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BP 1157, 64013 Pau cedex, France

D. Tréheux
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ABSTRACT

The selfconsistent charge transport in bulk alumina samples during electron beam irra-

diation is described by means of an iterative computer simulation. Ballistic electron and

hole transport as well as their recombination and trapping are included. As a main result

the time dependent secondary electron emission rate σ(t) and the spatial distributions of

currents j(x, t), charges ρ(x, t), the field F (x, t) and the potential slope V (x, t) are ob-

tained. For bulk insulating samples, the time-dependent distributions approach the final

stationary state with j(x, t) = const = 0 and σ = 1. Especially for low electron beam

energies E0 = 1 keV, the incorporation of charges can be controlled by the potential VG

of a vacuum electrode in front of the target surface.

Finally, for high electron beam energies, the real negative surface potential V0 < 0 is

measured by x-ray bremsstrahlung spectra and the shift of the short wavelength edge.

For the initial beam energy E0 = 30 keV, the experimental value V0 = −16 kV is still in

good agreement with our simulations.
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I. INTRODUCTION

During the last years, the influence of dielectric polarization on the essential features of

dielectric and insulating materials has been investigated more intensively leading finally to

better understanding and applications of these materials, see e.g. the conference series on

Electric Charges in Non-Conductive Materials 1 and Ref.2. One of the subjects of interest

is the prediction of electrical charging of insulators under ionizing irradiation as it is of

great importance in many fields of modern technology. For instances, the knowledge of

such phenomena would help in preventing insulator breakdown mainly responsible for the

damage of electronic devices 3,4. In electron microscopy like scanning electron microscopy

(SEM) or Auger electron spectroscopy (AES), electron energy loss spectroscopy (EELS)

etc., the prediction of the influence of charging is essential to interprete the results of

analysis 5−7. The charging of insulators has also to be known in order to manage applica-

tions such as electron lithography, electron multipliers, electrets etc. On the other hand,

new problems have arisen with the deflection of interstellar dust grains in the magnetic

field near the heliopause depending on their surface electric charge8. A great number of

experimental and theoretical investigations have been published on the charging of insu-

lators due to electron bombardment and the related secondary electron emission (SEE).

Only for short pulse irradiation, target charging is prevented and the real charging-free

secondary electron emission yield σ(E0) as a function of the primary electron energy E0

can be measured and determined theoretically for various insulators 9−13. However, the

charging behaviour under permanent electron irradiation is not yet fully understood and

the stationary final state is still very complex to describe. Indeed, the total yield approach

(σ
>
< 1) is often used to predict the sign (±) of charging in the case of stationary electron

irradiation, but experimental results are not fully consistent with these predictions 14,15.
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It is of importance to precise the types of theory that have been led to enlighten this phe-

nomenon. One of the first attempts was the planar (1-dimensional) selfconsistent charging

simulation of our co-author (HJF) already in 1979 16, later on improved in Ref.17. These

authors use field-dependent attenuation lengths λ(F ) for the ballistic transport of elec-

trons and holes which had been found experimentally by means of electron beam induced

currents (EBIC) measurements.

The first comprehensive Monte Carlo calculations of the self-consistent charging were

made by Vicario et al.18, Ganachaud et al.19 and Renoud et al.20. Of course these cal-

culations are complex because they deal with the full simulation of primary electron

straggling as well as with the generation and transport of secondary electrons and holes

in the selfconsistent field. Contrary to the 1-dimensional charging model based on Monte-

Carlo-calculated and experimentally well-prooved attenuation lengths λ(F ) of electrons

and holes, the full Monte-Carlo simulation bears more uncertainity in all the theoretical

parameters used and, of course, it takes much more time for one simulation run. However,

the decisive advantage of the full Monte-Carlo simulation is the 3-dimensional description

of the charging process with the lateral charge spreading in case of point-like electron

beam injection by a very small beam focus. Thus, the above mentioned authors18,20 could

demonstrate the build-up by a computer animation.

An approach for more rough estimation is based on the dynamic double layer model

(DDLM) in which the phenomenon is brought to the simplified case of two layers of oppo-

site charge. Complete solutions of the respective equations were achieved by Melchinger

et al. 14. More recently, J. Cazaux 15 developed an effective approach of the SEE evolution

in insulating samples using this DDLM.

The present paper is aimed to the extension of the planar 1-dimensional self-consistent
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model for thin layers as given in Refs.16,17, now to bulk insulators. It will approach full

validity if the electron beam diameter is much larger than the maximum electron pen-

etration depth R(E0). Unambiguously, this is fulfilled in scanning electron microscopes

(SEM) with a slightly defocused beam. Thus the 1-dimensional simulation can be applied

to 3-dimensional description of the sample potential in a SEM chamber21. The results

will be presented in particular for alumina but could be easily adapted to any insulator

using the relevant material data available in the literature.

II. THEORETICAL BACKGROUND

The strong charging of insulators under electron beam irradiation is well known, at least,

since Malter 1936 discovered the anomalous high secondary electron emission (SEE) and

long-lasting electron post-emission from MgO layers22. A strong positive charging due

to the emission of secondary electrons (SE) from the surface-near regions is responsible

for that selfconsistent field-enhanced SEE. On the other hand, the deeper injection of

primary electrons (PE) will produce an electron surplus within the bulk of an insulator.

The respective charge ρ(x) and field F (x) distributions maintain the selfconsistent charge

transport and the SEE emission.

A. Generation of currents and charges

Thus, we should first refer to the injection of primary electrons (PE) and their creation of

secondary electrons (SE) and holes (H). This process for Al2O3 is similar to that of SiO2

as we have described already in 16,17 based on empirical results of the electron penetration

process into solids having been obtained by the ”film-bulk method” 23. By means of this

method the resulting PE current in dependence on the target depth x and the PE initial
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energie E0 was found:

jPE(x, E0) = j0(1− η)exp

−4.605

(
x

R(E0, z)

)p(z)
 , (1)

with j0 as impinging PE current density and the material parameters for SiO2: η ≈ 0.2

the backscattering coefficient, p ≈ 2 the exponential transmission parameter and the

empirical equation for the maximum electron range R reached by 1% of PE:

R/nm =
900

ρ0.8
(E0/keV)1.3 , for E0 < 8keV (2a)

R/nm =
450

ρ0.9
(E0/keV)1.7 , for E0 ≥ 8keV (2b)

R is given in nm, the target mass density ρ in g/cm3, and the electron beam energy E0 in

keV. In Ref.23 one can find the respective quantities of any material when knowing the

mass density and the PE backscattering ratio η(E0) .

The generation rate gi(x, E0) of inner secondary electrons (SE) is proportional to the

spatial energy loss dE/dx of the impinging and straggling primary electrons (PE), i.e.

proportional to the spatial PE energy transfer to the target volume:

gi(x, E0) = α
1

Ei

dE

dx
, (3)

where Ei is the mean creation energy for one SE and α a yield factor of nearly a unit.

According to Klein24 and Alig and Bloom25 the SE creation energy increases with the

energy gap Eg of a given target material

Ei ≈ 3Eg + 1eV (4)

resulting in Ei ≈ 28 eV for Al2O3 with Eg = 9 eV. Then with Eq.(3) and empirical

expressions for dE/dx from Ref.23, we may write the SE creation rate in Al2O3 in the
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form of a semi-empirical equation

gi/Å = 0.146(E0/keV)−0.3 exp

[
−7.5

(
x

R
− 0.3

)2
]
. (5)

This is a Gaussian distribution with the maximum shifted by 0.3R from the surface into

the target volume. Assuming an isotropic SE generation, one half of the created SE:

1/2j0gi(x, E0)∆x will move into the bulk sample, i.e. in the direction towards the sample

support and the other half towards the sample surface. Then the respective continuity

equation in 1-dimensional form for any SE or hole currents in transmission (T) direction

towards the sample substrate (holder) or in reverse (R) direction towards the surface looks

very simple:

jR
T (x) =

[
jR
T (x±∆x) +

1

2
j0gi(x)∆x

]
W (x) (6)

with the first term in the brackets for the convection part and the second one for the

generation of inner SE or holes followed by the overall attenuation probability W (x) of

the charge carriers over the small distance ∆x in the target depth x. This attenuation

probability will be described separately below.

Thus the current possesses sources with gi(x) as well as drains due to the attenuation

W (x). Introducing the excessive charge ∆ρ into the continuity equation we get for the

actual charge change over the time ∆t in the depth ∆x and for the time t:

∆ρ(x, t) = − j(x + ∆x, t)− j(x−∆x, t)

2∆x
·∆t (7a)

Adding this excessive charge ∆ρ to the already present charge:

ρ(x, t) = ρ(x, t−∆t) + ∆ρ(x, t) (7b)

we may obtain the electrical field distribution F (x) via the Poisson equation, i.e. by

integration of the charges:
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F (x, t) =
1

ε0εr

x∫
0

ρ(x′, t)dx′ (8)

Further on, the related potential slope V (x, t) is given by

V (x, t) =

x∫
d

F (x′, t)dx′ (9)

Because the sample support should be grounded, V (x = d) = 0, the integration starts at

the sample support electrode in the depth d denoting the sample surface with x = 0 and

the back electrode with the target thickness x = d.

B. Attenuation of currents

In context with Eq.(6) we have introduced the overall attenuation probability W . First

of all W will depend on the actual field strength F enhancing or diminishing the mean

attenuation length λ(F ). This very important transport parameter has been investigated

experimentally26,27 as well as calculated by Monte Carlo simulations28−30.

Thus the field-dependent attenuation probability indicated for electrons by (E) in trans-

mission (T) and reverse (R) direction is:

R
T WEF = exp

[
− ∆x

λE(±F )

]
= exp

[
− ∆x

λE,0 exp(±βEF )

]
(10a)

For holes (H) we can write the respective relation:

R
T WHF = exp

[
− ∆x

λH(∓F )

]
= exp

[
− ∆x

λH,0 exp(∓βHF )

]
(10b)

including the mean field-dependent attenuation length λE for electrons and λH for holes

with their field-free values λE,0 and λH,0 as well as the field-enhancing factors βE and βH ,

respectively.

Whereas the mean attenuation length for electrons λE(±F ) is enhanced for positive fields
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F > 0 in reverse (R) motion towards the surface, it is diminished for transmission (T)

direction towards the sample support. Negative fields F < 0 will result in opposite

relations for electrons, i.e. enhancement in (T) and retarding in (R) direction, respectively.

Of course, for holes (H) the relations for R
T WHF in Eq.(10b) should be given vice versa,

i.e. with an opposite sign with respect to electrons in Eq.(10a).

Further on, we should consider electron-hole recombination as a second kind of current

attenuation. With the related recombination cross sections SEH = SHE, we can write the

recombination probability for electrons over the distance ∆x:

WEH = exp
[
−ρH

e0

SEH∆x
]

(11a)

as well as for holes:

WHE = exp
[
− ρE

e0

SHE∆x
]

(11b)

Now the charges are required separately for electrons ρE and for holes ρH , respectively.

Another attenuation of the currents is given by the trapping probability to localized

electron states (traps) with an overall concentration NE,0 and an actual occupation NE:

WEE = exp {−[NE,0 −NE(x)] SEE∆x} (12a)

NH,0 and NH denote for hole concentrations, respectively:

WHH = exp {−[NH,0 −NH(x)] SHH∆x} (12b)

SEE and SHH hold for the capture cross sections for electrons and holes, respectively.

Finally we can write the current of Eq.(6) explicitely for electrons (E) in reverse (R) and

transmission (T) direction

jER
ET (x) =

[
jER
ET (x±∆x) +

1

2
j0gi(x)∆x

]
R
T WEF ·WEH ·WEE (13a)
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as well as for holes (H):

jHR
HT (x) =

[
jHR
HT (x±∆x) +

1

2
j0gi(x)∆x

]
R
T WHF ·WHE ·WHH (13b)

with the respective expressions for the different kinds of attenuation from Eqs.(10) - (12).

The overall current j(x) in the depth x is given by summation of the several components

of Eqs.(1), (13a), and (13b).

j(x) = −jPE(x)− jET (x) + jER(x) + jHT (x)− jHR(x) (14)

resulting in the positive sign for positive charges moving in x-direction, i.e. transmission.

This current can be inserted into the continuity Eq.(7), providing the excessive charge

∆ρ(x) as well as via Eq.(8) the respective field distribution F (x), and the potential slope

V (x) by means of Eq.(9).

III. SIMULATION OF THE CHARGING PROCESS

The simulation procedure should be oriented to real experimental conditions. In Fig.1 the

scheme of a secondary electron microscope (SEM) chamber is presented showing the re-

spective currents of primary electrons I0, of the total secondary emission σI0 with σ = η+δ

as the sum of backscattered BE (η) and true SE (δ) released from the target material.

A certain part of emitted electrons can be backscattered or re-emitted from the micro-

scope chamber or from a negatively biased electronic grid. These electrons are called

tertiary electrons TE.

The insulating target, of course, allows three currents to the grounded support: an insta-

tionary displacement current of polarization IP , a real conduction current IC through the

bulk to the metallic support as well as a surface leakage current IS. In their sum they are
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forming the overall target support current IM :

IM = IP + IC + IS (15)

The directions of the injected PE current jPE, the inner secondary electron (SE) current

jSE and the respective hole current jH are schematically presented in Fig.2. However, in

our case of a bulk Al2O3 target, the relatively large thickness of d = 3 mm will not allow

neither a real conduction current jC to the support nor a Fowler-Nordheim tunneling

injection current jFN from the metallic support into the insulator. The latter one appears

only for thin layers d < 300 nm and σ > 1 connected with strong positive charging,

see 16,17.

On the other hand, at the surface barrier with an electron affinity χ a certain fraction PS of

incident inner secondary electrons with an energy ESE will be reflected: PS =
√

χ/ ESE ;

the other part PSE = 1 −
√

χ/ ESE is emitted as secondary electrons over the surface

barrier into the vacuum 31. For Al2O3 with χ ' 0.9 eV and ESE ≈ 6 eV we get PS ' 0.39

for the surface reflection coefficient and PSE = 0.61 for the SE emission probability.

Furthermore, in the presence of a screening or retarding grid or any vacuum electrode,

even, by the SEM chamber itself, biased to a potential VG less than the actual surface

potential V0 = V (x = 0) of the sample surface, i.e. only for VG < V0, we observe a SE

retarding field current reverse to the surface of a rate

PG = 1− exp
VG − V0

VSE

(16)

as already introduced in Refs.16,17. With Eq.(16) and e0VSE ≈ 5 eV as the mean kinetic

energy of emitted SE, we may characterize the retarding field curve of SE.

Thus we get the boundary conditions of the SE current at the surface x = 0 with the
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possibility of twofold reflection at the surface with PS and at the negative grid with PG:

jET (x = 0) = jER(x = 0) [PS + (1− PS)PG] (17)

These both reflections of reverse (R) moving electrons at the surface and at a retarding

electrode are indicated with TE (tertiary electrons) in Fig.2. Further on, we should

assume that holes are reflected entirely at the surface barrier. So we get:

jHT (x = 0) = jHR(x = 0) (18)

When calculating the current balance across the layer according Eqs.(13a) and (13b), we

always have to start with the reverse current jR at its beginning in the volume behind

the maximum excitation depth R(E0), then going towards the surface and starting the

transmission current jT with the reflection parts of jR at the surface, see Eq.(17).

After summing up all currents j(x, t) over all x for a certain time t according Eq.(14),

we should calculate the respective charges ρ(x, t), fields F (x, t) and potentials V (x, t) as

given by Eqs.(7)-(9). Then we repeat this procedure in an iteration cycle till we get a

stationary-like state for the actual irradiation time t. Afterwards we increase t by ∆t

and repeat the iteration cycle. The final stationary irradiation state in an insulator is

reached when no changes of the overall current along x are observed, i.e. j(x, t) = const,

or div j = 0. Then also the charge, field, and potential distributions are not changing

anymore with time. All is in a stationary equilibrium, in the final steady state.

IV. COMPUTATIONAL RESULTS

The simulations of the self-consistent charge transport were performed for 3 mm thick

alumina samples by means of the material parameters given in Tab.1 with their references

extended by 32−39. We look first to the positive charging at a low electron beam energy
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E0 = 1 keV, presented in Fig.3. There we see the time evolution of the current j(x, t) as

well as the respective charge ρ(x, t) and field F (x, t) distributions. Obviously we obtain

a suppression of the currents j(x, t) with time t, Fig.3(a), caused by retarding and re-

injection of SE due to a positively charged sample surface with respect to the grounded

grid VG = 0. This process has been described in context with Eq.(17). The resulting

emission current j(x < 0) becomes zero and the SE rate approaches σ = 1. Thus the

SEE is blocked and the positive charging becomes stable after about 50 ms, see Fig.3(b).

Due to re-injected secondary electrons the charge distribution shows a minus-plus-minus

structure. However, the positive charges are only slightly prevailing the negative ones

leading to a relatively small positive surface potential V0 ' +4.34 V, (as we will see later

on in Fig.6(a)), and an almost zero field strength towards the sample support, Fig.3(c).

A contrary behavior we find for a high electron beam energy and related negative charging.

In Fig.4, the respective current j(x, t), charge ρ(x, t), and field F (x, t) distributions are

presented for an initial beam energy E0 = 30 keV. Very obviously, with increasing time

t the overall current j(x, t) is more and more restricted to surface-near regions. Finally,

in the stationary state j(x, t) = const = 0 the irradiation depth has decreased from

4.5 µm at the beginning t = 0 to about 0.8 µm for t > 100 ms, Fig.4(a). Looking to

the incorporated charge distribution ρ(x, t) (Fig.4(b)) we recognize strongly prevailing

negative charges correlated with negative field strengths over the bulk volume x > 1µm,

Fig.4(c). Due to secondary electron emission (SEE) into vacuum from a mean escape

depth of λE0 = 5 nm beneath the surface of the insulator the charge distribution in this

zone indicates an electron deficit, i.e. positive charge storage, as we see in Fig.5, which has

been zoomed to nm scale presentation. Nevertheless, the surface potential V0(x → 0) in

this region approaches high negative values of about V0 ' −22 kV, Fig.6(b). Of course,
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this negative surface potential is responsible for the electron beam decelleration from

originally E0 = 30 keV down to only E ′
0 ' 8 keV. Indeed, this diminishes the irradiation

depth zone as we see in Fig.4(a).

Moreover, because of the positive surface charge, there is a small potential decay for

electrons towards the surface, maintaining an enhanced SEE and leading finally to the

stationary steady state with σ = η + δ = 1 and the overall current j(x, t) = 0 over the

entire volume and for all times t ≥ 100 ms.

V. DISCUSSION

From the current j(x, t) and potential V (x, t) distributions of the previous part, we may

deduce the respective secondary electron (SE) emission rate σ(t) as well as the surface

potential V0(t) = V (x=0, t). Both quantities are accessible from outside the sample and

can be proved directly by measurements, Fitting16.

The SE rate is given by

σ = η + δ =
IBE + ISE

I0

=
I0 + I(x < 0)

I0

= 1 +
I(x < 0)

I0

(19)

where I(x < 0) is the ”resulting” electron current into the vacuum diminished, of course,

by the impinging reverse moving PE beam current I0. So we have to add again I0 to

I(x < 0) in order to get the real emission current (IBE + ISE) and the respective fractions

(η + δ).

We may observe the time dependence of the surface potential V0(t) and the secondary

emission σ(t) presented in Fig.6 and Fig.7, respectively.

As we have already mentioned the positive charging at E0 = 1 keV is limited by the

grounded surrounding (grid potential VG = 0). So V0 passes a maximum of V0 = +4.6 V

after t ≈ 5 ms and is then decaying to about V0 = +4.35 V for times t > 30 ms. On the
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other hand, the negative charging at E0 = 30 keV is not limited by returning SE (or TE),

even SE are enforced to leave the negative surface, and the surface potential approaches

a saturation with V0 ≈ −21 kV after t ≥ 20 ms. Of course, this huge negative charging

has led to a retarding of the primary electron beam. This retarding of incident PE is

correlated with a decrease of the maximum electron range R(E ′
0) within the insulating

sample.

In Fig.7 the time-dependent SE rates σ(t) are presented. Clearly we recognize the blocked

SEE to σ = 1 for E0 = 1 keV after 1 µs as well as the increase of SEE for E0 = 30 keV.

The latter one is caused by PE retarding due to the negative surface potential V0 < 0

and, consequently, by a higher SE rate σ(E ′
0). Because the backscattering (BE) fraction

of Al2O3 with η ' 0.18 is nearly constant the true SE rate δ0(E0 = 30keV, t = 0) = 0.35

has increased to δ(E ′
0 ' 8keV, t > 20ms) ≈ 0.82. Indeed, this is a drastic change of the

SE emission rate due to the negative charging within the insulators. The steady state

σ = 1 is obtained after about 25 ms.

Let us now investigate the influence of the grid potential VG (hitherto we have considered

only VG = 0). In Fig.7 we see a drastic change of the σ-slope with time when increasing

the grid potential VG to +10 V; + 100 V, and + 1000 V. Now, obviously, the surface

will be charged more positively and it takes more time until the surface potential V0 is

reaching the positive grid potential VG and starting the retarding process according to

Eq.(16) will set on.

Indeed, when looking to the time-dependent and final steady state charge distributions in

Figs.(8a) and (8b), respectively, we see that the grid potential considerably controls the

incorporated charge. For high grid voltages VG = +1000 V, even we get a plus-minus-

plus-minus charge distribution instead of a minus-plus-minus one obtaines for lower VG.
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Also the range of incorporated charges is increasing with VG. That indicates that the

surface potential V0 has become more positive and the incident beam energy is increased

by +eV0.

Generally we may state that the actual retarded or elevated electron beam energy E ′
0 is

diminished or increases by the surface potential V0

E ′
0 = E0 + eV0 (20)

Thus, in Fig.9 we have plotted the maximum range R versus the initial beam energy

E0 as given in Eqs.(2a) and (2b) and have compared it with the resulting actual range

R(E ′
0) obtained in the final steady state of irradiation, i.e. in the case of E0 = 30 keV

after t > 25 ms. Obviously, the observed value R(E ′
0) ' 0.9µm corresponds to an actual

retarded or enhanced beam energy E ′
0 ' 9 keV according to Eq.(20). Of course, this value

is expected from the surface potential V0 = −21 kV in context with Eqs.(20) and (2b).

Then let us check the other accessible quantity, the SE rate σ. In Fig.10 we have plot-

ted the initial SE rate σ0(E0) = σ(E0, t = 0), i.e. the real material-dependent SE rate

from fresh and non-charged samples. With our calculations we obtain a maximum of

the SE rate σ0(E0 =0.7keV) = 2.4. This corresponds approximately to the experimental

values presented by Seiler10 with σmax = 2.6 − 4.7, but it is considerably smaller than

the maximum value σmax ≈ 6.4 of Dawson40. The first sigma-unit point is found with

σ0(E
I
0 =50eV) = 1 and the second one at σ0(E

II
0 = 8.4keV) = 1.

Further on, in case of thick insulating samples the SE rate will approach very rapidly the

steady state with σ = 1. We see in Figs.9 and 10 that the negative charging for high

beam energies E0 = 30 keV never will approach so high values that the retarded electron

range R(E ′
0) would be comparable with the SE maximum escape depth of about 25 nm as

predicted by the Cazaux model7. This point is related to the fact, that the slowing-down
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of the electrons is mostly due to the negative surface voltage and less to an inner slowing-

down as described by J. Cazaux. Moreover, the retarded energy E ′
0 = 9 keV approaches

almost the second sigma-unit point E ′′
0 = 8.4 keV and the conventional bipolar model is

nearly fulfilled.

On the other hand, for low beam energies E0 = 1 keV and positive charging V0 > 0,

the initial SE rate σ0 > 1 will be suppressed very rapidly down to σ = 1 by a grounded

vacuum electrode or grid biased to VG = 0. So the surface potential approaches only small

positive values of V0 ≈ +(4...5) eV as we have seen also in Fig.6(a). But increasing the

voltage potential to VG = +1000 V, σ(E0) follows the surface potential up to V0 = +1002

V, i.e. to E ′
0 = 2002 eV, and drops then rapidly to the final steady state σ = 1. Also here

the bipolar model in its tendency is fulfilled but the positive charging is limited again by

the controlling grid voltage VG.

In order to prove the accessible quantities V0(t) and σ(t), we have chosen two experiments.

The first one is measuring the surface potential V0 by means of the x-ray bremsstrahlung

(BS) spectra, i.e. by the shift of the short wavelength threshold due to the negative surface

potential V0 and respective retarding of the PE beam according to Eq.(20). This method

has been proposed already by other authors, e.g. in Belhaj et al.6. In Fig.11 this effect is

demonstrated for the 3mm Al2O3 sample and E0 = 30 keV electron beam irradiation. We

observe the BS short wave limit at Ex = 13 keV; that corresponds to a negative surface

potential of V exp
0 = −17 kV. Comparing this with our simulation value of V0 = −21 kV

from Fig.6 and Fig.10 we recognize a worse isolation behavior of the real experimental

Al2O3 target than of the simulated one. Indeed, this was expected and, nevertheless, it

demonstrates the right tendency of huge negative charging of thick insulating samples

under high energy electron beam irradiation with σ0(E0) < 1. Concerning the second

17



accessible quantity σ(t), it can be deduced from the measurement of the overall target

support current IM
21. These results will be detailled elsewhere.

VI. CONCLUSIONS

The one-dimensional approach of ballistic electron and hole transport allows to simulate

the self-consistent charging-up process in bulk insulators. Because of the great thickness

of the insulating samples, the surface potential V0 changes very rapidly and is controlling

the further incorporation of charges. At high electron beam energies E0 = 30 keV the

surface potential becomes strongly negative and the electron beam is decellerated down

to E ′
0 = E0 + eV0 ≈ 9 keV near to the second sigma-unit value σ(EII

0 = 8.4keV) = 1.

Thus the bipolar model of opposite charging is nearly fulfilled. On the other hand, the

charge beneath the surface is positive because of the favoured SE escape and we obtain

a plus-minus-plus-minus spatial charge structure with prevailing minus parts within the

bulk insulator.

For low energy electron bombardment E0 ≈ 1 keV the rapid positive charging suppresses

a field-enhanced SE escape and the steady state with j(x, t) = const = 0 and σ = 1

produces a minus-plus-minus charge distribution. Now the surface potential is only weakly

positive and exceeds that of the grounded SEM chamber (VG = 0) only by V0 = +4.5 V.

But for higher grid potentials VG up to + 1000 V and E0 = 1 keV the positive charging

is much greater and approaches V0 ' VG. Thus the beam energy amounts E ′
0 = E0 + eVG

and tries to approach the second sigma-unit point EII
0 . Here the bipolar model also be-

comes valid.

The experimental methods of the bremsstrahlung shift allows us to measure the surface

potential V0. The experimental result is still in a sufficient agreement with our selfconsis-

18



tent simulation of the charging process.

ACKNOWLEDGEMENT
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CAPTIONS FOR THE FIGURES

Fig. 1 Electron irradiation of an insulating target in a scanning electron microscope

(SEM): I0 - incident PE current, σI0 - backscattered (BE) and secondary (SE)

part, ITE - tertiary electrons backscattered from the chamber, IS - surface

leakage current, IC - real conduction current, IP - instationary displacement

current due to charge trapping and incorporation, IM sample stage current.

Fig. 2 Scheme of currents in an insulating sample of thickness d during electron irra-

diation with primary electrons (PE). The currents of inner secondary electrons

(SE) and holes (H) are given in foreward (T: transmission) and in reverse (R)

direction, see Eq.(13). The total re-emission fraction σ = η+δ of backscattered

electrons (BE) and SE is diminished by tertiary electrons (TE)

Fig. 3 Low energy E0 = 1 keV electron irradiation and the related evolution a) of

internal currents j, b) charge distributions ρ, and c) field F ; incident current

density j0 = 10−5 A/cm2.

Fig. 4 High energy E0 = 30 keV electron irradiation and the related evolution of a)

internal currents j, b) charge distributions ρ, and c) field F ; incident current

density j0 = 10−5 A/cm2.

Fig. 5 Positively charged surface region due to forced SE escape in spite of high PE

energy E0 = 30 keV, but due to an overall negative repulsing charge; zoomed

in nm scale.
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Fig. 6 Surface potential V0 as a function of the irradiation time t ; with beam energies

a) E0 = 1 keV and b) 30 keV, and incident current densities j0 = 10−5 A/cm2,

please note the different voltage scales in V and kV.

Fig. 7 Rapid change of the secondary electron emission fraction σ = η + δ with

irradiation time t for E0 = 1 keV and 30 keV, respectively, and different

vacuum grid potentials VG. The initial value σ0(t → 0) corresponds to the non-

charged Al2O3 sample; the final steady state for the bulk sample (d = 3 mm)

should always approach σ = 1 ; (j0 = 10−5 A/cm2).

Fig. 8 Charge distributions ρ(x) for a low energy injection E0 = 1 keV and dif-

ferent vacuum grid potentials VG, a) in dependence on irradiation time for

VG = +1000 V ; b) final steady state distributions for different VG.

Fig. 9 Maximum range R(E0) of primary electrons in non-charged Al2O3 targets

(o) retarded by negative charging at E0 = 30 keV to a much lower value

E ′
0 ' 9 keV (•) as well as accellerated at E0 = 1 keV and VG = +1000 V to

E ′
0 ' 2000 keV (•).

Fig. 10 Initial rate (o) of secondary electrons σ0(E0) from Al2O3 as a function of the

PE energy E0 as well as its change by charging to σ(E ′
0) (•) (in context with

Eq.(20)); sample thickness d = 3 mm.

Fig. 11 Measurement of the negative surface potential V0 by means of the EDX

bremsstrahlung (BS) threshold shift: E ′
x = E0 +eV0 = E ′

0, initial beam energy

E0 = 30 keV.
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TABLE I. Material parameters of Al2O3 used in the present simulation

Al2O3 material parameters Unit Value Symbol References

Mass density (g/cm3) 3.98 ρ

Electrical permittivity 10 εr 32-33

Energy band gap (eV) 9 Eg 34

Mean ionization energy (eV) 28 Ei 23-24

Electron affinity (eV) 0.9 χ 35

SE mean attenuation length (nm) 5 λE,0 16

Hole mean attenuation length (nm) 2 λH,0 16

SE attenuation field factor (cm/MV) 4.6 βE 16

Hole attenuation field factor (cm/MV) 0.8 βH 16

e-h-recombination cross section (10−13 cm2) 1 SEH = SHE 36

Concentration of electron traps (1017 cm−3) 1-5 NE,0 20, 37-39

Concentration of hole traps not considered NH,0

Trapping cross section of electrons (10−15 cm2) 1 SEE 20, 37-39

Trapping cross section of holes not considered SHH
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