Lazhar Dhaouadi 
email: lazhardhaouadi@yahoo.fr
  
Prolate Spheroidal Wave Functions In q-Fourier Analysis

Keywords: q-Prolate spheroidal wave function, q-sampling, 2000 AMS Mathematics Subject Classification-Primary 33D15, 47A05

In this paper we introduce a new version of the Prolate spheroidal wave function using standard methods of q-calculus and we formulate some of its properties. As application we give a q-sampling theorem which extrapolates functions defined on q n and 0 < q < 1.

Introduction

The prolate spheroidal wave functions, which are a special case of the spheroidal wave functions, possess a very surprising and unique property [START_REF] Walter | Sampling With Prolate Spheroidal Wave Functions, sampling theory in signal and image proccesing[END_REF]. They are an orthogonal basis of both L 2 (-1, 1) and the Paley-Wiener space of bandlimited functions. They also satisfy a discrete orthogonality relation. No other system of classical orthogonal functions is known to possess this strange property. We prove that there are new systems possessing this property in q-Fourier analysis. In the following we discuss some properties of the q-Prolate spheroidal wave function using news developments and technics in q-Fourier analysis. In particular we prove that these functions forms an orthogonal basis of the q-Paley-Wiener space P W v q,a . Finally and as application we give a constructive q-sampling formula having as sampling points q n where n ∈ Z. In the end, we cit the reference [START_REF] Abreu | A q-sampling theorem related to the q-Hankel transform[END_REF], where the reproducing kernel for the q-Paley-Wiener space was already discussed, and the explicit formula for the kernel was given, similar to the formula in Remark 3. However, the paper [START_REF] Abreu | A q-sampling theorem related to the q-Hankel transform[END_REF] proceeds with a q-sampling theorem which extrapolates functions defined on the zeros of the q-Bessel function. These zeros are given in the following form

q -n+ǫn n∈N ,
where 0 < ǫ n < 1, but it is not explicitly evaluated.

Preliminary

Throughout this paper we consider 0 < q < 1 and we adopt the standard conventional notations of [START_REF] Gasper | Basic hypergeometric series, Encycopedia of mathematics and its applications 35[END_REF]. We put

R q = {±q n , n ∈ Z}, R + q = {q n , n ∈ Z},
and if a = q n , n ∈ Z put [0, a] q = {q s , s ∈ Z, s ≥ n}.
For complex z, let

(z; q) 0 = 1, (z; q) n = n-1 i=0 (1 -zq i ), n = 1...∞.
Jackson's q-integral in the interval [0, a] and in the interval [0, ∞[ are defined, respectively, by(see [4])

a 0 f (x)d q x = (1 -q)a ∞ n=0 q n f (aq n ), ∞ 0 f (x)d q x = (1 -q) ∞ n=-∞ q n f (q n ).
For v > -1, let L q,p,v be the space of even functions f defined on R q such that

f q,p,v = ∞ 0 |f (x)| p x 2v+1 d q x 1/p < ∞.
The set L q,2,v is an Hilbert space with the inner product

f, g = ∞ 0 f (t)g(t)t 2v+1 d q t.
We consider L q,v,a the space of function defined on [0, a] q which satisfies

a 0 |f (x)| 2 x 2v+1 d q x < ∞,
and L v q,a the subspace of L q,2,v given by the natural embedding of L q,v,a in L q,2,v .

The normalized Hahn-Exton q-Bessel function of order v > -1 (see [START_REF] Swarttouw | The Hahn-Exton q-Bessel functions[END_REF]) is defined by

j v (z, q) = ∞ n=0 (-1) n q n(n+1) 2 
(q, q) n (q v+1 , q) n z 2n .

It is an entire analytic function in z.

Proposition 1 For ℜ(v) > -1, a > 0 and y, z ∈ C\{0} we have a 0 j v (yt, q 2 )j v (zt, q 2 )t 2v+1 d q t = 1 -q 1 -q 2v+2 a 2v+2 y 2 j v+1 (ay, q 2 )j v (aq -1 z, q 2 ) -z 2 j v+1 (az, q 2 )j v (aq -1 y, q 2 ) y 2 -z 2 .

Proof. See [START_REF] Koelink | On the zeros of the Hahn-Exton q-Bessel function and associated q-Lommel polynomials[END_REF] (Proposition 1.

3)

The following results in this section were proved in [START_REF] Dhaouadi | Inequalities in q-Fourier Analysis[END_REF].

Proposition 2

|j v (q n , q 2 )| ≤ (-q 2 ; q 2 ) ∞ (-q 2v+2 ; q 2 ) ∞ (q 2v+2 ; q 2 ) ∞ 1 if n ≥ 0 q n 2 +(2v+1)n if n < 0 .
The q-Bessel Fourier transform F q,v introduced in [START_REF] Dhaouadi | Inequalities in q-Fourier Analysis[END_REF], [4] as follow

F q,v f (x) = c q,v ∞ 0 f (t)j v (xt, q 2 )t 2v+1 d q t,
where

c q,v = 1 1 -q (q 2v+2 , q 2 ) ∞ (q 2 , q 2 ) ∞ .
The q-Bessel translation operator is defined as follows:

T v q,x f (y) = c q,v ∞ 0 F q,v (f )(t)j v (xt, q 2 )j v (yt, q 2 )t 2v+1 d q t, ∀x, y ∈ R q , ∀f ∈ L q,1,v , Recall that T v q,x is said positive if T v q,x f ≥ 0 for f ≥ 0.
In the following we tack q ∈ Q v where

Q v = {q ∈]0, 1[, T v q,x is positive for all x ∈ R q }.
The q-convolution product of both functions f, g ∈ L q,1,v is defined by

f * q g(x) = c q,v ∞ 0 T v q,x f (y)g(y)y 2v+1 d q y. Theorem 1 The operator F q,v satisfying 1. For all functions f ∈ L q,2,v , F 2 q,v f (x) = f (x), ∀x ∈ R q . 2. For all functions f, g ∈ L q,2,v , F q,v f, g = f, F q,v g . 3. For all functions f ∈ L q,2,v , F q,v f q,v,2 = f q,v,2 . 4. For all functions f, g ∈ L q,1,v , F q,v (f * q g)(x) = F q,v f (x) × F q,v g(x), ∀x ∈ R q .
In the end we consider P W v q,a the q-Paley Wiener space

P W v q,a = f (x) = a 0 u(t)j v (xt, q 2 )t 2v+1 d q t, u ∈ L v q,a ,
the set of q-bandlimited signal.

Main Results

We introduce the q-analogue of the Prolate Spheroidal Wave Functions ψ i as the eigenfunction of the integral operator T v a acting on the Hilbert space L q,v,a as follows

T v a u(x) = c q,v a 0 u(t)j v (xt, q 2 )t 2v+1 d q t, then we have T v a ψ i = λ i ψ i . It's easy to see that the operator T v a is symmetric and compact a 0 T v a u(t)w(t)t 2v+1 d q t = a 0 u(t)T v a w(t)t 2v+1 d q t,
then the sequence {ψ i } i∈N forme an orthogonal basis of the Hilbert space L q,v,a and any eigenvalue λ i is real.

Proposition 3 The sequence of eigenvalue {λ i } i∈N satisfying

λ 2 0 ≥ λ 2 1 ≥ . . . > 0.
Proof. The operator T v a is compact, then the spectrum is a countably infinite subset of R (T v a is symmetric) which has 0 as its only limit point. If we denote by Λ = {λ 0 , λ 1 , . . .}, the spectrum of T v a then we can write

|λ 0 | ≥ |λ 1 | ≥ . . . ≥ 0.
To finish the proof, if suffice to prove that 0 / ∈ Λ. In fact if T v a ψ = 0 then F q,v ψ is an entire function which vanishes on [0, a] a . By the identity theorem for analytic functions, F q,v ψ = 0 everywhere and thus ψ = 0.

Remark 1 Consider the operator

k v a = T v a • T v a ,
then K v a is an integral operator acting on the Hilbert space L q,v,a as follows

k v a u(x) = a 0 u(y)k(x, y)y 2v+1 d q y, where k(x, y) = c 2 q,v a 0 j v (xt, q 2 )j v (yt, q 2 )t 2v+1 t 2v+1 d q t.
The function

ψ i is an eigenfunction of k v a k v a ψ i = λ 2 i ψ i .
Lemma 1 The function ψ i initially defined on R q can be extended as an analytic function on C.

Proof. The result follows from the relation

ψ i (z) = 1 λ i c q,v a 0 ψ i (t)j v (zt, q 2 )t 2v+1 d q t,
and the fact that j v (., q 2 ) is an entire function.

Proposition 4

The function ψ i belonging to the Paley-Wiener space P W v q,a Proof. Let

φ i (x) = 1 λ i ψ i (x)χ [0,a] (x), then F q,v φ i (x) = c q,v ∞ 0 φ i (t)j v (xt, q 2 )t 2v+1 d q t = c q,v λ i a 0 ψ i (t)j v (xt, q 2 )t 2v+1 d q t = ψ i (x),
which implies that ψ i ∈ P W v q,a .

In the following we assume that

ψ i 2 q,2,v = ψ i , ψ i = 1.

Proposition 5

The sequence {ψ i } i∈N forme an orthonormal basis of P W v q,a .

Proof. The q-Bessel Fourier transform

F q,v : L v q,a → P W v q,a ,
define an isomorphism, and the sequence {φ i } i∈N form an orthogonal basis of the Hilbert space L v q,a , which lead to the result.

Proposition 6 Let k x : y → k(x, y),

then f ∈ P W v q,a ⇔ f (x) = f, k x , ∀x ∈ R q . Proof. Let σ a (y) = F q,v χ [0,a] (x) = c q,v a 0 j v (ty, q 2 )t 2v+1 d q t, therefore T v q,x σ a (y) = c q,v a 0 j v (tx, q 2 )j v (ty, q 2 )t 2v+1 d q t = 1 c q,v k(x, y),
and then

f ∈ P W v q,a ⇔ F q,v f (x) = F q,v f (x)χ [0,a] (x) = F q,v f (x)F q,v σ a (x) ⇔ f (x) = f * q σ a (x) = c q,v f, T v q,x σ a = f, k x .
This finish the proof

Corollary 1 We have k(x, y) = ∞ i=0 ψ i (x)ψ i (y), ∀x, y ∈ R q .
Proof. In fact k x ∈ P W v q,a . Then

k x (y) = ∞ i=0 k x , ψ i ψ i (y).
On the other hand

ψ i ∈ P W v q,a ⇔ ψ i , k x = ψ i (x),
which prove the result.

Lemma 2 For i, j ∈ N a 0 ψ i (x)ψ j (x)x 2v+1 d q x = λ i λ j δ ij . Proof. In fact φ i , φ j = F q,v φ i , F q,v φ j = ψ i , ψ j , and 
φ i , φ j = 1 λ i λ j a 0 ψ i (x)ψ j (x)x 2v+1 d q x.
On the other hand, if i = j then

φ i , φ j = a 0 φ i (t)φ j (t)t 2v+1 d q t = 0.
Moreover, φ i q,2,v = ψ i q,2,v = 1 which prove that φ i , φ j = δ ij . This leads to the result.

In order to be more precise about what it means for the energy of a q-bandlimited single f ∈ P W v q,a to be mainly concentrated on the interval [0, a] q , we consider the concentration index:

θ v a f = a 0 f (x) 2 x 2v+1 d q x f 2 q,v,2
, whose values range from 0 to 1.

Proposition 7

The maximum value of θ v a f is attained for f = ψ 0 and

θ v a f = n i=0 λ 2 i f, ψ i 2 n i=0 f, ψ i 2 ≥ λ 2 n , if f ∈ span{ψ 0 , . . . , ψ n }, θ v a f = ∞ i=n+1 λ 2 i f, ψ i 2 ∞ i=n+1 f, ψ i 2 ≤ λ 2 n+1 , if f ∈ span{ψ 0 , . . . , ψ n } ⊥ .
Proof. With the Parseval equality

a 0 f (x) 2 x 2v+1 d q x = ∞ i=0 f, φ i 2 ,
and the fact that

∞ i=0 f, φ i 2 = ∞ i=0 F q,v f, ψ i 2 = ∞ i=0 λ 2 i F q,v f, φ i 2 = ∞ i=0 λ 2 i f, ψ i 2 , f 2 q,v,2 = ∞ i=0 f, ψ i 2 ,
We get

θ v a f = ∞ i=0 λ 2 i f, ψ i 2 ∞ i=0 f, ψ i 2 ≤ λ 2 0 = θ v a ψ 0 ,
which leads to the result.

Remark 2 If b > a then P W v q,a ⊂ P W v q,b ,
Now let {µ n } n∈Z the sequence of eigenvalues of the operator T v b then we have

λ 2 0 = θ v a ψ 0 ≤ θ v b ψ 0 ≤ µ 2 0 .
Proposition 8 The q-Paley-Wiener space P W v q,a is a closed subspace of L q,2,v .

Proof. First we show that P W v q,a is a subspace of L q,2,v . In fact let

f ∈ P W v q,a
then there exist u ∈ L v q,a such that

f (x) = c q,v a 0 u(t)j v (xt, q 2 )t 2v+1 d q t = F q,v (u)(x).
As L v q,a ⊂ L q,2,v and from the Theorem 1 we show that F q,v (u) ∈ L q,2,v which implies P W v q,a ⊂ L q,2,v . Now, given f ∈ L q,2,v and let {f n } n∈N be a sequence of element of P W v q,a which converge to f in L 2 -norm. For n ∈ N, there exist u n ∈ L v q,a such that

f n (x) = c q,v a 0 u n (t)j v (xt, q 2 )t 2v+1 d q t. Moreover lim n→∞ f n -f q,2,v = 0, this give lim n→∞ F q,v f n -F q,v f q,2,v = 0,
and then

a 0 |F q,v f n (x) -F q,v f (x)| 2 x 2v+1 d q x + ∞ a |F q,v f (x)| 2 x 2v+1 d q x → 0,
which implies F q,v f (x) = 0 if x ∈ R q and x > a and then f ∈ P W v q,a .

Theorem 2 For any function f ∈ P W v q,a we have

f (z) = (1 -q) k∈Z q 2k(v+1) f (q k )k z (q k ), ∀z ∈ C. (1) 
Proof. In fact f is an analytic function, and from Proposition 6

f (x) = f, k x , ∀x ∈ R q .
We have

f, k x = F q,v f, F q,v k x = c q,v F q,v f, j v (x., q 2 )χ [0,a] = c q,v a 0 F q,v f (t)j v (xt, q 2 )t 2v+1 d q t.
which prove that

z → f, k z ,
is an analytic function. On the other hand

f, k z = (1 -q) k∈Z q 2k(v+1) f (q k )k z (q k ), and f, k q k = f (q k ), ∀k ∈ Z.
As {0} is an accumulation point of the following set

{q k , k ∈ Z}, we conclude that f, k z = f (z), ∀z ∈ C.
Remark 3 In many fields , telecommunication in particular, the Whittaker-Shannon-Kotel'nikov sampling theorem plays a central role. It is know that sampling is the process of converting a signal (e.g., a function of continuous time or space) into a numeric sequence (a function of discrete time or space). Namely this theorem say that every function in the cosine Paley-Wiener space:

P W -1 2 a = f (x) = 2 π a 0 u(t) cos(xt)dt, u ∈ L 2 [0, a] ,
can be written as

f (x) = 2 π n∈Z f π a n sin(ax -πn) ax -πn .
Then the above theorem can be viewed as a sampling formula where the sampling points are q n independent of a. By the use of Proposition 1 we get

k z (q n ) = (1 -q)c 2 q,v
1 -q 2v+2 a 2v+2 × q 2n j v+1 (aq n , q 2 )j v (aq -1 z, q 2 ) -z 2 j v+1 (az, q 2 )j v (aq -1+n , q 2 ) q 2n -z 2 .

Proposition 9 Given a function f ∈ L q,2,v and let

f a (x) = f, k x , then f a ∈ P W v q,a
, and for all δ > 0 we have

lim a→∞ sup x>δ,x∈Rq |f (x) -f a (x)| = 0. Proof. First |f a (x)| ≤ f q,v,2 k x q,v,2 < ∞. Now we can write f a (x) = f, k x = F q,v f, F q,v k x = c q,v F q,v f, j v (x., q 2 )χ [0,a] = c q,v a 0 F q,v f (t)j v (xt, q 2 )t 2v+1 d q t.
which prove that f a ∈ P W v q,a . On the other hand

f (x) = c q,v F q,v f, j v (x., q 2 ) ,
and therefore

|f (x) -f a (x)| 2 = c 2 q,v ∞ a F q,v f (t)j v (xt, q 2 )t 2v+1 d q t 2 ≤ c 2 q,v ∞ a |F q,v f (t)||j v (xt, q 2 )|t 2v+1 d q t 2 ≤ c 2 q,v ∞ a |F q,v f (t)| 2 t 2v+1 d q t ∞ a |j v (xt, q 2 )| 2 t 2v+1 d q t ≤ c 2 q,v x 2v+2 ∞ a |F q,v f (t)| 2 t 2v+1 d q t ∞ ax |j v (t, q 2 )| 2 t 2v+1 d q t ≤ c 2 
q,v j v (., q 2 ) 2 q,v,2

x 2v+2 ∞ a |F q,v f (t)| 2 t 2v+1 d q t.

Using the fact that ∞ 0 |F q,v f (t)| 2 t 2v+1 d q t = F q,v f 2 q,v,2 = f 2 q,v,2 < ∞, we finish the proof.

Application

In this section we tack v = -1/2 and q = 0.5 and we put

f (x) = 1 1 + x 2 ,
an even function belong to the space L q,2,v . Using the sampling formula (1) for the function f a (x) = f, k x respectively for a = 1, a = 1/q and a = 1/q 2 with sampling point q n , n = -1 . . .