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STABILITY LOSS DELAY IN A CLASS OF SLOW AND FAST
ECOLOGICAL MODELS

HAFIDA BOUDJELLABA ∗ AND TEWFIK SARI †

Abstract. We study a class of three-dimensional systems of harvesting two species. The dy-
namics of the harvesting effort is assumed to be slow comparatively to the dynamics of the species.
By using singular perturbation theory and the stability loss delay phenomenon, we give precise con-
ditions which guarantee the existence of a semi global asymptotically stable equilibrium. As an
application, a well-known model considered by Clark will be discussed.
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1. Introduction. The main problem in the study of dynamical systems arising
in applications is to determine the asymptotic behavior of the solutions. In mathe-
matical ecology, this problem is related to the study of the persistence of the species.
For instance, if there exists a globally asymptotically stable steady state of positive
coordinates, then the system is persistent. On the other hand, in most applications
the dynamics of different variables of the system are hierarchically scaled: for instance,
in ecological models, often, the preys multiply much faster than the predators. Hence,
the study and management of systems with various time scales were considered by
many authors and remain a high point of interest from theoretical, computational and
practical points of view [4, 5, 18, 19, 20, 22, 28].

In this paper, we investigate a class of slow and fast ecological models of particular
interest for the applications and consider the question of the existence of a globally
asymptotically stable persistent equilibrium. More precisely, we study the combined
harvesting of two ecologically independent populations. Problems related to the ex-
ploitation of multispecies systems are more difficult than problems pertaining to the
single-species model. For details and information, see Clark’s book [7], or [8]. If each
population is subject to logistic growth and E is the harvesting effort, we have the
following equations (see [7], p. 311):

x′ = rx(1 − x/K) − q1Ex,
y′ = sy(1 − y/L) − q2Ey.

(1.1)

In system (1.1), the parameters r and s are the intrinsic growth rates, q1 and q2 are
the catchability coefficients and K and L are carrying capacities for populations x
and y respectively. For net revenue, Clark used the following expression:

π(x, y,E) = (p1q1x+ p2q2y − c)E,

where the prices p1 and p2 are constant and cE is the cost of fishing. Clark analyzed
the system by finding the bionomic equilibrium, i.e. the equilibrium solutions x′ = 0
and y′ = 0 for equations (1.1) together with the condition π(x, y,E) = 0. He showed
that, under some conditions, the bionomic equilibrium occurs, for a value E∞ of

∗Laurentian University, Sudbury, Ontario P3E2C6, Canada. hboudjellaba@cs.laurentian.ca

Supported by the National Sciences and Engineering Research Council of Canada.
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the fishing effort, at a point (x∞, y∞) where both x∞ and y∞ are positive. Clark
suggested to extend system (1.1) by adding a dynamic reaction of the effort of fishing
E of form E′ = επ(x, y,E) where ε > 0. He obtained the system

x′ = rx(1 − x/K) − q1Ex,
y′ = sy(1 − y/L) − q2Ey,
E′ = ε (p1q1x+ p2q2y − c)E.

(1.2)

Then Clark stated, without proof, that in system (1.2) the equilibrium (x∞, y∞, E∞)
is approached asymptotically (see [7], p. 312). Our aim is to prove this result in the
case where ε is a small parameter.

More precisely, we study a general model given by the following equations:

x′ = xM(x,E),
y′ = yN(y,E),
E′ = εEP (x, y),

(1.3)

where M , N and P are continuous functions. For the simplicity of the presentation,
we assume that system (1.3) has a unique solution with prescribed initial conditions.
We study this system in the positive octant of R

3. We assume that ε is small , which
means that reaction E is much slower than reactions x and y. Let us denote by τ the
time in system (1.3). In terms of the slow time t = ετ , system (1.3) becomes

εẋ = xM(x,E),
εẏ = yN(y,E),

Ė = EP (x, y).
(1.4)

Throughout the paper, the dot designates the derivatives with respect to time t and
the prime designates the derivatives with respect to time τ . System (1.4) is a slow and
fast vector field and its study belongs to singular perturbation theory or Tikhonov’s
theory (see Section A.4, see also [21, 25, 26]). This system exhibits the phenomenon
of delayed loss of stability or canard solution (see Section A.8). Our main aim is to
give conditions on the functions M , N and P such that system (1.4) has an equilib-
rium (x∞, y∞, E∞), with x∞ > 0, y∞ > 0 and E∞ > 0, which is practically semi-
globally asymptotically stable in the first octant, as ε → 0, that is, for any solution
(x(t, ε), y(t, ε), E(t, ε)) of system (1.4) we have

lim
t→+∞,ε→0

(x(t, ε), y(t, ε), E(t, ε)) = (x∞, y∞, E∞),(1.5)

the limit being uniform with respect to the initial condition in any compact subset
of the positive octant. The notion of practical semi-global asymptotic stability in
systems depending on parameters is discussed in Section A.2. This notion, which is
very important for applications, appeared first in control theory and is related to the
problem of stabilization [6].

The paper is organized as follows. In Section 2, we apply Tikhonov’s theory to
system (1.4). In Section 3, we study the delayed loss of stability phenomenon in this
system. In Section 4, the main results of the paper (theorems 4.6, 4.7 and 4.8) on the
asymptotic stability of the equilibrium point (x∞, y∞, E∞) of system (1.4) are stated.
In Section 5, the results are illustrated on Clark’s model (1.2) and by numerical
simulations. In Appendix A, we give the main tools of singular perturbation theory
which are disregarded in the literature. In this appendix, some stability results are
obtained by using the decomposition of the dynamics of the system in a slow and a
fast part.
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2. Fast Dynamics and Slow Dynamics.

2.1. The fast equation. System (1.4) is a slow and fast system of the form
(A.2) introduced in Section A.4, with u = E as the slow variable and v = (x, y) as
the fast variable. For this system, the fast equation (A.4) is written as

x′ = xM(x,E)
y′ = yN(y,E)

(2.1)

where E is a constant parameter. We assume that equations x′ = xM(x,E) and
y′ = yN(y,E) have unique solutions with prescribed initial conditions, for every
E ≥ 0. The following assumptions are made.
(A1) There exists a positive continuous decreasing function E 7→ ξ(E) defined on

[0, a], a > 0, such that ξ(a) = 0 and for all E ∈ [0, a] we have M(ξ(E), E) = 0
and M(x,E) > 0 for x < ξ(E) and M(x,E) < 0 for x > ξ(E).

(A2) There exists a positive continuous decreasing function E 7→ η(E) defined on
[0, b], b > a, such that η(b) = 0 and for all E ∈ [0, b] we have N(η(E), E) = 0
and N(y,E) > 0 for y < η(E), and N(y,E) < 0 for y > η(E).

From assumptions (A1) and (A2), we deduce the following properties: when
E ≥ b, (0, 0) is the only equilibrium of (2.1); when a ≤ E < b, (2.1) has two equilibria,
(0, 0) and (0, η(E)); when 0 ≤ E < a, (2.1) has four equilibria, (0, 0), (ξ(E), 0),
(0, η(E)) and (ξ(E), η(E)). The stability of these equilibria is summarized in the
following lemma:

Lemma 2.1. When E ≥ b, (0, 0) is a stable node. When b > E ≥ a, (0, 0) is a
saddle point and (0, η(E)) is a stable node. When a > E ≥ 0, (0, 0) is an unstable
node, (ξ(E), 0) and (0, η(E)) are saddle points and (ξ(E), η(E)) is a stable node.

Proof. The behavior of equilibria results easily from our assumptions, since the
flow (2.1) is the product of two one-dimensional flows.

The ecological interpretation of this lemma is as follows: when two populations
are exploited jointly, with a harvesting effort E ≥ b, then both of them are driven to
extinction. If the harvesting effort is such that a ≤ E < b, then one of the populations
is driven to extinction, whereas the other population continues to support the fishery.
If the harvesting effort is such that E < a, then both populations continue to support
the fishery. The fast dynamics are illustrated in Fig. 2.1.
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Fig. 2.1. The fast dynamics of system (2.1). The equilibrium (0, 0) is attracting for E > b.
The equilibrium (0, η(E)) is attracting for a < E < b. The equilibrium (ξ(E), η(E)) is attracting for
0 < E < a.
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2.2. The slow equation. After a fast transition close to the trajectories of
the fast equation (2.1), the solutions of (1.4) are approximated by those of the slow
equation. A slow equation is defined on each component of the slow manifold. The
slow manifold which is the set of equilibra of the fast equations consists of several
components (see Fig. 2.2, left):
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Fig. 2.2. On the left, the slow manifold of system (1.4): attracting parts of the slow manifold
are indicated by a bold line, non attracting parts of the slow manifold are indicated by a dashed line.
On the right the relative positions of Γ and Π.

i) The E axis which is the set of equilibra (0, 0). This component is attracting
for E > b. On this slow curve, the slow equation is given by

Ė = EP (0, 0), 0 < E < +∞.(2.2)

ii) The curve (x = 0, y = η(E)), 0 < E < b. This component is attracting for
a < E < b. On this slow curve, the slow equation is given by

Ė = EP (0, η(E)), 0 < E < b.(2.3)

iii) The curve (x = ξ(E), y = η(E)), 0 < E < a. This component is attracting.
On this slow curve, the slow equation is given by

Ė = EP (ξ(E), η(E)), 0 < E < a.(2.4)

iv) The curve (x = ξ(E), y = 0), 0 < E < a. This component is not attracting.
On this slow curve, the slow equation is given by

Ė = EP (ξ(E), 0), 0 < E < a.(2.5)

We assume that the solution with prescribed initial conditions is unique for all equa-
tions (2.3), (2.4) and (2.5).

We add the following assumption (see Fig. 2.2, right):
(A3) The subset Π = {(x, y) : P (x, y) = 0} is the graph of a decreasing function.

We have P (x, y) < 0 under Π, P (x, y) > 0 above Π, P (ξ(0), η(0)) > 0 and
P (0, η(a)) < 0.

2.3. Equilibria of the system. By (A3) curves Γ = {(ξ(E), η(E)) : 0 < E <
a} and Π intersect (see Fig. 2.2, right) at a unique point denoted by (x∞, y∞). Let
E∞ be defined by ξ(E∞) = x∞ and η(E∞) = y∞. We have 0 < E∞ < a and

S = (x∞, y∞, E∞)(2.6)
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is an equilibrium point of (1.4). In fact (1.4) has at least three other equilibria,

(0, 0, 0), (0, η(0), 0), (ξ(0), 0, 0),(2.7)

which lie in the invariant xy-plane. In the case where P (0, η(0)) > 0, there exists a
value c ∈]0, a[ such that P (0, η(c)) = 0. Thus

(0, η(c), c)(2.8)

is an equilibrium of (1.4) which lies in the invariant yE-plane. This equilibrium is
unstable in the x-direction. In the case where P (ξ(0), 0) > 0, there exists a value
d ∈]0, a[ such that P (ξ(d), 0) = 0. Thus (1.4) has another equilibrium

(ξ(d), 0, d)(2.9)

which lies in the invariant xE-plane. This equilibrium is unstable in the y-direction.

2.4. Application of Tikhonov’s theory. For all E ∈ [0, a[, the equilibrium
(ξ(E), η(E)) of (2.1) is Globally Asymptotically Stable (GAS) in the positive quadrant
of R

2. Moreover, (2.4) has an asymptotically stable equilibrium point E = E∞.
Hence, Theorem A.7 applies and predicts that in the region 0 ≤ E < a, the solutions
of (1.4) jump quickly near the slow curve (x, y) = (ξ(E), η(E)) and then move near
this slow curve towards the equilibrium point S (see Proposition 4.1).

For all E ∈ [a, b[, the equilibrium (0, η(E)) of (2.1) is GAS in the positive quadrant
of R

2. Hence, Theorem A.6 applies and predicts that in the region a ≤ E < b, the
solutions of (1.4) jump quickly near the slow curve (x, y) = (0, η(E)) and then move
near this slow curve with decreasing E, until E reaches the value E = a at which this
slow curve loses its stability (see Fig. 2.3, left). More precisely, we have the following
result:
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Fig. 2.3. The asymptotic behavior of the solution of (1.4) with initial condition m0 =
(x0, y0, E0) when a < E0 < b (on the left) and E0 > b (on the right). The expected asymptotic
behavior, when E crosses the value a (on the left) or the value b (on the right) is not correct. The
correct behavior, showing the delayed loss of stability, is described in Fig. 3.2, 3.3, 3.4 or 3.5.

Lemma 2.2. Let (x(t, ε), y(t, ε), E(t, ε)) be the solution of (1.4) with initial con-
dition x(0, ε) > 0, y(0, ε) > 0 and E(0, ε) = E0 such that a ≤ E0 < b. Let E1(t) be
the solution of (2.3) with initial condition E1(0) = E0. Let ta > 0 be the instant of
time for which E1(ta) = a. Then, for any δ > 0, we have limε→0E(t, ε) = E1(t), uni-
formly for t ∈ [0, ta − δ] and limε→0 x(t, ε) = 0, limε→0 y(t, ε) = η(E1(t)), uniformly
for t ∈ [δ, ta − δ].

Proof. The solution E1(t) of (2.3) is decreasing towards the value E = a, since
P (0, η(E)) < 0 for all a < E < b (see assumption (A3)). When E crosses this value,
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the slow curve (x, y) = (0, η(E)) becomes unstable. To conclude, we apply Theorem
A.6 because its hypothesis are now satisfied for t ∈ [0, T ] where T = ta − δ.

For all E ≥ b, the equilibrium (0, 0) of (2.1) is GAS in the positive quadrant of
R

2. Hence, Theorem A.6 applies and predicts that in the region E > b, the solutions
of (1.4) jump quickly near the slow curve (x, y) = (0, 0) and then move near this axis
with decreasing E, until E reaches the value E = b at which this slow curve loses its
stability (see Fig. 2.3, right). More precisely, we have the following result:

Lemma 2.3. Let (x(t, ε), y(t, ε), E(t, ε)) be the solution of (1.4) with initial con-
dition x(0, ε) > 0, y(0, ε) > 0 and E(0, ε) = E0 ≥ b. Let E0(t) be the solution of
(2.2) with initial condition E0(0) = E0. Let tb > 0 be the instant of time for which
E0(tb) = b. Then, for any δ > 0, we have limε→0E(t, ε) = E0(t), uniformly for
t ∈ [0, tb − δ] and limε→0 x(t, ε) = 0, limε→0 y(t, ε) = 0, uniformly for t ∈ [δ, tb − δ].

Proof. The solution E0(t) of (2.2) is decreasing towards the value E = b since
P (0, 0) < 0. When E crosses this value, the slow curve (x, y) = (0, 0) becomes
unstable. Thus the hypothesis of Theorem A.6 are satisfied for t ∈ [0, T ] where
T = tb − δ. The result follows from this theorem.

3. Delayed loss of stability. One might believe then, that the solution of (1.4)
with initial condition E(0, ε) = E0 > b described in Lemma 2.3 will move, for t > tb,
near the attracting slow curve (x, y) = (0, η(E)), with decreasing E, until E reaches
the value E = a (see Fig. 2.3, right). Similarly, one might believe then, that the
solution of (1.4) with initial condition E(0, ε) = E0 > b described in Lemma 2.2 will
move, for t > ta, near the attracting slow curve (x, y) = (ξ(E), η(E)), towards the
equilibrium point S (see Fig. 2.3, left).

In fact, due to the delayed loss of stability phenomenon, this behavior is not the
right one and a solution which jumps quickly near the slow curve (x, y) = (0, 0) with
E0 > b, will move near this axis, with decreasing E, until E reaches a value E1 < b
(see Fig. 3.3, 3.4 or 3.5, right). Similarly, a solution which jumps quickly near the
slow curve (x, y) = (0, η(E)), with E0 ∈]a, b[ will move near this slow curve, with
decreasing E, until E reaches a value E1 < a, (see Fig. 3.2, right). Now, we need
to compute E1 with respect to E0. The mapping E0 7→ E1 is called the entrance-exit
function along the slow curve.

3.1. Entrance-exit functions. For c defined as in (2.8) when P (0, η(0)) > 0
and c = 0 when P (0, η(0)) ≤ 0, we have P (0, η(u)) < 0 for all u ∈]c, b], so the function

E ∈]c, b[7→ f(E) ∈ [0,+∞[, f(E) =

∫ E

a

M(0, u)

uP (0, η(u))
du,

is well defined. The function f reaches its minimum at a (see Fig. 3.1, left). It is
decreasing from +∞ to 0 on ]c, a] and increasing on [a, b[.

Definition 3.1. The function E ∈ [a, b[7→ F (E) ∈]c, a], defined by F = f−1
+ ◦f−,

where f− and f+ are the restrictions of f on [a, b[ and ]c, a] respectively, is called the
entrance-exit function along the slow curve (x, y) = (0, η(E)).

Since f(E) = f(F (E)) for all E ∈ [a, b[ we have

∫ F (E)

E

M(0, u)

uP (0, η(u))
du = 0.(3.1)

Now to define the entrance-exit function near the slow curve (x, y) = (0, 0), let g
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the function

E ∈]0,+∞[7→ g(E) ∈ [0,+∞[, g(E) =

∫ E

b

N(0, u)

uP (0, 0)
du,

that has a minimum at b (see Fig. 3.1, right). This function is decreasing from +∞ to
0 on ]0, b] and increasing on [b,+∞[. It defines a mapping E ∈ [b,∞[7→ G(E) ∈]0, b],
by G = g−1

+ ◦ g−, where g− and g+ are the restrictions of g on [b,+∞[ and ]0, b]
respectively. Let h the function defined by

E ∈]0,+∞[7→ f(E) ∈ [0,+∞[, h(E) =

∫ E

a

M(0, u)

uP (0, 0)
du.

This function has a minimum at a (see Fig. 3.1, right). It is decreasing from +∞ to
0 on ]0, a] and increasing on [a,+∞[. It defines a mapping E ∈ [a,∞[7→ H(E) ∈]0, a],
by H = h−1

+ ◦ h−, where h− and h+ are the restrictions of h on [a,+∞[ and ]0, a]
respectively. Let a∗ = G−1(a). If E ∈ [b, a∗] then (see Fig. 3.1, right) H(E) < a ≤
G(E). If E > a∗ then, we either have H(E) < G(E) or H(E) > G(E). However, in
(1.2), the property H(E) < G(E) is true for all E > a∗ (see Lemma 5.2).

bac EF (E)

z

z = f(E)

ba a∗EG(E)H(E)0

z

z = h(E)

z = g(E)

Fig. 3.1. On the left: the function f defining the entrance-exit function E 7→ F (E) along the
slow curve (x, y) = (0, η(E)). On the right: the functions g (in red) and h (in blue) defining the
mappings E 7→ G(E) and E 7→ H(E) respectively.

Definition 3.2. The function E ∈ [b,∞[7→ K(E) = max(G(E),H(E)) ∈]0, b] is
called the entrance-exit function along the slow curve (x, y) = (0, 0).

If E ∈ [b, a∗] or E > a∗ and H(E) < G(E) then K(E) = G(E) and

∫ G(E)

E

N(0, u)

uP (0, 0)
du = 0.(3.2)

If E > a∗ and H(E) > G(E) then K(E) = H(E) and

∫ H(E)

E

M(0, u)

uP (0, 0)
du = 0.(3.3)

3.2. Behavior in the vicinity of the slow curve (0, η(E)). Let (x0, y0, E0) be
an initial condition such that a < E0 < b. By Lemma 2.2, the corresponding trajectory
of (1.4) will move quickly towards the equilibrium (0, η(E)) and then remains close
to this equilibrium with E decreasing and until E reaches the value a where the
equilibrium (0, η(E)) loses its stability. The departure of the trajectory from the
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neighborhood of the equilibrium takes place not immediately after a but rather after
a time during which the effort E changes by a finite amount. There is a delayed loss
of stability. More precisely, let x0 < 1 positive and not too big. We consider the
trajectory γ(t, ε) of (1.4) that starts at (x0, y0, E0) with a < E0 < b. If ε is small
enough, according to Lemma 2.2, the trajectory remains between the planes x = x0

and x = 0 and goes towards the equilibrium (0, η(E)) while E is decreasing as far as
E > a. Denote now, the next intersection of this trajectory and the plane x = x0

by (x0, y(t1, ε), E(t1, ε)) where t1 = t1(x0, y0, E0, ε) depends on the initial condition
(x0, y0, E0) and on ε. The limit

E1 = lim
ε→0

E(t1(x0, y0, E0, ε), ε)(3.4)

exists and depends only on E0. This limit, as well as, a precise behavior of the
trajectory are given by the following theorem:

Theorem 3.3. Let E0 ∈]a, b[. Then, we have E1 = F (E0) and for small ε > 0,
the trajectory leaves the neighborhood of point (0, η(E1), E1) and jumps to the neigh-
borhood of point (ξ(E1), η(E1), E1) close to the unstable separatrix y = η(E1) of the
saddle point (0, η(E1)) of the fast dynamics (see Fig. 3.2).

X

0 E
E0E1 a

X=α(E)

x

y

E
a

b

m0

S

E0

E1

Fig. 3.2. On the right: the asymptotic behavior of the solution of (1.4) with initial condition
m0 = (x0, y0, E0), when a < E0 < b, showing the delayed loss of stability when E crosses the value
a. On the left: the asymptotic behavior in the coordinates (X, E) of (3.5). The function α is defined
by (3.8).

Proof. The change of variable X = ε lnx maps the strip 0 < x < 1 into the half
space X < 0. This change of variable transforms (1.4) into

Ẋ = M(exp (X/ε), E),
εẏ = yN(y,E)

Ė = EP (exp (X/ε), y)

(3.5)

The initial condition becomes (ε lnx0, y0, E0). System (3.5) is a slow and fast system,
similar to (A.2) of Section A.4, with u = (X,E) as the slow variable and v = y as the
fast variable. For this system, the fast equation (A.4) is written as

y′ = yN(y,E)(3.6)

The equilibrium y = η(E) of (3.6) is attracting for allE ∈ [0, b[. We have limε→0 expX/ε =
0 since X < 0. Thus, on the slow surface y = η(E), the slow equation is

Ẋ = M(0, E), Ė = EP (0, η(E)).(3.7)
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According to Theorem A.6, y goes very quickly towards the stable equilibrium y =
η(E). Then a slow transition develops near the surface y = η(E). This slow transition
is approximated by the solution of (3.7) with initial condition X(0) = 0, E(0) = E0.
This solution is given by E = E(t) and

X = α(E) :=

∫ E

E0

M(0, u)

uP (0, η(u))
du,(3.8)

where E(t) is the solution of (2.3) such that E(0) = E0. Thus, according to (3.1),
we have again (see Fig. 3.2, left) X = 0 for E1 = F (E0). Returning to the original
variables, we see that the trajectory γ(t, ε) crosses again the plane x = x0 when E
is asymptotically equal to E1 = F (E0). Then (see Fig. 3.2, right), a fast transition
brings the trajectory from the neighborhood of point (0, η(E1), E1) to the neighbor-
hood of point (ξ(E1), η(E1), E1) close to the unstable separatrix y = η(E1) of the
saddle point (0, η(E1)) of the fast dynamics.

3.3. Behavior in the vicinity of the slow curve (0, 0). By analogy to the
previous section, let (x0, y0, E0) be an initial condition such that E0 > b. By Lemma
2.3, the corresponding trajectory of system (1.4) will go quickly towards the origin
(x, y) = (0, 0) and then remains close to this equilibrium while E is decreasing and
until E reaches the value b where the origin loses its stability. The departure of the
trajectory from the neighborhood of the equilibrium takes place not immediately after
b. There is a delayed loss of stability and the trajectory will leave the neighborhood of
the equilibrium (0, 0) when E is asymptotically equal to a value E1. More precisely,
we have the following result:

Proposition 3.4. For small ε > 0, the solution remains near the slow curve
(x, y) = (0, 0) as long as E1 < E < E0 where E1 = K(E0).
a) If E0 ∈ [b, a∗] then, the solution leaves the neighborhood of point (0, 0, E1) and
jumps to the neighborhood of point (0, η(E1), E1) close to the separatrix x = 0 of the
saddle point (0, 0) of the fast dynamics (see Fig. 3.3).
b) If E0 > a∗ and H(E0) < G(E0) then, the solution leaves the neighborhood of point
(0, 0, E1) and jumps to the neighborhood of point (0, η(E1), E1) close to the orbit x = 0
of the unstable node (0, 0) of the fast dynamics (see Fig. 3.4).
c) If E0 > a∗ and H(E0) > G(E0) then, the solution leaves the neighborhood of point
(0, 0, E1) and jumps to the neighborhood of point (ξ(E1), 0, E1) close to the orbit y = 0
of the unstable node (0, 0) of the fast dynamics (see Fig. 3.5).

Proof. Let x0 < 1 and y0 < 1 be positive and not too big. By Lemma 2.3, for
small ε > 0 the solution remains between the planes x = x0, y = y0, x = 0 and y = 0.
The change of variables X = ε lnx, Y = ε ln y maps the open set 0 < x < 1, 0 < y < 1
into the octant X < 0, Y < 0. This change of variables transforms (1.4) into

Ẋ = M(exp (X/ε), E),

Ẏ = N(exp (Y/ε), E),

Ė = EP (exp (X/ε), exp (Y/ε)).

(3.9)

The initial condition (x0, y0, E0) becomes (ε lnx0, ε ln y0, E0). SinceX < 0 and Y < 0,
(3.9) is a regular perturbation of

Ẋ = M(0, E), Ẏ = N(0, E), Ė = EP (0, 0).(3.10)

The solution of (3.10) with initial condition X(0) = 0, Y (0) = 0, E(0) = E0 is

X = β(E) :=

∫ E

E0

M(0, u)

uP (0, 0)
du, Y = γ(E) :=

∫ E

E0

N(0, u)

uP (0, 0)
du,(3.11)
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where E = E(t) := E0e
P (0,0)t is the solution of (2.2) such that E(0) = E0. Let E1 =

K(E0) and t1 = 1
P (0,0) ln E1

E0

(t1 satisfies E(t1) = E1). Hence E(t1, ε) = E1 + o(1).

When E is asymptotically equal to E1, i.e. when t is asymptotically equal to t1, the
solution jumps far from the neighborhood of the E-axis as shown below.

X,Y

X1

0 E
E0

E1 =G(E0)

?E2

H(E0)

?a b

Y =γ(E)
@@I

X=β(E)

X=δ(E) -

x

y

E
a

b

m0

S

E0

E1

E2 a∗

Fig. 3.3. On the right: the asymptotic behavior of the solution of (1.4) with initial condition
m0 = (x0, y0, E0), when b < E0 < a∗, showing the delayed loss of stability when E crosses values b

and a. On the left: the asymptotic behavior in the coordinates (X, Y, E) of (3.9). The functions β

(in blue), γ (in red) and δ (in green) are defined by (3.11) and (3.15) respectively.

Cases a and b) If E0 ∈ [b, a∗] (see Fig. 3.3, left), or E0 > a∗ and H(E0) < G(E0)
(see Fig. 3.4, left), then E1 = G(E0). Thus, according to (3.2) and h(G(E0)) <
h(E0), we have

X1 =

∫ E1

E0

M(0, u)

uP (0, 0)
du < 0, Y1 =

∫ E1

E0

N(0, u)

uP (0, 0)
du = 0.(3.12)

Since X(t1, ε) = X1 + o(1) and Y (t1, ε) = o(1), the solution reaches again the plane
y = y0 asymptotically at time t1, and x(t1, ε) = exp((X1 + o(1))/ε) is exponentially
small. Thus, asymptotically at time t1, the solution jumps (see Fig. 3.3 or 3.4, right)
from the neighborhood of point (0, 0, E1) to the neighborhood of point (0, η(E1), E1)
close to the orbit x = 0 of equilibrium point (0, 0) of the fast dynamics. According to
Lemma 2.1, this equilibrium is a saddle point if E0 ∈ [b, a∗]. It is an unstable node if
E0 > a∗.

Case c) If E0 > a∗ and H(E0) > G(E0) (see Fig. 3.5, left) then E1 = H(E0).
Thus, according to (3.3) and g(H(E0)) < g(E0), we have

X1 =

∫ E1

E0

M(0, u)

uP (0, 0)
du = 0, Y1 =

∫ E1

E0

N(0, u)

uP (0, 0)
du < 0.(3.13)

Since X(t1, ε) = o(1) and Y (t1, ε) = Y1 + o(1), the solution reaches again the plane
x = x0 asymptotically at value E1 and y(t1, ε) = exp((Y1 + o(1))/ε) is exponentially
small. Thus, asymptotically at time t1, the solution jumps (see Fig. 3.5, right) from
the neighborhood of point (0, 0, E1) to the neighborhood of point (ξ(E1), 0, E1) close
to the orbit y = 0 of the unstable node (0, 0) of the fast dynamics.

As stated in Proposition 3.4, the jump of the solution, far from the slow curve
(0, 0), happens when E is asymptotically equal to E1 = K(E1). After this jump, the
asymptotic behavior of the solution is given by Theorems 3.5 and 3.6 below.

Theorem 3.5. Let E0 ∈ [b, a∗]. For small ǫ > 0, the solution remains near
the slow curve (x, y) = (0, η(E)) as long as E2 < E < E1 where E1 = G(E0) and
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E2 ∈]c, a] is given by

∫ E1

E0

M(0, E)

EP (0, 0)
dE +

∫ E2

E1

M(0, E)

EP (0, η(E))
dE = 0.(3.14)

Afterwards, it jumps from the neighborhood of point (0, η(E2), E2) to the neighborhood
of point (ξ(E2), η(E2), E2) close to the unstable separatrix y = η(E2) of the saddle
point (0, η(E2)) of the fast dynamics (see Fig. 3.3).
This result is also true in the case where E0 > a∗, H(E0) < G(E0) and P (0, η(0)) < 0
(see Fig. 3.4). In this case E2 ∈]0, E1[.

X,Y

X1

0 E
E0

E1 =G(E0)

?E2

H(E0)

? a b

Y =γ(E)

X=β(E)

X=δ(E) -

x

y

E
a

b

m0

S

E0E1

6E2
a∗

Fig. 3.4. On the right: the asymptotic behavior of the solution of (1.4) with initial condition
m0 = (x0, y0, E0), when E0 > a∗ and H(E0) < G(E0), showing the delayed loss of stability when E

crosses values b and a. On the left: the asymptotic behavior in the coordinates (X, Y, E) of (3.9).
The functions β (in blue), γ (in red) and δ (in green) are defined by (3.11) and (3.15) respectively.

Proof. The asymptotic behavior of the solution for t ∈ [0, t1] is described in cases
(a) and (b) of Proposition 3.4. For t > t1 we use, the same change of variable as
in the proof of Theorem 3.3, X = ε lnx which maps the strip 0 < x < 1 into the
half space X < 0. This change of variable transforms (1.4) into (3.5) with conditions
X(t1, ε) = X1 + o(1), Y (t1, ε) > 0, and E(t1, ε) = E1 + o(1), where X1 is defined by
(3.12). According to Theorem A.6, y goes very quickly towards the stable equilibrium
y = η(E). Then, a slow transition develops near the surface y = η(E). This slow
transition is approximated by the solution of (3.7) with initial condition X(t1) = X1,
E(t1) = E1. This solution is given by

X = δ(E) := X1 +

∫ E

E1

M(0, u)

uP (0, η(u))
du,(3.15)

where E = E(t) is the solution of (2.3) such that E(t1) = E1. In case E0 ∈ [b, a∗], the
integral in (3.15) is well defined because E1 ∈ [a, b] and P (0, η(u)) < 0 for all u ∈]c, b].
Thus, E2 defined by (3.14) satisfies E2 ∈]c, a[ (see Fig. 3.3, left). We have again
X = 0 at value E2. Returning to the original variables, we notice that the trajectory
γ(t, ε) crosses again the plane x = x0 when E is asymptotically equal to E2. Then
(see Fig. 3.3, right), a fast transition brings the trajectory from the neighborhood
of point (0, η(E2), E2) to the neighborhood of point (ξ(E2), η(E2), E2), close to the
unstable separatrix y = η(E2) of the saddle point (0, η(E2)) of the fast dynamics.
In the case where E0 > a∗, H(E0) < G(E0) and P (0, η(0)) < 0 the proof is the same
as in case E0 ∈ [b, a∗], adapted to Fig. 3.4. Now E1 ∈]0, a[ and c = 0. The integral
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in (3.15) is well defined since P (0, η(u)) < 0 for all u ∈ [0, a]. Hence E2, given by
(3.14), satisfies E2 ∈]0, E1[ (see Fig. 3.4, left).

Note that the mapping E1 → E2 given by formula (3.14) is not equal to the
entrance-exit function E1 7→ F (E1) of the slow curve (x, y) = (0, η(E)) as it was the
case in Theorem 3.3. Indeed, in Theorem 3.5, the solution is exponentially close to
the plane x = 0 before it arrives near the slow curve (x, y) = (0, η(E)). Recall that in
Theorem 3.3 the solution arrived from a point (x0, y0, E0) which was not very close
to the plane x = 0.

Theorem 3.6. Let E0 > a∗. If H(E0) > G(E0) and P (ξ(0), 0) < 0 then for
small ε > 0, the solution remains near the slow curve (x, y) = (ξ(E), 0) as long as
E2 < E < E1 where E1 = H(E0) and E2 ∈]0, E1[ is given by

∫ E1

E0

N(0, E)

EP (0, 0)
dE +

∫ E2

E1

M(0, E)

EP (ξ(E), 0)
dE = 0.(3.16)

Afterwards, it jumps from the neighborhood of point (ξ(E2), 0, E2) to the neighborhood
of point (ξ(E2), η(E2), E2) close to the unstable separatrix x = ξ(E2) of the saddle
point (ξ(E2), 0) of the fast dynamics (see Fig. 3.5).
If H(E0) = G(E0), P (0, η(0)) < 0 and P (ξ(0), 0) < 0 then for small ε > 0, the
solution jumps from the neighborhood of point (0, 0, E1), where E1 = H(E0), to the
neighborhood of point (ξ(E1), η(E1), E1) close to one of the trajectories of the fast
dynamics connecting the unstable node (0, 0) to the stable node (ξ(E2), η(E2)) (see
Fig. 2.1, left).

X,Y

Y1

0 E
E0

E1 =H(E0)

��	
E2

?

G(E0)

�
��� a b

Y =γ(E)

X=β(E)Y =̺(E) -

x

y

E
a

b

m0

S

E0E1

6

E2

a∗

Fig. 3.5. On the right: the asymptotic behavior of the solution of (1.4) with initial condition
m0 = (x0, y0, E0), in the case where E0 > a∗ and H(E0) > G(E0), showing the delayed loss of
stability when E crosses values b and a. On the left: the asymptotic behavior in the coordinates
(X, Y, E) of (3.9). The functions β (in blue), γ (in red) and ρ (in green) are defined by (3.11) and
(3.20) respectively.

Proof. The asymptotic behavior of the solution for t ∈ [0, t1] is described in case
(c) of Proposition 3.4. For t > t1 we use the change of variable Y = ε lnx which maps
the strip 0 < y < 1 into the half space Y < 0. This change of variable transforms
(1.4) into

εẋ = xM(x,E),

Ẏ = N(exp (Y/ε), E),

Ė = EP (x, exp (Y/ε))

(3.17)

with conditions X(t1, ε) > 0, Y (t1, ε) = Y1 + o(1), and E(t1, ε) = E1 + o(1), where Y1

is defined by (3.13). System (3.17) is a slow and fast system as (A.2) of Section A.4,
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with u = (Y,E) as the slow variable and v = x as the fast variable. For this system,
the fast equation (A.4) is written as

x′ = xM(x,E)(3.18)

The equilibrium x = ξ(E) of (3.6) is attracting for allE ∈ [0, a[. We have limε→0 expY/ε =
0 since Y < 0. And on the slow surface x = ξ(E), the slow equation is

Ẏ = N(0, E), Ė = EP (ξ(E), 0).(3.19)

According to Theorem A.6, x goes very quickly towards the stable equilibrium x =
ξ(E). Then a slow transition develops near the surface x = ξ(E). This slow transition
is approximated by the solution of (3.19) with initial condition Y (t1) = Y1, E(t1) =
E1. This solution is given by

Y = ̺(E) = Y1 +

∫ E

E1

N(0, u)

uP (ξ(u), 0)
du,(3.20)

where E = E(t) is the solution of (2.5) such that E(t1) = E1. The integral in (3.20)
is well defined because E1 ∈]0, a[ and P (ξ(u), 0) < 0 for all u ∈]0, a]. Thus, E2 given
by (3.16) satisfies E2 ∈]0, E1[ (see Fig. 3.3, left). We have again Y = 0 at value E2.
Returning to the original variables, we see that the trajectory γ(t, ε) crosses again the
plane y = y0 when E is asymptotically equal to E2. Then (see Fig. 3.5, right), a fast
transition brings the trajectory from the neighborhood of point (ξ(E2), 0, E2) to the
neighborhood of point (ξ(E2), η(E2), E2), close to the unstable separatrix x = ξ(E2)
of the saddle point (ξ(E2), 0) of the fast dynamics.
In the case where H(E0) = G(E0), E2 = E1 in (3.16). The fast transition from
(0, 0, E1) to (ξ(E1), η(E1), E1) would hold close to one of the orbits of the fast dy-
namics. We exclude equilibrium points on (ξ(E), 0, E) and on (0, η(E), E) since
P (0, η(0)) < 0 and P (ξ(0), 0) < 0. Thus, the trajectory does not stay near these
slow curves and the jump happens when E is asymptotically equal to E1.

In the case where H(E0) = G(E0), our analysis does not predict the orbit along
which the fast transition from (0, 0, E1) to (ξ(E1), η(E1), E1) would hold. By con-
tinuous dependance, when E(0, ε) crosses a value E0 such that H(E0) = G(E0), all
orbits of the fast dynamics arise as transition orbits, since the transition holds close to
x = 0 when H(E0) < G(E0), and close to y = 0 when H(E0) < G(E0). The geometric
singular perturbation theory (see remark following Theorem A.8) could provide tools
to address this question. However, in (1.2), the case H(E0) = G(E0) does not appear
(see Lemma 5.2).

Remark. In the case where P (0, η(0)) > 0, (2.8) is an equilibrium of (1.4). Let
c∗ > b be defined by g(c∗) = g(c). Assume that H(c∗) < G(c∗). Then, according
to Theorem 3.4, the solution of (1.4) with initial condition x(0, ε) > 0, y(0, ε) > 0,
E(0, ε) = c∗ will jump quickly near the slow curve (x, y) = (0, 0) and remains close
to this curve, as long as c < E < c∗. Then, the solution will jump quickly from
the neighborhood of (0, 0, c) to the neighborhood of the equilibrium (0, η(c), c), so
it could stay near this equilibrium for a long time. On the other hand, in the case
where P (ξ(0), 0) > 0, (2.9) is an equilibrium of (1.4). Let d∗ > b be defined by
h(d∗) = h(d). Assume that H(d∗) > G(d∗). Then, according to Proposition 3.4,
the solution of (1.4) with initial condition x(0, ε) > 0, y(0, ε) > 0, E(0, ε) = d∗ will
jump quickly near the slow curve (x, y) = (0, 0) and remains close to this curve, as
long as d < E < d∗. Then, the solution will jump quickly from the neighborhood of
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(0, 0, d) to the neighborhood of the equilibrium (ξ(d), 0, d), so it could remain near
this equilibrium for a long time. To achieve a full description of the solution, as in
Theorem 3.5 or 3.6, we must exclude the existence of equilibrium (2.8) or (2.9).

4. Persistence. In this section γ(t, ǫ) = (x(t, ε), y(t, ε), E(t, ε)) is the solution
of (1.4) with initial condition x(0, ε) > 0, y(0, ε) > 0 and E(0, ε) = E0 > 0. Our aim
is to show that the limit (1.5) is uniform with respect to the initial condition in any
compact subset of the positive octant.

4.1. Asymptotic behavior for all t ≥ 0. We begin with the asymptotic be-
havior of the solutions when E0 < a.

Proposition 4.1. Let E0 ∈]0, a[. Let E(t) be the solution of (2.4) with ini-
tial condition E(0) = E0. Let x(t) = ξ(E(t)) and y(t) = η(E(t)). Then for any
δ > 0, we have limε→0(x(t, ε), y(t, ε)) = (x(t), y(t)), uniformly for t ∈ [δ,+∞[ and
limε→0E(t, ε) = E(t), uniformly for t ∈ [0,+∞[.

Proof. For all E ∈ [0, a] , the solution (ξ(E), η(E)) of (2.1) is GAS. Moreover, by
assumption (A3), the solutions of (2.4) are converging towards E = E∞, which is an
asymptotically stable equilibrium. The result follows from Theorem A.7.

Assume now that E0 ∈ [a, b]. From Theorem 3.3, we see that the solution γ(t, ε)
reaches the neighborhood of point (ξ(E1), η(E1), E1). Then, as shown in Proposition
4.1, it is approximated by a solution of (2.4). More precisely, we have the following
result which completes, for t > ta, the one given by Lemma 2.2.

Proposition 4.2. let E0 ∈ [a, b]. Let E1(t) be the solution of (2.3) with initial
condition E1(0) = E0. Let E1 = F (E0). Let t1 > 0 be the instant of time for which
E(t1) = E1. Let E2(t) be the solution of (2.4) with initial condition E2(t1) = E1. Let

E(t) =

{

E1(t) for t ∈ [0, t1],
E2(t) for t ∈ [t1,+∞[,

(4.1)

and

x(t) =

{

0 for t ∈]0, t1[,
ξ(E2(t)) for t ∈]t1,+∞[

y(t) = η(E(t)) for t ∈]0,+∞[.

Then, for any δ > 0 we have limε→0(x(t, ε), y(t, ε)) = (x(t), y(t)), uniformly for
t ∈ [δ, t1 − δ] ∪ [t1 + δ,+∞[ and limε→0E(t, ε) = E(t), uniformly for t ∈ [0,+∞[.

Proof. The limit behavior of the solution for 0 ≤ t < t1 is given by Lemma 2.2
and Theorem 3.3 and by Proposition 4.1 for t > t1 (see Fig 3.2).

Assume that E0 > b. From Theorems 3.5 and 3.6 we see that the solution γ(t, ε)
reaches the neighborhood of point (ξ(E2), η(E2), E2). Then , as shown in Proposition
4.1, it is approximated by a solution of (2.4). In the next propositions, we set three
results, in the case where H(E0) < G(E0), in the case where H(E0) > G(E0) and in
the exceptional case where H(E0) = G(E0). These results complete, for t > tb, the
one given in Lemma 2.3.

Proposition 4.3. Let E0 > b. We assume that P (0, η(0)) < 0 and H(E0) <
G(E0). Let E0(t) be the solution of (2.2) with initial condition E0(0) = E0. Let
E1 = G(E0). Let t1 > 0 be the instant of time for which E0(t1) = E1. Let E1(t) be
the solution of (2.3) with initial condition E1(0) = E0. Let E2 be defined by (3.14)
and t2 > t1 be the instant of time for which E1(t2) = E2. Let E2(t) be the solution
of (2.4) with initial condition E2(t2) = E2. Let

E(t) =







E0(t) for t ∈ [0, t1],
E1(t) for t ∈ [t1, t2],
E2(t) for t ∈ [t2,+∞[,

(4.2)



SLOW AND FAST ECOLOGICAL MODELS 15

and

x(t) =

{

0 for t ∈]0, t2[,
ξ(E(t)) for t ∈]t2,+∞[,

y(t) =

{

0 for t ∈]0, t1[,
η(E(t)) for t ∈]t1,+∞[,

Then, for any δ > 0 we have limε→0(x(t, ε), y(t, ε)) = (x(t), y(t)), uniformly for
t ∈ [δ, t1 − δ] ∪ [t1 + δ, t2 − δ] ∪ [t2 + δ,+∞[ and limε→0E(t, ε) = E(t), uniformly for
t ∈ [0,+∞[.

Proof. The limit behavior of the solution for 0 ≤ t < t2 is given by Lemma 2.3 and
Theorem 3.5. The limit behavior of the solution for t2 ≤ t is given in Proposition 4.1
(see Fig. 3.3 or 3.4).

Proposition 4.4. Let E0 > a∗. We assume that P (ξ(0), 0) < 0 and H(E0) >
G(E0). Let E0(t) be the solution of (2.2) with initial condition E0(0) = E0. Let
E1 = H(E0). Let t1 > 0 be the instant of time for which E0(t1) = E1. Let E1(t) be
the solution of (2.5) with initial condition E1(0) = E0. Let E2 be defined by (3.16)
and t2 > t1 be the instant of time for which E1(t2) = E2. Let E2(t) be the solution
of (2.4) with initial condition E2(t2) = E2. Let E(t) be defined by (4.2). Let

x(t) =

{

0 for t ∈]0, t1[,
ξ(E(t)) for t ∈]t1,+∞[,

y(t) =

{

0 for t ∈]0, t2[,
η(E(t)) for t ∈]t2,+∞[,

Then, for any δ > 0 we have limε→0(x(t, ε), y(t, ε)) = (x(t), y(t)), uniformly for
t ∈ [δ, t1 − δ] ∪ [t1 + δ, t2 − δ] ∪ [t2 + δ,+∞[ and limε→0E(t, ε) = E(t), uniformly for
t ∈ [0,+∞[.

Proof. The limit behavior of the solution for 0 ≤ t < t2 is given by Lemma 2.3 and
Theorem 3.6. The limit behavior of the solution for t2 ≤ t is given in Proposition 4.1
(see Fig. 3.5).

Proposition 4.5. Let E0 > a∗. We assume that P (ξ(0), 0) < 0, P (0, η(0)) < 0
and H(E0) = G(E0). Let E1(t) be the solution of (2.2) with initial condition E1(0) =
E0. Let E1 = H(E0). Let t1 > 0 be the instant of time for which E(t1) = E1. Let
E2(t) be the solution of (2.4) with initial condition E2(t1) = E1. Let E(t) be defined
by (4.1). and

x(t) =

{

0 for t ∈]0, t1[,
ξ(E(t)) for t ∈]t1,+∞[,

y(t) =

{

0 for t ∈]0, t1[,
η(E(t)) for t ∈]t1,+∞[,

Then, for any δ > 0 we have limε→0(x(t, ε), y(t, ε)) = (x(t), y(t)), uniformly for
t ∈ [δ, t1 − δ] ∪ [t1 + δ,+∞[ and limε→0E(t, ε) = E(t), uniformly for t ∈ [0,+∞[.

Proof. The limit behavior of the solution for 0 ≤ t < t1 is given by Lemma 2.2
and Theorem 3.6 and by Proposition 4.1 for t > t1.

4.2. Stability results. We make the following assumption:
(A4) We have P (0, η(0)) < 0 and P (ξ(0), 0) < 0.
For example, this last assumption is satisfied in Fig. 2.2, right. It guarantees that
the conclusions of Propositions 4.3, 4.4 and 4.5 hold. Thus, as a consequence of the
results given in Section 4.1, after some fast and slow transitions, every trajectory of
(1.4) arrives near the slow curve (x, y) = (ξ(E), η(E)) and approaches the equilibrium
S as t→ ∞ and ε→ 0. More precisely, we prove the following result:

Theorem 4.6. Let assumptions (A1) to (A4) be satisfied. Then the equilibrium
S is practically semi-globally asymptotically stable in the positive octant, as ε→ 0, i.e.
for any solution γ(t, ε) = (x(t, ε), y(t, ε), E(t, ε)) of (1.4) we have lim

t→+∞,ε→0
γ(t, ε) =



16 H. BOUDJELLABA AND T. SARI

S, the limit being uniform with respect to the initial condition in any compact subset
of the positive octant.

Proof. Let t 7→ e(t, E0) = E(t) where E(t) is the function defined by Proposition
4.1 when E0 < a, by Proposition 4.2 when a < E0 < b and by Proposition 4.3, 4.4 or
4.5 when E0 > b respectively. For all E0 > 0, we have limt→∞ e(t, E0) = E∞. Let r >
0 and let T (E0) = inf{t > 0 : |e(t, E0) − E∞| ≤ r/2}. Let K be a compact subset of
the positive octant and let (x0, y0, E0) ∈ K. Let T = max{T (E0) : (x0, y0, E0) ∈ K}.
There exists ε0 > 0 such that for all t > T and all ε ∈]0, ε0], we have ‖γ(t, ε)−S‖ ≤ r.
Thus S is PSGAS as ε→ 0.

In order to reach an asymptotic stability instead of a practical asymptotic stability
we need the supplementary assumption:
(A5) The functions M , N and P are of class C1 and satisfy ∂M

∂x
(ξ(E), E) < 0, for all

0 < E < a and ∂N
∂y

(η(E), E) < 0, for all 0 < E < b. We also have

∂P

∂x
(x∞, y∞)ξ′(E∞) +

∂P

∂y
(x∞, y∞)η′(E∞) < 0.

Theorem 4.7. Let assumptions (A1) to (A5) be satisfied. Then the equilibrium
S is semi-globally asymptotically stable in the positive octant, as ε → 0, that is, it is
asymptotically stable and for any compact subset K of the positive octant there exists
ε0 such that, for all ε < ε0, K is in the basin of attraction of S.

Proof. From assumption (A5), the equilibrium (ξ(E), η(E)) is uniformly expo-
nentially stable for a < E < b. On the other hand, we have

∂p

∂E
(E∞) = E∞

(

∂P

∂x
(x∞, y∞)ξ′(E∞) +

∂P

∂y
(x∞, y∞)η′(E∞)

)

< 0,

where p(E) = EP (ξ(E), η(E)). Hence the equilibrium E = E∞ of the slow equation
(2.4) is exponentially stable. Thus, Theorem A.8 applies and there exists ε0 > 0 such
that for all 0 < ε < ε0, the equilibrium S is exponentially stable for system (1.4).
Using Theorem 4.6, we see that the attractivity is semi global. Hence S is SGAS as
ε→ 0.

Instead of Assumption (A4), we make now the following assumption:
(A4’) We have P (0, η(0)) < 0 and for all E > a∗, H(E) < G(E).
Under this assumption, we always have H(E0)) < G(E0) and the asymptotic behavior
of all solutions for which E0 > a∗ is described by Proposition 4.3. We do not need the
condition P (ξ(0), 0) < 0, as it is the case in Fig. 5.1, right. So we have the following
result:

Theorem 4.8. The conclusions of Theorems 4.6 and 4.7 hold if assumption
(A4) is replaced by assumption (A4’).

4.3. Remarks. In this section, we give some comments on the assumptions (A4)
and (A4’). In Section 2.3 we have seen that (1.4) has at least four equilibria (2.6)
and (2.7). The equilibria (2.7) lie in the invariant xy-plane. From the description
of the solutions in Section 4.1, we see that there are no solution of (1.4) with initial
condition x0 > 0, y0 > 0 and E0 > 0 that can approach the equilibria (2.7) as ε→ 0.

Let us examine what may happen if condition P (0, η(0)) < 0 of Assumption
(A4’) is relaxed. In the case where P (0, η(0)) > 0, (2.8) is an equilibrium of (1.4).
Even if this equilibrium is unstable in the x-direction, there are solutions of (1.4) with
initial condition x0 > 0, y0 > 0 and E0 > 0 that can approach the equilibrium (2.8),
as ε → 0 (see remark following Theorem 3.6). Such solutions will stay for a very
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long time near the equilibrium (0, η(c), c), before leaving its neighborhood, close to its
unstable separatrix and jumping to the neighborhood of (ξ(c), η(c), c) and then going
towards the equilibrium S. Hence, it can stay for a long time near the equilibrium
(2.8). In this case, the equilibrium S is not PSGAS because the limit given in Theorem
4.6 could be non uniform with respect to the initial conditions.

It is not very easy to verify that condition H(E) < G(E) of assumption (A4’) is
satisfied, since functions H and G are not so easy to compute. This assumption was
made to guarantee that a solution of (1.4) with initial condition x0 > 0, y0 > 0 and
E0 > a∗ will leave the neighborhood of point (0, 0, E1) and jumps to the neighborhood
of point (0, η(E1), E1) close to the orbit x = 0 of the unstable node (0, 0).

Now, this is what may happen if condition P (ξ(0), 0) < 0 of Assumption (A4)
is relaxed. If P (ξ(0), 0) > 0, then (2.9) is an equilibrium point of (1.4). Even if
this equilibrium is unstable in the y-direction, there are solutions of (1.4) with initial
condition x0 > 0, y0 > 0 and E0 > 0 that can approach the equilibrium (2.9), as
ε → 0. Such solutions will stay for a very long time near the equilibrium (ξ(d), 0, d),
before leaving its neighborhood, close to its unstable separatrix and junping to the
neighborhood of (ξ(d), η(d), d) and then going towards the equilibrium S. Then the
solution can stay for a long time near the equilibrium (2.9). In this case again, the
equilibrium S is not PSGAS because the limit given in Theorem 4.6 could be non
uniform with respect to the initial conditions.

5. Applications to Clarks’s model. Assume that all parameters of (1.2) are
positive. We have

ξ(E) = K
(

1 −
q1
r
E

)

, η(E) = L
(

1 −
q2
s
E

)

, a =
r

q1
, b =

s

q2
.

The slow manifold is represented in Fig. 5.1.

x

y

E
a

b

y = η(E)

x = ξ(E)

E∞

S

x∞

y∞

x
ξ(0)x∞

y∞
η(a)

η(0)

y

Γ

Π

0

Fig. 5.1. On the left: the slow manifold of system (1.2). Attracting parts of the slow manifold
are indicated by a bold line, non attracting parts of the slow curve are indicated by a dashed line. On
the right: the relative positions of Γ and Π. For the set of parameters (5.3) we have P (ξ(0), 0) > 0.

5.1. Stability results. Assumptions (A1) and (A2) hold if and only if

sq1 > rq2.(5.1)

On the other hand, we have P (x, y) = p1q1x + p2q2y − c, so assumption (A3) holds
if and only if (see Fig. 5.1, right)

sq1 − rq2
sq1

p2q2L < c < p1q1K + p2q2L.
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The equilibrium S = (x∞, y∞, E∞) is given by E∞ = (p1q1K + p2q2L− c) rs
∆ ,

x∞ = (sq1c− (sq1 − rq2)p2q2L)
K

∆
and y∞ = (rq2c+ (sq1 − rq2)p1q1K)

L

∆
,

where ∆ = sp1q
2
1K + rp2q

2
2L. Also, Assumption (A4) holds if and only if

p2q2L < c and p1q1K < c.(5.2)

By straightforward calculations, we can show that assumption (A5) also holds. As a
corollary of Theorem 4.7, we deduce the following result:

Theorem 5.1. Assume that max(p1q1K, p2q2L) < c < p1q1K + p2q2L and
sq1 > rq2. Then the equilibrium S is semi-globally asymptotically stable in the positive
octant, as ε→ 0.

ψ(0)
ϕ(0)

v=ϕ(u)

@@R

v=ψ(u)

v=u

EG(E)H(E) u

v

Fig. 5.2. The functions H and G corresponding to (1.2) satisfy H(E) < G(E) for all E > b.

The result of Theorem 5.1 occurs for a larger range of parameters since H(E) <
G(E) is always true for (1.2) as shown in the following lemma:

Lemma 5.2. Under condition (5.1) we have H(E) < G(E), for all E > b.
Proof. We have

h(E) =

∫ E

a

r − q1u

−cu
du =

q1E − r lnE − q1a− r ln a

c
.

Let E > b, u = H(E) is defined by

q1u− r lnu = q1E − r lnE ⇔ u = ϕ(u), where ϕ(u) := Ee
u−E

a .

Hence H(E) is a fixed point of the function v = ϕ(u). We have

ϕ(0) > 0, ϕ(E) = E, ϕ′(E) =
E

a
> 1 and ϕ′′(u) > 0.

Hence the function v = ϕ(u) has a unique fixed point u = H(E) in ]0, E[. Similarly
we have

g(E) =

∫ E

b

s− q2u

−cu
du =

q2E − s lnE − q2b− s ln b

c
.

Thus u = G(E) is the unique fixed point, in ]0, E[, of the function v = ψ(u) := Ee
u−E

b .
We have ψ(0) < ϕ(0), ψ(E) = ϕ(E) = E and 1

a
> 1

b
. Hence the functions ϕ and ψ

satisfy (see Fig. 5.2) ψ(u) < ϕ(u) for all u ∈]0, E[, so that H(E) < G(E).
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From Lemma 5.2 we deduce that, if condition (5.1) holds, then assumption (A4’)
holds if and only if p2q2L < c and this condition is less restrictive than (5.2). As a
consequence of Theorem 4.8, we have:

Theorem 5.3. Assume that p2q2L < c < p1q1K+p2q2L and sq1 > rq2. Then the
equilibrium S is semi-globally asymptotically stable in the positive octant, as ε→ 0.

The system (1.2) is dissipative, for any ε > 0. Thus any solution enters in a
compact subset of the positive octant. Hence for any fixed ε > 0, the equilibrium S
is GAS in the positive octant. Actually, we proved that, as ε → 0, the attractivity
is uniform with respect to the initial condition in any compact subset of the positive
octant.

5.2. Numerical simulations. To illustrate our results, we carried some numer-
ical experiments with ε = 0.01 and the following set of parameters:

K = 3, L = 3, r = 1, s = 2, p1 = p2 = q1 = q2 = 1, c = 4.(5.3)

For clarity, we draw the projections of the trajectories, related to two sets of initial
values (see Fig. 5.3 and Fig. 5.4), on the planes (E, y), on the left, (E, x), in the
center and (x, y), on the right. The behavior of the first trajectory with x0 = 4, y0 = 4
and E0 = 3 < a∗ is in accordance with the results of Theorem 3.5 and Proposition
4.2. The behavior of the trajectory with x0 = 0, y0 = 0 and E0 = 6 > a∗ supports
the results of Theorem 3.5 and Proposition 4.3.
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Fig. 5.3. Numerical solutions of (1.2) with x0 = 4, y0 = 4 and E0 = 3 < a∗.
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Fig. 5.4. Numerical solutions of (1.2) with x0 = 0, y0 = 0 and E0 = 6 > a∗.

Appendix A. Slow and fast vector fields. In this appendix, we give the main
definitions and tools of singular perturbation theory which are used in this paper. For
more details and information the reader may consult [13, 17, 18, 24, 26]. We follow
here the presentation given in [20, 21].
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A.1. Stability in systems with parameters. The notion of uniform stability
in systems with parameters is crucial in the hypothesis of Tikhonov’s theorem. Let

z′ = Z(z, a), z ∈ Z ⊂ R
d

be a system depending on the parameter a ∈ A ⊂ R
m. We assume that there exists

a mapping a ∈ A 7→ h(a) ∈ Z such that for all a ∈ A we have Z(h(a), a) = 0, so that
z = h(a) is an equilibrium point.

Definition A.1. The equilibrium z = h(a) of equation z′ = Z(z, a) is said to
be uniformly asymptotically stable for a ∈ A if for all µ > 0, there exists δ > 0, such
that for all a ∈ A and for all solution z(τ, a)

‖z(0, a) − h(a)‖ < δ ⇒ ∀τ > 0 ‖z(τ, a) − h(a)‖ < µ and lim
τ→+∞

z(τ, a) = h(a)

Definition A.2. The equilibrium z = h(a) of equation z′ = Z(z, a) is said to be
uniformly exponentially stable in a ∈ A if there exist k > 0, γ > 0 and r > 0 such
that for all a ∈ A any solution z(τ, a) with ‖z(0, a) − h(a)‖ ≤ r satisfies

‖z(τ, a)‖ ≤ k‖z(0, a)‖e−γτ for all τ ≥ 0.

Note that for C1 systems, the uniform exponential stability holds if all eigenvalues of
the linear part ∂Z

∂z
(h(a), a) have negative real parts.

A.2. Practical asymptotic stability. To introduce the notion of practical
asymptotic stability, consider the system depending on a parameter

ẋ = F (x, ε),(A.1)

where x ∈ X ⊂ R
d and ε > 0 is a real parameter.

Definition A.3. The point x = x∗ is practically asymptotically stable (PAS)
when ε→ 0 if there exists A > 0, such that for all r > 0 there exist ε0 > 0 and T > 0
such that for all ε, for all solution x(t, ε) of equation (A.1) and for all time t if ε < ε0
‖x(0, ε) − x∗‖ < A and t > T then, ‖x(t, ε) − x∗‖ < r.

In the case where the solution x(t;x0, ε) of (A.1), with initial condition x(0;x0, ε) =
x0, is unique the point x = x∗ is PAS if and only if

lim
t→+∞,ε→0

x(t, x0, ε) = x∗,

the limit being uniform for x0 in some ball of radius A independent on ε.

A.3. Semi global asymptotic stability. Here, we define the notion of semi
global asymptotic stability.

Definition A.4. The point x = x∗ is semi-globally asymptotically stable (SGAS)
when ε → 0 if it is asymptotically stable for all ε ∈]0, 1] and for all compact K ⊂ X
there exists ε0 > 0 such that for all ε < ε0, the basin of attraction of x∗ contains K.

Definition A.5. The point x = x∗ is practically semi-globally asymptotically
stable (PSGAS) when ε → 0 if for any compact K ⊂ X and r > 0 there exist ε0 > 0
and T > 0 such that for all ε, for all solution x(t, ε) of equation (A.1) and for all
time t ε < ε0, x(0, ε) ∈ K and t > T then, ‖x(t, ε) − x∗‖ < r.

In the case where the solution x(t;x0, ε) of (A.1) with initial condition x(0, x0, ε) =
x0 is unique, the point x = x∗ is PSGAS if and only if

lim
t→+∞,ε→0

x(t, x0, ε) = x∗,

the limit being uniform for x0 in any prescribed compact subset of X.
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A.4. Tikhonov’s theorem. Let the initial value problem

u̇ = U(u, v, ε), u(0) = αε,
εv̇ = V (u, v, ε), v(0) = βε.

(A.2)

where u ∈ R
n, v ∈ R

m, u̇ = du
dt

, v̇ = dv
dt

and ε is a real parameter. We assume that
U and V are continuous functions and that problem (A.2) has a unique solution. We
look at the solutions behavior when ε → 0 and t ∈ [0, T ]. The small parameter is
multiplying the derivative and so the usual theory of continuous dependence of the
solutions with respect to the parameters cannot be applied. If we write (A.2) at time
scale τ = t/ε we obtain

u′ = εU(u, v, ε), u(0) = αε,
v′ = V (u, v, ε), v(0) = βε.

(A.3)

where u′ = du
dτ

and v′ = dv
dτ

. The equation

v′ = V (u, v, 0).(A.4)

where u a constant parameter, is called the fast equation. We assume that it has a
unique solution with prescribed initial condition. The manifold L of equation

V (u, v, 0) = 0,(A.5)

is called the slow manifold: it is the set of equilibria of (A.4). We make the following
assumptions which are listed by the letter (H) below.

(H1) For all u in some compact domain K ⊂ R
n, all solutions of (A.4) tend

towards an equilibrium v = W (u), where v = W (u) is an isolated root of equation
(A.5). The equilibrium v = W (u) is uniformly asymptotically stable for u ∈ K, (see
definition in Appendix A.1).

(H2) We have α0 ∈ K and β0 belongs to the basin of attraction of W (α0).
On the component v = W (u) we define the slow equation

u̇ = U(u,W (u), 0), u ∈ K.(A.6)

We assume that this equation has a unique solution with prescribed initial condition.
Let u(t) be the solution of (A.6) with initial condition u(0) = α0.

(H3) We assume that u(t) is defined for 0 ≤ t ≤ T .
Theorem A.6. Under hypothesis (H1) to (H3), the solution (u(t, ε), v(t, ε)) of

(A.2) is defined at least on [0, T ]. For all δ > 0, it satisfies limε→0 u(t, ε) = u(t)
uniformly on [0, T ] and limε→0 v(t, ε) = W (u(t)) uniformly on [δ, T ].

Proof. See [21, 25, 26].
The limit for the fast variable v does not hold at 0 since there is a boundary layer

in z. More precisely, let ũ(τ) be the solution of the boundary layer equation

v′ = V (α0, v, 0), v(0) = β0.

This solution is defined for all τ ≥ 0 and tends to W (α0). We have:

lim
ε→0

(v(t, ε) − ṽ(t/ε)) = W (v(t)) −W (α0) uniformly on [0, T ].
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A.5. Approximation for all t ≥ 0. To obtain approximations on the infinite
interval, we need a supplementary assumption.

(H4) The slow equation (A.6) has an asymptotically stable equilibrium u = u∞
and the initial condition α0 is in its basin of attraction.

Theorem A.7. Under hypothesis (H1) to (H4), the solution (u(t, ε), v(t, ε)) of
(A.2) is defined for all t ≥ 0. For all δ > 0, it satisfies limε→0 u(t, ε) = u(t) for all
t ≥ 0 and limε→0 v(t, ε) = W (u(t)) for all t ≥ δ.

Proof. See [13, 17, 21].

From theorem A.7 we deduce that

lim
t→+∞,ε→0

u(t, ε) = x∞, lim
t→+∞,ε→0

v(t, ε) = v∞,

where v∞ = W (u∞). This result does not imply that (u∞, v∞) is an asymptotically
stable equilibrium of (A.2) as it is illustrated by the following example:

Example. Consider the planar slow-fast system

u̇ = u2(ε− u), εv̇ = −v.(A.7)

The slow manifold is v = 0 and v = 0 is GAS for the fast equation v′ = −v. The
equilibrium u = 0 is GAS for the reduced equation u̇ = −u3. However, the equilibrium
(0, 0) of (A.7) is unstable.

A.6. Stability results. To obtain stability results of the equilibrium (u∞, v∞),
we need supplementary conditions on the system. Assume that for all ε > 0, we
have U(u∞, v∞, ε) = 0 and V (u∞, v∞, ε) = 0, so that, for all ε > 0, (u∞, v∞) is
an equilibrium of system (A.2). We assume that asymptotic stability is replaced by
exponential stability in assumptions (H1) and (H4). We have the following result:

Theorem A.8. Let hypothesis (H1) to (H4) be satisfied, where asymptotic sta-
bility is replaced by exponential stability, that is, v = W (u) is an uniformly exponen-
tially stable point for v′ = V (u, v, 0) on u ∈ K and u∞ is an exponentially stable
point for u̇ = U(u,W (u), 0). Then, there exists ε∗ > 0 such that for all 0 < ε < ε∗,
(u∞,W (u∞)) is exponentially stable for system (A.2).

Proof. See [17], Section 9.4 or [18], Section 7.5.

Exponential stability cannot be replaced by asymptotic stability as shown by
(A.7). In this example x = 0 is GAS but not exponentially stable for the reduced
equation ẋ = −x3 and the origin is unstable for the complete system.

Remark. Similar results was obtained using geometric singular perturbation
theory (GSPT) (see [14], Section B.3). In GSPT [12, 15, 16], system (A.2) is called
the slow system and system (A.3) is called the fast system. In this paper we adopted
the terminology of the classical singular perturbation theory [21, 25, 26] and we refer
to (A.4), which is the limit of (A.3) when ε → 0, as the fast equation and to (A.6),
which is the limit of (A.2) when ε → 0, as the slow equation. Note that in GSPT,
the slow manifold is not necessarily attracting, as in Tikhonov’s theorem. In GSPT
the results hold for the more general case of slow and fast systems for which the slow
manifold is normally hyperbolic, i.e., the real part of the eigenvalues of ∂V

∂v
(u,W (u), 0)

are non 0, possibly positive or negative. However, in GSPT, the functions U and V
in (A.2) must be smooth, not only continuous, as it is the case in Tikhonov’s theory.
GSPT shows that for small ε > 0, (A.2) has a locally invariant manifold which is
O(ε)-close to the slow manifold.
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A.7. Practical semi global asymptotic stability. In general, the attractivity
of the full system is not global as shown by the following example:

Example. Consider the two dimensional slow fast system

u̇ = −u+ u2v, εv̇ = −v.(A.8)

The fast equation v′ = −v has v = 0 as a globally exponentially stable equilibrium.
The corresponding slow equation u̇ = −u has u = 0 as a globally exponentially stable
equilibrium. By theorem A.8, the origin of (A.8) is exponentially stable for small ε.
Actually, the origin is exponentially stable for all ε > 0, but the attractivity is not
global since

d

dt
(uv) = uv(uv − 1 − 1/ε),

shows that the hyperbola uv = 1 + 1/ε is invariant. The basin of attraction of the
origin is the set B := {(u, v) ∈ R

2 : uv < 1 + 1/ε}. Thus, the origin is not GAS
for (A.8). However, the origin of (A.8) is semi-globally asymptotically stable when
ε→ 0.

Let us give, now a result of practical semi global asymptotic stability in the slow-
fast system (A.2). We do not assume that U(u∞, v∞, ε) = 0 and V (u∞, v∞, ε) = 0 as
in the previous section. Hence the point (u∞, v∞) is not necessarily an equilibrium of
(A.2).

Theorem A.9. Assume that U(u∞, v∞, 0) = 0 and V (u∞, v∞, 0) = 0, the equi-
librium u = u∞ is GAS for u̇ = U(u,W (u), 0) and the equilibrium v = W (u) is GAS
for v′ = V (u, v, 0). Then the point (u∞, v∞) is PSGAS for (A.2) as ε→ 0.

Proof. See [20].

A.8. Canard Solutions and Delayed Loss of Stability. The results of the
previous section do not apply easily, since in most examples met in applications, it
is rare that the slow manifold has a unique component and that the equilibrium of
the slow equation is GAS. In general, the slow manifold has several components and
the solution jumps from one to the other. These jumps are often accompanied by
the phenomenon of canard solutions or delayed loss of stability phenomenon. For
details and complements see [1], p. 179–192 and [2]. Stability loss delay in dynamical
bifurcations is an important and newly discovered phenomenon [23]. Consider again
the slow-fast system,

x′ = ε, z′ = Z(x, z, ε)(A.9)

where x ∈ R and where system z′ = Z(x, z, 0) has an equilibrium z = h(x) for each
value of the parameter x. Suppose that there exists a bifurcation value x = x∗ of the
parameter, at which the equilibrium loses stability, that is, z = h(x) is asymptotically
stable for x < x∗ and unstable for x > x∗. Assume that x(0, ε) = x0 < x∗. Then
the solution of system (A.9) will go quickly near the equilibrium z = h(x0) and then
remains close to the curve z = h(x), until x reaches some value x1 > x∗. This means
that the loss of stability which must occur at x = x∗ is delayed until x = x1. The
general theory in [23] does not apply in our system. This theory requires that a pair of
eigenvalues crosses the imaginary axis, when in our case a real eigenvalue crosses zero.
The stability loss delay phenomenon is closely related to the phenomenon of canard
solutions. Canard solutions are special trajectories of slow and fast systems that first
move near the stable part of the slow manifold, then move near the unstable part of
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it. These solutions were first discovered in the framework of Nonstandard Analysis.
See [3, 9, 29] for historical comments and references. The study of canard solutions
has also been made in the framework of classical asymptotic analysis [11] and also in
the framework of GSPT, using center manifolds and blow-up. See [10, 27] for details
and references.
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