1, `2, `3) =

∫ ∞

0

dz z2 e−`1z K1(`2z) K1(`3z) (116)

b2 (`1, `2, `3) =

∫ ∞

0

dz z e−`2z K1(`3z)
[

`1zK1(`1z) − `2
1z

2K0(`1z)
]

(117)

b3 (`1, `2, `3) =

∫ ∞

0

dz e−`3z
[

`1zK1(`1z) − `2
1z

2K0(`1z)
] [

`2zK1(`2z) − `2
2z

2K0(`2z)
]

, (118)

where Kn stands for the modified Bessel function of the second kind of order n.
The link between the flat sky and all sky formalisms imposes (see appendix C)

b`1`2`3 =
1√
2π

b(`1,`2,`3) . (119)

In the peculiar case where `1 = `2 = `3 = `, the functions b1, b2 and b3 simplify to

b1(`, `, `) =
1

`3

[

3π2

32
2F1

(

3

2
,
5

2
; 2;

1

4

)

− 2

3
3F2

(

1, 2, 3;
3

2
,
5

2
;
1

4

)]

' 0.526

`3
(120)

b2(`, `, `) ' 0.381
1

`2
(121)

b3(`, `, `) ' 0.335
1

`
. (122)

Numerical results are shown in Figs. 14, 15 and 16. In Fig. 14, the normalized bispectrum in (113) is compared
to the expected one in an equilateral configuration. For an equilateral configuration, it appears that the bispectrum
is properly approximated with a few terms. In particular, one can see that the main features of the bispectrum are
encoded by the coefficients A0 and A1. Recalling Eq. (115), it means that roughly b``` ∝ A0(`)(A

2
0(`) + 0.5A2

1(`)).
Hence the zeros of the bispectrum are roughly given by the zeros of the monopole A0(`) for an equilateral configuration
(see Fig. 14).

Fig.15 represents the peculiar configuration where one of the ` is fixed to a zero of the monopole, ` = 70, while the
other two are equal. From Eq. (115), the bispectrum should reduce to first order to a single term

b70 ` ` ∝ A0(`)A1(`)A1(70). (123)
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FIG. 15: Reconstruction of the normalized bispectrum for an isosceles configuration b̃` ` 70 as a function of ` in a sCDM model
with ν2 = 1. The solide black line represents the expected bispectrum. The green dotted dashed line and the red dashed line
represent the reconstructed bispectrum from an expansion to the order A1 and A2 respectively. The blue lines represents the
coefficients A0(`) (dotted line) and A1(`) (long dashed dotted line).
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FIG. 16: Normalized bispectrum for an isosceles configuration b̃` `+300 `+300(left panel) in a sCDM model (solid black line) with
ν2 = 1. The green dotted dashed line and the red dashed line represent the reconstructed normalized bi-spectrum to order
A1(`) and A2(`) respectively. The blue lines represent the coefficients A0 (dotted line) and A1 (long-dash-dotted line).

Hence the zeros of the bispectrum are roughly those of the monopole and the dipole terms. Plots of Fig.15 shows that
this approximation is too crude to estimate the zeros of the bispectrum mainly because this configuration demands
the dominant term to vanish. However the coarse features are recovered and the sub-dominant terms contribute as a
global shift that lead to a proper fit of the expected bispectrum.

We also paid attention to configurations that would correlate the first two acoustic peaks of the C`’s. Fig. 16 shows
the bispectrum b` `+300 `+300. The basic features of this bispectrum may be infered by noting that A0(`+300) ' −A0(`)
and A1(` + 300) ' −A1(`). We then get

b` `+300 `+300 ∝ A0(`)
[

A0(`)
2 + .5A1(`)

2
]

and b` ` `+300 ∝ −A0(`)
[

A0(`)
2 + h(`)A1(`)

2
]

, (124)

where h(`) ∼ 0.25 is a slowly varying function. These configurations roughly reproduce the bispectrum corresponding
to an equilateral configuration.

Our results provide a simple way towards understanding the behavior of the bispectrum as a function of the
configuration. Recalling that the coefficients A0, A1 and A2 represent the first momenta of the gravitational potential
on the last scattering surface, we have shown that the coarse features of the bispectrum may be infered from the
monopole and the dipole behaviors.

D. Trispectrum

The analysis of the trispectrum may be performed in the same way as previously for the bispectrum. As the number
of terms in our phenomenological approach increases with the order of the correlation function, the key features of
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the trispectrum become less obvious to infer. However the sign of the trispectrum may be roughly predicted given
the behaviors of A0 and A1.

The very first terms of the expansion of the trispectrum read

〈δT
T

(γ̂1)
δT

T
(γ̂2)

δT

T
(γ̂3)

δT

T
(γ̂4)〉c =

1

(2π)2

∫

d2~̀
1

2π

∫

d2~̀
2

2π

∫

d2~̀
3

2π

∫

d2~̀
4

2π
δDirac

(

~̀
1 + ~̀

2 + ~̀
3 + ~̀

4

)

e−i(γ̂1·~̀1+γ̂2·~̀2+γ̂3·~̀3+γ̂4·~̀4)

∫

d2~L
[

δDirac

(

~̀
1 + ~̀

2 + ~L
)

t
(`1,`2)
(`3,`4)

(L) + (2 ↔ 3) + (2 ↔ 4)
]

, (125)

with

start`1`2
`3`4

(L) =
8νstar

3

3`2
1`

2
2`

2
3

A0(`1)A0(`2)A0(`3)A0(`4) + 3 other terms

+ 4νstar
3

`4

3`1`2`3
A1(`1)A0(`2)A0(`3)A1(`4)

∫ ∞

0

dz z3 e−`1zK1(`2z)K1(`3z)K1(`4z) + 11 other terms

+ . . . (126)

and

linet`1`2
`3`4

(L) =
8νline

3

`2
1`

2
3L

2
A0(`1)A0(`2)A0(`3)A0(`4)

+ 4νline
3

`4

`2
1`3L

A0(`1)A0(`2)A1(`3)A1(`4)

∫ ∞

0

dz z2 e−`3zK1(`4z)K1(Lz)

+
8νline

3

π2

`2`4

`1`3L
A0(`1)A1(`2)A0(`3)A1(`4)

×
∫ ∞

−∞

dx xK1(`1x)K1(`2x)

∫ ∞

−∞

dy yK1(`3y)K1(`4y) |x − y|K1(L|x − y|)

+ (1 ↔ 2) + (3 ↔ 4) +

(

1 ↔ 2
3 ↔ 4

)

+ . . . . (127)

For a losange configuration `1 = `2 = `3 = `4 = `, it may be checked that the signs of trispectra do not change since
the dominant terms read

start````(L) ' νstar
3

`6
A2

0(`)

[

32

3
A2

0(`) + 7.10 A2
1(`)

]

(128)

and

linet````(L) ' νline
3

`6
A2

0(`)

[

32
`2

L2
A2

0(`) + 16
`

L
b1(1, 1,

L

`
)A2

1(`)

]

. (129)

In a similar way, we could expect that the configurations such as `1 = `2 = `, `3 = `4 = `′ have a constant sign
for not too large multipoles ` and `′. This seems to be the case in Figs.5, 6 and 7. Fig. 17 shows the reconstructed
trispectrum t̃` `

`+300 `+300(L = 5). We can check that the trispectrum does not vanish and that its main features are
properly reproduced by our expansion in terms of momenta of the gravitational field.

VI. CONCLUSIONS

We investigated the shapes of high order correlation functions in the CMB anisotropy maps. Formal expressions
for the high order correlation functions can easily be obtained. We found that, for generic models of primordial
non-Gaussianities, they can be described with the help of formal diagrams evaluated with computation rules we gave.
We found that only three kinds of functions with simple diagrammatic interpretations are needed: the radial transfer
functions R`(r) represented by vertices, the propagators ξ`(r) represented by outer lines joining a point to a vertex
and the vertex propagators, ζL(r; r′), corresponding to internal lines joining two vertices. This formalism provides
simple expressions of high order connected correlation functions of the observed temperature field for a large class of
models of primordial non-Gaussianities.
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FIG. 17: Plot of starT ` `
`+300 `+300(L) as a function of ` for L = 5 with νstar

3 = 1. The solid line correspond to the CMBFast code
results whereas the dashed one is the reconstructed trispectrum.

The development of instabilities at super-horizon scales is intrinsically a nonlinear process that induces specific
non-Gaussian effects. These types of mode couplings naturally induce a potential bispectrum the amplitude of which
is characterized by a parameter ν2 (e.g. fNL) of the order unity. However for such a low level of couplings and
beyond the Sachs Wolfe regime, the calculation of the temperature correlation functions requires a consistent second
order treatment of the CMB anisotropies through the physics of recombination which is not taken into account in the
formalism we present.

More significant sources of non-Gaussianities might come from additional scalar degrees of freedom in the very early
universe. In such cases, the statistics induced may depend on the details of the scenario and in particular on the types
of mode couplings during or at the end of the inflationary period. It makes the search of non-Gaussianities of the
observed CMB maps precious for discriminating between different inflationary scenarii. This is illustrated for instance
by the qualitative differences we found at the level of the tri-spectra between line- and star-like mode coupling effects.
Those shapes are furthermore found to be quite different from those induced by weak lensing effects.

As we stressed it is possible to obtain formally compact expressions for the high order correlation functions. It
is nonetheless difficult to get insights into the geometrical dependences of these correlation functions in general.
Projection effects and physics of recombination both contribute to make difficult the transcription from the high
order correlation functions of the gravitational potential to those of the observed temperature field. Only in the
Sachs Wolfe regime is this transcription easy. The same formal structure between the correlation functions is indeed
recovered. To obtain further insights into the behaviors of the high order correlation functions at small angular scale,
we propose a description of the acoustic oscillations using semi-analytic methods. Ignoring the integrated Sachs-Wolfe
effect, we found that it was possible to use a gradient-like expansion as suggested by the fact that the radial transfer
function is peaked in the vicinity of the last scattering surface. This approximation assumes that the temperature
anisotropies can only be described by the behavior of the potential at or in the vicinity of the last scattering surface.
In the approach we adopted the transfer physics is encoded by angular scale dependent terms while projection effects
are treated separately. In this perspective, the small angle approximation is appropriate to handle projection effects
and leads to more convenient results. We found that the shapes of the temperature power spectrum and bispectrum
can be reasonably reproduced with the very first terms of such an expansion.

This perturbative approach can give insights into the behavior of the high order correlation functions. For instance
it gives a good account of the positions of the zeros of the bispectrum. They indeed have to roughly coincide with those
of the monopole term at the surface of last scatter. Higher order expansion obviously leads to an increasing accuracy
in the description of the amplitude of the temperature bispectrum. The trispectra show more complex structures with
complicated sign patterns but that can also be explained, to a large extent, with the approach we have developed. In
particular, some key features of the trispectrum, such as its sign in an equilateral configuration, may be accounted
for. Nevertheless, the features of the high order temperature spectra might be complementary highlighted in a real
space treatment of the CMB anisotropies [31]. We think that the method we have presented could be extended to
the properties of the polarization field as well.
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APPENDIX A: FUNCTIONS INVOLVED IN THE EXPANSION OF THE TRANSFER FUNCTION

Expanding the transfer function as in Eq. (90) induces the calculation of specific integrals in the expression of the
radial transfer function R`(r) or in the function ξ`(r). In this subsection, we will give the expressions of the function
gi(r, r∗; `) and fi(r/r∗; `) (see Eqs. (91)-(94)).

To compute these integrals, we will use the following equality (see [29]) for −2 < p < ` + `′ + 1 and r < r∗:

∫

dk k−pj`′(kr∗)j`(kr) =
π

2p+2

r`

r`−p+1
∗

Γ( `+`′−p+1
2 )

Γ( `′−`+p+2
2 )Γ(` + 3/2)

×

2F1

(

` + `′ − p + 1

2
,
` − `′ − p

2
; ` + 3/2;

r2

r2∗

)

, (A1)

whereas for r > r∗

∫

dk k−pj`′(kr∗)j`(kr) =
π

2p+2

r`
′

∗

r`′−p+1

Γ( `+`′−p+1
2 )

Γ( `−`′+p+2
2 )Γ(`′ + 3/2)

×

2F1

(

` + `′ − p + 1

2
,
`′ − ` − p

2
; `′ + 3/2;

r2∗
r2

)

. (A2)

On the other hand, the recurrence relation between spherical Bessel functions

j′`(x) =
1

2` + 1
[`j`−1(x) − (` + 1)j`+1(x)] , (A3)

leads to

j
(p)
` (x) =

`+p
∑

`′=`−p

α
(p)
``′ j`′(x) , (A4)

where the coefficients α
(p)
`,`′ satisfy the recurrence relation

α
(p+1)
`,`′ =

`′ + 1

2`′ + 3
α

(p)
`,`′+1 −

`′

2`′ − 1
α

(p)
`,`′−1 . (A5)

The integral defining g1 in Eq. (92) may be computed with Eqs. (A1)-(A3) assuming that the limit p = −2 may be
analytically continued. The expression for g1 yields for r < r∗

g1(r, r∗; `) =

√
π

2r2∗

Γ(` + 1)

Γ(` + 3/2)

(

r

r∗

)` [

−` + 2

r∗
2F1

(

1

2
, ` + 1, ` +

3

2
;
r2

r2∗

)

− ` + 1

` + 3/2

1

r3∗
2F1

(

3

2
, ` + 2, ` +

5

2
;
r2

r2∗

)]

.

(A6)
Similarly for r > r∗

g1(r, r∗; `) =

√
π

2r2

Γ(` + 1)

Γ(` + 3/2)

(r∗
r

)`
[

− `

r∗
2F1

(

1

2
, ` + 1, ` +

3

2
;
r2∗
r2

)

+
`

` + 3/2

r∗
r2 2F1

(

3

2
, ` + 2, ` +

5

2
;
r2∗
r2

)]

. (A7)

Here 2F1 stands for the hypergeometric function. In the computation of g2, the integrals in Eq. (A1) are not defined
for p = −2. Hence, we should write g2 as

g2(r, r∗; `) =
d2

dr2∗

∫

dk j`(kr)j`(kr∗) . (A8)

Using Eqs. (A1) and (A2), we get

∫

dk j`(kr)j`(kr∗) =







π
2

1
2`+1

1
r∗

(

r
r∗

)`

for r < r∗
π
2

1
2`+1

1
r

(

r∗
r

)`
for r > r∗

(A9)
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and the function g2 reads

g2(r, r∗; `) =







π
2

(`+1)(`+2)
2`+1

1
r3
∗

(

r
r∗

)`

for r < r∗
π
2

`(`−1)
2`+1

1
r3
∗

(

r∗
r

)`+1
for r > r∗

. (A10)

The expressions of the integrals fi in Eq. (94) may be performed with Eqs. (A1)-(A5) and yield for r < r∗

f0(
r

r∗
; `) =

√
π

4

Γ(`)

Γ(` + 3/2)

(

r

r∗

)`

2F1(`,−
1

2
; ` +

3

2
;
r2

r2∗
) (A11)

f1(
r

r∗
; `) =

π

4

(

r

r∗

)`
[

− ` − 1

(2`− 1)(2` + 1)
+

` + 1

(2` + 1)(2` + 3)

(

r

r∗

)2
]

(A12)

f2(
r

r∗
; `) =

√
π

8

(

r

r∗

)`
Γ(` + 1)

Γ(` + 3/2)
×

[

4(` + 1)(` + 2)

3(2` + 1)(2` + 3)
2F1(` + 1,−3

2
; ` +

3

2
;
r2

r2∗
) − 2

2`2 + 2`− 1

`(2`− 1)(2` + 3)
2F1(`,−

1

2
; ` +

3

2
;
r2

r2∗
)

+
1

(2` − 1)(2` + 1)
2F1(` − 1,

1

2
; ` +

3

2
;
r2

r2∗
)

]

. (A13)

In the case r > r∗, they transform into

f0(
r

r∗
; `) =

√
π

4

Γ(`)

Γ(` + 3/2)

(

r

r∗

)`

2F1(`,−
1

2
; ` +

3

2
;
r2∗
r2

) (A14)

f1(
r

r∗
; `) =

π

4

(r∗
r

)`
[

`

(2` − 1)(2` + 1)
− ` + 2

(2` + 1)(2` + 3)

(r∗
r

)2
]

(A15)

f2(
r

r∗
; `) =

√
π

8

(r∗
r

)`−2 Γ(` + 1)

Γ(` + 3/2)
×

[

1

3
2F1(` − 1,−3

2
; ` − 1

2
;
r2∗
r2

) − 2
2`2 + 2`− 1

`(2`− 1)(2` + 3)

(r∗
r

)2

2F1(`,−
1

2
; ` +

3

2
;
r2∗
r2

)

+
4(` + 1)(` + 2)

(2` + 1)(2` + 3)2(2` + 5)

(r∗
r

)4

2F1(` + 1,
1

2
; ` +

7

2
;
r2∗
r2

)

]

. (A16)

APPENDIX B: INTEGRALS INVOLVED IN THE COMPUTATION OF THE BISPECTRUM

The computation of the bispectrum involves integrals such as
∫ +∞

−∞

dx
xp

(x2 + `2)(p+3)/2
e−ixz . (B1)

The integrals for p = 0, 1 and 2 may be performed [29]
∫ ∞

−∞

dx
e−ixz

(`2 + x2)3/2
=

2

`
|z|K1(`|z|) , (B2)

∫ ∞

−∞

dx
x e−ixz

(`2 + x2)2
= −i

π

2`
ze−`|z| , (B3)

∫ ∞

−∞

dx
x2 e−ixz

(`2 + x2)5/2
=

4

3`2
G21

13

(

`2z2

4

∣

∣

∣

−1/2
01 1/2

)

, (B4)

where Kn is the modified Bessel function of the second kind of order n and Gm,n
p,q

(

x
∣

∣

∣

a1, ..., ap

b1, ..., bq

)

is the Meijer’s

G-function. The Meijer’s G-function is defined by

Gm,n
p,q

(

x
∣

∣

∣

a1, ..., ap

b1, ..., bq

)

=
1

2iπ

∫

C

∏m
j=1 Γ(bj + s)

∏n
j=1 Γ(1 − aj − s)

∏q
j=m+1 Γ(1 − bj − s)

∏p
j=n+1 Γ(aj + s)

x−sds , (B5)
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where the contour C lies between the poles of Γ(1− aj − s) and the poles of Γ(bj + s). The last integral (B4) may be
simplified using

∫ ∞

−∞

dx
x2 e−ixz

(`2 + x2)5/2
=

1

3`

∂2

∂z2

∂

∂`

∫ ∞

−∞

dx
e−ixz

(`2 + x2)3/2
. (B6)

With Eq. (B2) and the differential equations satisfied by the Bessel functions, we obtain

∫ ∞

−∞

dx
x2 e−ixz

(`2 + x2)5/2
=

2

3`2

[

`|z|K1(`|z|) − `2z2K0(`|z|)
]

. (B7)

Some other integrals involved in the computation of the bispectrum are of the type

∫ ∞

−∞

dx
xp

(x2 + `2)p/2
e−ixz . (B8)

Results for p = 0, 1 and 2 read

∫ ∞

−∞

dx e−ixz = 2πδDirac(z) , (B9)

∫ ∞

−∞

dx
x e−ixz

(`2 + x2)1/2
= 2 − i ` sgn(z) K1(`|z|) , (B10)

∫ ∞

−∞

dx
x2 e−ixz

`2 + x2
= −π ` e−`|z| . (B11)

For the special cases z = 0

∫

dx
1

(`2 + x2)3/2
=

2

`2
, (B12)

∫

dx
x

(`2 + x2)2
= 0 , (B13)

∫

dx
x2

(`2 + x2)5/2
=

2

3`2
. (B14)

APPENDIX C: FLAT SKY FORMALISM

We define the quantity a(~̀) by the bidimensional Fourier transform of the temperature contrast

a(~̀) =

∫

d2γ̂

2π

δT

T
(γ̂)e−i~̀·γ̂ (C1)

or conversely

δT

T
(γ̂) =

∫

d2~̀

2π
a(~̀)ei~̀·γ̂ . (C2)

Inserting the multipole expansion of the temperature contrast in Eq. C1, we may express a(~̀) as a function of the
coefficients a`′m′

a(~̀) =
∑

`′m′

a`′m′

∫

d2γ̂

2π
Y`′m′(γ̂) e−i~̀·γ̂ . (C3)

In the small angle approximation, the spherical harmonics are properly approximated by

Y`m(θ, φ) ' Jm(`θ)

√

`

2π
eimφ (C4)
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for ` � 1 and θ � 1. Moreover, we can decompose the vectors γ̂ and ~̀ in the small angle approximation as

γ̂

(

θ cosφ
θ sinφ

)

and ~̀
(

` cosφ`

` sin φ`

)

. (C5)

The quantity a(~̀) then becomes

a(~̀) =
∑

`′m

a`′m

∫

d2γ̂

2π
Jm(`′θ)

√

`′

2π
eimφe−i`θ cos(φ−φ`). (C6)

Using the integral representation of the Bessel functions

Jm(`θ) =
1

2πim

∫ 2π

0

dφ′ eimφ′+i`θ cos φ′

, (C7)

one naturally gets

a(~̀) =
√

2π `′
∑

`′m

(−i)m a`′m e−imφ`

∫

dθ

2π
θJm(`θ)Jm(`′θ), (C8)

which leads to

a(~̀) =
1√
2π `

∑

m

(−i)m a`m e−imφ` . (C9)

Conversely

a`m =

√

`

2π
im

∫

dφ` a(~̀)eimφ` . (C10)

Defining the power spectrum as

〈a`ma∗
`′m′〉 = C` δ``′δmm′ , (C11)

we find, using Eq. (C9) that

〈a(~̀)a(~̀′)〉 = δDirac(~̀− ~̀′) C`. (C12)

In an all sky formalism, the reduced bispectrum is defined by

〈a`1m1
a`2m2

a`3m3
〉c = Gm1m2m3

`1`2`3
b`1`2`3 . (C13)

Using Eqs. (C9) and (C7), we find the power spectrum in a flat sky formalism

〈a(~̀1)a(~̀2)a(~̀3)〉c =
1

2π
b`1`2`3 δDirac(~̀1 + ~̀

2 + ~̀
3) . (C14)

The reduced trispectrum is defined by

〈a`1m1
a`2m2

a`3m3
a`4m4

〉c =
∑

L,M

(−1)MGm1m2M
`1`2L Gm1m2−M

`3`4L t`1`2
`3`4

(L) (C15)

and the correspondence between flat sky and full sky formalisms imposes

〈a(~̀1)a(~̀2)a(~̀3)a(~̀4)〉c =
1

(2π)2

∫

d2L

2π
δDirac(~̀1 + ~̀

2 + ~̀
3 + ~̀

4) δDirac(~̀1 + ~̀
3 − ~L) t`1`2

`3`4
(L) . (C16)


