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Réesune

L'objet centrale de cette &se est 'utilisation de techniques de reformulations @g@m-
mation matématique. Les probmes d’optimisation et deédision peuvengtre decrits peci-
sement par une formulation com@gesde: paragtres nurdriques, variables de decision (leur
valeursétant determi@es gace au resultat d’un prés algorithmique), une ou plusieurs fonc-
tions objectives optimiser, et plusieurs ensembles de contraintes; famctbjectives et con-
traintes peuvengtre expringées explicitement comme functions de pagtnes et variables, ou
implicitement comme conditions sur les variables. €éments, c’esh dire pararatres, vari-
ables, fonctions objectives et contraintes, forment ugdage applé programmation maéma-
tique. Pour chaque praiine dongé d’optimisation ou écision, il y a d’habitude un nombre
infini de differents formulations de programmation n&ttatique possibles. Selon I'algorithme
utilisé pour les esoudre, formulations distinctes sont plus ou moins effisat/ou efficientes.
En outre, plusieurs sous-pr@phes ressortants de I'algorithme de solution peuvent eéxes
etre formués comme des prodines de programmation mathatique (apgles probémes aux-
iliaires). Cette tlse pesente uretude approfondi des transformations symboliques qui map-
pent des formulations de programmation néatlatique a leur formesquivalentes et autres
formulations relgs, et de leur impacte sur les algorithmes de solution.

Abstract

This thesis concerns the use of reformulation techniquesaithematical programming. Op-
timization and decision problems can be cast into a formariabvolving sets of known numer-
ical parameters, decision variables whose value is to eFmdéeted as a result of an algorithmic
process, one of more optional objective functions to benuged and various sets of constraints,
which can be either expressed explicitly as functions ofpdw@meters and variables, or as im-
plicit requirements on the variables. These elements, lygpagameters, variables, objective(s)
and constraints, form a language called mathematical anogring. There are usually many
different possible equivalent mathematical programmingniulations for the same optimiza-
tion or decision problem. Different formulations often foem differently according to the type
of algorithm employed to solve the problem. Furthermoréteel auxiliary problems which
may be useful during the course of the algorithmic soluticotpss may arise and be also cast
as mathematical programming formulations. This thesisiigadepth study of the symbolic
transformations that map a mathematical programming ftatian to its equivalent forms and
to other useful related formulations, and of their relagitmvarious solution algorithms.
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Chapter 1

Introduction

Optimization and decision problems are usually defined leyr imput and a mathematical

description of the required output: a mathematical entiityr\&n associated value, or whether
a given entity has a specified mathematical property or nbes& mathematical entities and
properties are expressed in the language of set theory,aftestin the ZFC axiomatic system

[55] (for clarity, a natural language such as English is ilg@amnployed in practice). The scope
of set theory language in ZFC is to describe all possible amttical entities, and its limits are

given by Gdel’'s incompleteness theorem.

Optimization and decision problems are special in the sthadhey are closely linked to a
particular algorithmic process designed to solve them:empoecisely, although the algorithm is
not directly mentioned in the problem definition, the maiasen why problems are cast is that
a solution to the problem is desired. In this respect thelusaigheoretical language, with all
its expressive powers, falls short of this requirementc#jally, no algorithm is so “generic”
that it can solve all problems formulated in terms of set tixedust to make an example, all
Linear Programming (LP) problems can be expressed in a &g®involving real numbers,
variables, a linear form to be minimized, a system of lineprations to be satisfied, and a set
of non-negativity constraints on the variables. This gattr language used for describing LPs
has much stricter limits than the set-theoretical languesgel in ZFC, of course. On the other
hand there exists an algorithm, namely the simplex algori24], which is generic enough to
solve any LP problem, and which performs well in practice.

In its most general terms, a decision problem can be exptesséollows: given a set/
and a subseb C W, decide whether a given € W belongs toD or not. Even supposing
that W has finite cardinality (so that the problem is certainly dabie), the only algorithm
which is generic enough to solve this problem is completer@ration, whose low efficiency
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renders it practically useless. Informally speaking, whetussing decidable problems and
solution algorithms, there is a trade-off between how péwés the language used to express
the problems, and how efficient the associated solutiorrighgo is.

Mathematical programming can be seen as a language whicbwisrful enough to ex-
press almost all practically interesting optimization aedision problems. Mathematical pro-
gramming formulations can be categorized according t@uarproperties, and rather efficient
solution algorithms exist for many of the categories. Theaetic scope of mathematical pro-
gramming is to define optimization and decision problemghasscope is narrower than that
of the set theoretical language of ZFC, according to the todfdprinciple mentioned above,
the associated generic algorithms are more efficient.

As in most languages, the same concept can be expressed ynwags. More precisely,
there are many equivalent formulations for each given grmob{what the term “equivalent”
means in this context will be defined later). Furthermor&ytgm algorithms for mathematical
programming formulations often rely on solving a sequeriabfferent problems (often termed
auxiliary problem3 related to the original one: although these are usuallyegatvalent to the
original problem, they may be relaxations, projection§inys, decompositions (among oth-
ers). The relations between the original and auxiliary [@wis are expressed in the literature
by means of logical, algebraic and/or transcendental sgpes which draw on the same fa-
miliar ZFC language. As long as theoretical statements arggbmade, there is nothing wrong
with this, for people are usually able to understand thajuage. There is, however, a big gap
between understanding the logical/algebraic relationssets of optimization problems, and
being able to implement algorithms using these problemaiiious algorithmic steps. Existing
data structures and code libraries usually offer numerataler than symbolic facilities. Sym-
bolic algorithms and libraries exist, but they are not psesbuilt to deal with optimization and
decision problems.

We shall illustrate what we mean by way of an example. CondiuerKissing Number
Problem (KNP) inD dimensions [54], i.e. the determination of the maximum nentf unit
D-dimensional spheres that can be arranged around a cenirdb«dimensional sphere. As
all optimization problems, this can be cast (by using a biseargument) as a sequence of
decision problems on the cardinality of the current spheogsiguration. Namely, given the
positive integersD (dimension of Euclidean space) and is there a configuration oV unit
spheres around the central one? For any fikedhe answer will be affirmative or negative
depending on the value @¥. The highestV such that the answer is affirmative is the kissing
number. Now, the decision problem version of the KNP can Ise @sia nonconvex Nonlinear
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Programming (NLP) feasibility problem as follows. Foralk N, letx; = (x;1,...,xip) €
RP be the center of théth sphere. We look for a set of vectofs; | i < N} satisfying the
following constraints:

Vi<N ||l = 2
Vi<j<N |lm—al > 2
Vi<N —2<z < 2

It turns out that this problem is numerically quite diffictdtsolve, as it is very unlikely that the
local NLP solution algorithm will be able to compute a val@hsible starting solution straight
away. Failing to find an initial feasible solution means ttiet solver will immediately abort
without having made any progress. Most researchers witlesaxperience in NLP solvers
(such as e.g. SNOPT [36]), however, will immediately refalate this problem into a more
computationally amenable form by squaring the norms to igedfra potentially problematic
square root, and treating the reverse convex constrints- ;|| > 2 as soft constraints by
multiplying the right hand sides by a non-negative scaliagable«, which is then maximized:

max o (1.1)

Vi< N |a])? = 4 (1.2)

Vi<ji<N |lz;—z* > 4a. (1.3)

Vi<N —-2<uz < 2 (1.4)

a > 0. (1.5)

In this form, finding an initial feasible solution is trividor examplez; = (2,0,...,0) for all

i < N will do. Subsequent solver iteration will likely be able tmopide a solution. Should
the computed value at be > 1, the solution would be feasible in the hard constraints, too
Currently, we are aware of no optimization language enviremnthat is able to perform the
described reformulation automatically. Whilst this is ndbwge limitation for NLP experts,
people who simply wish to model a problem and get its solutidfail to obtain one, and may
even be led into thinking that the formulation itself is iag&ble.

Another insightful example of the types of limitations wedereto can be drawn from the
KNP. We might wish to impose ordering constraints on soméefpheres to reduce the num-
ber of symmetric solutions. Ordering spheres packed on ergath surface is hard to do in Eu-
clidean coordinates, but it can be done rather easily inrg@ieoordinates, by simply stating
that the value of a spherical coordinate of tfth sphere must be smaller than the corresponding
value in thej-th sphere. We can transform a Euclidean coordinate vector(zy, ..., xp) in
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D-spherical coordinate, 94, ..., 9p_1) such thap = ||z|| andd € [0,27]P~! by means of
the following equations:

p = |lzl| (1.6)
D—1

VE<D x, = psindy_y [] cosv (1.7)
h=k

(this yields another NLP formulation of the KNP). ApplyingetD-spherical transformation is
simply a matter of symbolic term replacement and algebrianplfication, and yet no opti-
mization language environment offers such capabilities.c&yying things further, we might
wish to devise an algorithm that dynamically inserts or reesocconstraints expressed in either
Euclidean or spherical coordinates depending on the stéthe current solution, and re-solves
the (automatically) reformulated problem at each iteratibhis may currently be done (up to a
point) by optimization language environments such as AMB4],[provided all constraints are
part of a pre-specified family of parametric constraints.afing new constraints by symbolic
term replacement, however, is not a task that can currestbabried out automatically.

The limitations emphasized in the KNP example illustratezacfical need for very sophisti-
cated software including numerical as well as symbolic @ilgms, both applied to the unique
goal of solving optimization problems cast as mathemapcagramming formulations. The
current state of affairs is that there are many numericahopation solvers and many Com-
puter Algebra Systems (CAS) — such as Maple or Mathematica -ese/kfficiency is severely
hampered by the full generality of their capabilities. Imghwe would ideally need (small)
parts of the symbolic kernels driving the existing CASes tadmbined with the existing opti-
mization algorithms, plus a number of super-algorithmsabépof making automated, dynamic
decisions on the type of reformulations that are needed poavwe the current search process.

Although the above paradigm might seem far-fetched, it do&gct already exist in the form
of the hugely successful CPLEX [47] solver targeted at sglWlixed-Integer Linear Program-
ming (MINLP) problems. The initial formulation provided ltlye user is automatically simpli-
fied and improved with a considerable number of pre-prongssteps which attempt to reduce
the number of variables and constraints. Thereafter, dt eade of the Branch-and-Bound
algorithm, the formulation may be tightened as needed bsriimg and removing additional
valid constraints, in the hope that the current relaxedtgoiwf the (automatically obtained)
linear relaxation is improved. Advanced users may of codesgde to tune many parameters
controlling this process, but practitioners who simply ch@epractical answer can simply use
default parameters and to let CPLEX decide what is best. Bliatuthe task carried out by
CPLEX is greatly simplified by the assumption that both olyediunction and constraints are
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linear forms, which is obviously not the case in a generalinear setting.

In this thesis we attempt to move some steps in the directi@ndowing general mathe-
matical programming with the same degree of algorithmiom@ugition enjoyed by linear pro-
gramming. We propose: (a) a theoretical framework in whicthamatical programming re-
formulations can be formalized in a unified way, and (b) aditere review of the most suc-
cessful existing reformulation and relaxation techniguesmathematical programming. Since
an all-comprehensive literature review in reformulatienhtniques would extend this thesis to
possibly several hundreds (thousands?) pages, only alpastiew has been provided. In this
sense, this should be seen as “work in progress” towardsddiie foundations to a computer
software which is capable of reformulating mathematicagpamming formulations automat-
ically. Note also that for this reason, the usual matherahtiotations have been translated to
a data structure framework that is designed to facilitar@mater implementation. Most im-
portantly, “functions” — which as mathematical entitieg amterpreted as maps between sets
— are represented by expression trees: what is meant by gressxonz + y, for example,
is really a directed binary tree on the vertides, z, y} with arcs{(+, z), (+,y)}. For clarity
purposes, however, we also provide the usual mathemagicglibges.

One last (but not least) remark is that reformulations caseasm as a new way of expressing
a known problem. Reformulations are syntactical operatibasmay add or remove variables
or constraints, whilst keeping the fundamental structéite@®problem optima invariant. When
some new variables are added and some of the old ones areagnwe can usually try to
re-interpret the reformulated problem and assign a meaoitige new variables, thus gaining
new insights to the problem. One example of this is given iot.S24.2. One other area in
mathematical programming that provides a similarly cledatronship between mathematical
syntax and semantics is LP duality with the interpretatibreduced costs. This is important
insofar as it offers alternative interpretations to knowalgpems, which gains new and useful
insights.

The rest of this thesis is organized as follows. In Chapter 2repose a general theoret-
ical framework of definitions allowing a unified formalizati of mathematical programming
reformulations. The definitions allow a consistent treatha# the most common variable and
constraint manipulations in mathematical programmingiaations. In Chapter 3 we present
a systematic study of a set of well known reformulations. te$ormulations are listed as
symbolic algorithms acting on the problem structure, altffothe equivalent transformation in
mathematical terms is given for clarity purposes. In Chaptee present a systematic study
of a set of well known relaxations. Again, relaxations aséeld as symbolic algorithms acting
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on the problem structure whenever possible, the equivatatihematical transformation being
given for clarity.



Chapter 2

General framework

In Sect. 2.1 we formally define what a mathematical programynfiormulation is. In Sect. 2.2
we discuss the expression tree function representatiorSett. 2.3 we discuss some types
of reformulations and establish some links between thentt. 24 lists the most common
standard forms in mathematical programming.

2.1 A data structure for mathematical programming formu-
lations

In this Chapter we give a formal definition of a mathematicalgpamming formulation in such
terms that can be easily implemented on a computer. We thersgveral examples to illustrate
the generality of our definition. We refer to a mathematicalgpamming problem in the most
general form:
min f(x)
g(x) § b (2.2)
r € X,
where f, g are function sequences of various sizes an appropriately-sized real vector, and
X is a cartesian product of continuous and discrete intervals

The precise definition of a mathematical programming foatiah lists the different formu-
lation elements: parameters, variables having types andds) expressions depending on the
parameters and variables, objective functions and conm@epending on the expressions. We
let P be the set of all mathematical programming formulationsl, lhbe the set of all matri-
ces. This is used in Defn. 2.1.1 to define leaf nodes in matheah@&xpression trees, so that
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the concept of a formulation can also accommodate multilewd semidefinite programming
problems.

2.1.1 Definition

Given an alphabet consisting of countably marstphanumeric named/, and operator sym-
bolsO,, amathematical programming formulatidn is a 7-tuple’P,V,&E,O,C, B, T), where:

e P C N, isthe sequence plarameter symbolsach element € P is aparameter name
e V C N, is the sequence @friable symbolseach element € V is avariable name

e £ is the set ofexpressions each element € & is a Directed Acyclic Graph (DAG)
e = (V., A.) such that:

(a) V. C L is a finite set

(b) there is a unique vertex € V, such thav—(r.) = () (such a vertex is called the
root vertey

(c) verticesv € V, such that ™ (v) = () are calledeaf verticesand their set is denoted
by \(e); all leaf vertices) are such that ¢ P UV URUPUM

(d) forallv € V, such thab™(v) # 0, v € O,

(e) two weightingsy,{ : V. — R are defined ofv,: x(v) is thenode coefficienand
¢(v) is thenode exponentf the nodev; for any vertexv € V., we letr(v) be the
symbolic ternof v: namely,y = x(v)7(v)5®).

elements of are sometimes callexkpression treesiodes € O, represent an operation
on the nodes in™(v), denoted by (67 (v)), with output inR;

e O C {—1,1} x & is the sequence abjective functionseach objective function € O
has the form(d,, f,) whered, € {—1,1} is theoptimization direction(—1 stands for
minimization,+1 for maximization) and, € E;

e C C E&XxS xR (where§S = {—1,0,1}) is the sequence afnstraintsc of the form
(€cy Se, be) Withe. € E|s. € S,b. € R:

e <b. If s,.=—1
c=<{ e.=b, if s.=0
€. >b, if s.=1;

e B C R x RV s the sequence efariable bounds for all v € V let B(v) = [L., U,]
with L,,U, € R;

e T C {0,1,2}I is the sequence eariable typesfor all v € V, v is called acontinuous
variableif 7 (v) = 0, aninteger variableif 7 (v) = 1 and abinary variableif 7 (v) = 2.
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We remark that for a sequence of variables. V we write 7 (z) and respectively3(z) to
mean the corresponding sequences of types and respedimehyd intervals of the variables
in z. Given a formulation®? = (P,V,&,0,C,B,T), thecardinality of P is |P| = |V|. We
sometimes refer to a formulation by calling it aptimization problenor simply aproblem

2.1.2 Definition
Any formulation () that can be obtained by by a finite sequence of symbolic operations
carried out on the data structure is callgatablem transformation

2.1.1 Examples

In this section we provide some explicitly worked out exaesghat illustrate Defn. 2.1.1.

2.1.1.1 A quadratic problem

Consider the problem of minimizing the quadratic fadm} + 222 + 222 + 322 + 222 + 222 —
20109 — 20103 — 20104 — 209T3— 20475 — 204T6— 2X5T6 SUbjeCt tory +xo+23+24+25+26 = 0
andz; € {—1,1} for all i < 6. For this problem,

o P=10;

o V= (71,29, T3, T4, T5, o)

e & = (e1,e2) Whereey, e; are the graphs shown in Fig. 2.1;

e O=(—1,e);
o C=((e2,0,0));
o B=([-1,1],[-1,1],[-1,1},[-1,1], [-1, 1], [-1,1]);

o T =(2,2,2,222).

2.1.1.2 Balanced graph bisection

Example 2.1.1.1 is a (scaled) mathematical programmingutation of a balanced graph bi-
section problem instance. This problem is defined as follows
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Figure 2.1: The graphs (above) and, (below) from Example 2.1.1.1.

BALANCED GRAPH BISECTION PROBLEM (BGBP). Given an undirected graph
G = (V, E) without loops or parallel edges such th&d is even, find a subset
U C V such thatU| = '—‘2{' and the set of edges = {{u,v} € E|ue U,v g U}

is as small as possible.

The problem instance considered in Example 2.1.1.1 is showiy. 2.2. To all vertices € V/

we associate variables=! ! Y _ The number of edges ifi is counted byt T; —
0 1¢U 4
{i.jter

z;)?. The fact thatU| = '21‘ is expressed by requiring an equal number of variables atl 1lgn
i.e. Z?:l z; = 0.

We can also express the problem in Example 2.1.1.1 as aydartease of the more general

optimization problem:
min, z' Lz
S.t. xl1 = 0
r € {-1,1}5,
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@/

Figure 2.2: The BGBP instance in Example 2.1.1.1.

where

3 -1 -1 -1 0 0
-1 2 -1 0 0 0
-1 -1 2

I 0O 0 0
-1 0 0 3 -1 -1
o o0 o0 -1 2 -1
o 0 0 -1 -1 2

andl = (1,1,1,1,1, 1)T. We represent this class of problems by the following matktesal
programming formulation:

o P= (L |1<i,j<6);
o V = (z1,%s, 3,24, X5, Tp);

o £ = (€], e2) Wheree] is shown in Fig. 2.3 and, is shown in Fig. 2.1 (below);

O = (-1,¢));

o C=((e2,0,0));

B = ([_17 1}7 [_1’ 1]7 [_17 1]’ [_17 1]7 [_17 1]7 [_17 1});

o« T =(2,2,2,2,22).

2.1.1.3 The Kissing Number Problem
The kissing number problem formulation (1.1)-(1.5) is dkofes:

e P=(N,D),
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Figure 2.3: The graph from Example 2.1.1.2L;, = L;; + Ly; for all 4, j.

o V=(z24|1<i<NAL1<EkZD)

o & = (fhjg; | 1 <i < j < N), wheref is the expression tree far, h; is the
expression tree fdfz;||* for all j; < N, andg;; is the expression tree fgjr; — z;||* — 4«
foralli < j < N;

e O=(1,f);
® C=((hi;0,4) | i < N)U((g:5,1,0) [ i <j < N);
o B=[-22NP;

o 7 ={0}P.
As mentioned in Chapter 1, the kissing number problem is defasefollows.

Ki1ssSINGNUMBER PROBLEM (KNP). Find the largest numbé¥ of non-overlapping
unit spheres iR” that are adjacent to a given unit sphere.

The formulation of Example 2.1.1.3 refers to the decisiaisiom of the problem: given integers
N andD, is there an arrangement df non-overlapping unit spheresIR’ adjacent to a given
unit sphere? An example fo¥Y = 12 andD = 3 is shown in Fig. 2.4.
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Figure 2.4: The Kissing Number Problem in 3D. A configuratieith 12 balls found by a
Variable Neighbourhood Search global optimization solver

2.2 A data structure for mathematical expressions

Given an expression tree DAG= (V, A) with root noder(e) and whose leaf nodes are ele-
ments ofR or of M (the set of all matrices), thevaluationof e is the (numerical) output of the
operation represented by the operator in no@pplied to all the subnodes of(i.e. the nodes
adjacent ta-); in symbols, we denote the output of this operation-by"(r)). Naturally, the
arguments of the operator must be consistent with the apemaaning. We remark that for
leaf nodes belonging t8 (the set of all formulations), the evaluation is not defirted;problem

in the leaf node must first be solved and a relevant optimalevgd.g. an optimal variable value,
as is the case with multilevel programming problems) mysiaee the leaf node.

For anye € E, theevaluation treeof ¢ is a DAGe = (V, A) whereV = {v € V | |6+ (v)] >
O0VoeveR}UI{z(v) | |07 (v)] =0Av € V} (in short, the same d8 with every variable leaf
node replaced by the corresponding vate)). Evaluation trees are evaluated by Alg. 1. We
can now naturally extend the definition of evaluatiore @it a pointz to expression trees whose
leaf nodes are either ivi or R.
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2.2.1 Definition
Given an expression € E with root noder and a point:, theevaluatione(z) of e atx is the
evaluation-(0(r)) of the evaluation tree.

Algorithm 1 The evaluation algorithm for expression trees.
doubl e Eval(hode v) {
doubl e p;
if (veOp){
/l v is an operator
array a;
Vueot(v){
a(u) =Eval();
}
p = x(v)v(a)";
} else{
/Il v is a constant value

p = x(v)v*);

}

returnp;

}

We consider a sufficiently rich operator $2t including at leastt, x, power, exponential,
logarithm, trigonometric and inverse trigonometric fuaos (for real arguments) and inner
product (for matrix arguments). Note that since any tersrweighted by a multiplier coefficient
x(t) there is no need to employ -a operator, for it suffices to multiply(¢) by —1 in the
appropriate term(g) a divisionu /v is expressed by multiplying by v raised to the power 1.
Depending on the problem form, it may sometimes be usefuhtle O, with other (more
complex) terms. In general, we view an operatoilUp as an atomic operation on a set of
variables with cardinality at least 1.

2.2.1 Standard form

Since in general there is more than one way to write a matheahaxpression, it is useful
to adopt a standard form; whilst this does not resolve alligaities, it nonetheless facilitates
the task of writing symbolic computation algorithms actimg the expression trees. For any
expression nodein an expression tree= (V, A):

e if tis asum:
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1. |10%(t) > 2
2. no subnode of may be a sum (sum associativity);

3. no pair of subnodes, v € §*(¢t) must be such that(u) = 7(v) (i.e. like terms must
be collected); as a consequence, each sum only has one nabrterm for each
monomial type

4. a natural (partial) order is defined 6n(t): for u,v € §*(t), if u,v are monomials,
u, v are ordered by degree and lexicographically

e if £is a product:

1. |0%(t) > 2

2. no subnode of may be a product (product associativity);

3. no pair of subnodes, v € 61 (¢) must be such that(u) = 7(v) (i.e. like terms must
be collected and expressed as a power)

e if tis apower:

1. [0 (t)] =2
2. the exponent may not be a constant (constant exponeregaessed by setting the
exponent coefficierg(t) of a termt)

3. the natural order ofi (¢) lists the base first and the exponent later.

The usual mathematical nomenclature (linear forms, patyats, and so on) applies to ex-
pression trees.

2.3 Theoretical results

Consider a mathematical programming formulatidn= (P, V. &, O,C,B,7) and a function
r : YV — RIVI (calledpoint) which assigns values to the variables.

2.3.1 Definition
A point x istype feasiblef:

0
1
2

R if 7T(v)
z(v) € { Z if 7T(v)

{Lv,Us} if T(v)
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forallv € V; x isbound feasiblef x(v) € B(v) for allv € V; z is constraint feasiblef for all
c € C we havee.(x) < b.if s, = —1, e.(x) = b, if s, = 0, ande.(x) > b. if s. = 1. A pointx
isfeasible inP if it is type, bound and constraint feasible.

A point x feasible inP is also called deasible solutiorof P. A point which is not feasible is
calledinfeasible Denote byF( P) the feasible points aoP.

2.3.2 Definition

A feasible pointr is alocal optimumof P with respect to the objective € O if there is

a non-empty neighbourhool of x such that for all feasible pointg # x in N we have
dofo(x) > dofo(y). A local optimum isstrict if d,f,(z) > d,f,(y). A feasible point: is a

global optimumof P with respect to the objective € O if d,f,(x) > d,f,(y) for all feasible

pointsy # x. A global optimum isstrict if d, f,(x) > d,fo(y).

Denote the set of local optima @t by £(P) and the set of global optima d? by G(P). If
O(P) = 0, we defineC(P) = G(P) = F(P).

2.3.3 Example

The pointxz = (—1,—1,—1,1,1,1) is a strict global minimum of the problem in Example
2.1.1.1andG| =1 asU = {1,2,3} andV ~\ U = {4, 5,6} is the only balanced partition &f
leading to a cutset size of 1.

It appears from the existing literature that the term “refalation” is almost never formally
defined in the context of mathematical programming. The ggmensensus seems to be that
given a formulation of an optimization problem, a reforntiga is a different formulation hav-
ing the same set of optima. Various authors make use of thirstiten without actually making
it explicit, among which [98, 103, 116, 72, 30, 38, 18, 87, 38]. Many of the proposed re-
formulations, however, stretch this implicit definitionnsewhat. Liftings, for example (which
consist in adding variables to the problem formulationyally yield reformulations where an
optimum in the original problem is mapped to a set of optimdnereformulated problem (see
Sect. 3.1.3.1). Furthermore, it is sometimes noted howameflation in this sense is overkill
because the reformulation only needs to hold at global @itiyn1]. Furthermore, reformula-
tions sometimes really refer to a change of variables, dgisase in [82]. Throughout the rest
of this section we give various definitions for the concepteddbrmulation, and we explore the
relations between them. We consider two problems

P = (P(P).V(P).£(P),0(P),C(P), B(P), T(P)

Reformulations have been formally defined in the contexdpifmization problemg$which
are defined as decision problems with an added objectivaifum)c As was noted in Ch. 1, we
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see mathematical programming as a language used to deandb®/entually solve optimiza-
tion problems, so the difference is slim. The following deiam is found in [12].

2.3.4 Definition

Let P, andPg be two optimization problems. AeformulationB(-) of P, asPg is a mapping
from P, to Pg such that, given any instance of P, and an optimal solution oB(A), an
optimal solution of A can be obtained within a polynomial ambof time.

This definition is directly inspired to complexity theorydaNP-completeness proofs. In the
more practical and implementation oriented context of thesis, Defn. 2.3.4 has one weak
point, namely that of polynomial time. In practice, depewdon the problem and on the in-
stance, a polynomial time reformulation may just be too slowthe other hand, Defn. 2.3.4
may bar a non-polynomial time reformulation which might tually carried out within a
practically reasonable amount of time. Furthermore, arnefitation in the sense of Defn. 2.3.4
does not necessarily preserve local optimality, which miglsome cases be a desirable refor-
mulation feature. It should be mentioned that Defn. 2.3.4 praposed in a paper that was more
theoretical in nature, using an algorithmic equivalendg/ben problems in order to attempt to
rank equivalenNP-hard problems by their solution difficulty.

The following definition was proposed by H. Sherali [91].
2.3.5 Definition

A problem() is areformulationof P if:

e there is a bijection : F(P) — F(Q);

7

* |O(P)]| =]0(@Q)

e forallp = (e,,d,) € O(P), thereis aj = (e,,d,) € O(Q) such that, = f(e,) where
f Is a monotonic univariate function.

Defn. 2.3.5 imposes a very strict condition, namely thedbigen between feasible regions of
the original and reformulated problems. Although this i3 $trict for many useful transforma-
tions to be classified as reformulations, under some regt@rnditions oo it presents some
added benefits, such as e.g. allowing easy correspondegivesgm partitioned subspaces of the
feasible regions and mapping sensitivity analysis re$udta reformulated to original problem.
In the rest of the section we discuss alternative definitiwhigh only make use of the con-

cept of optimum. These encompass a larger range of tranafams as they do not require a
bijection between the feasible regions, the way Defn. 208¢&s.
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2.3.6 Definition
Q is alocal reformulationof P if there is a functionp : F(Q)) — F(P) such that (ap(y) €

L(P) for ally € L(Q), (b) ¢ restricted toL(Q) is surjective. This relation is denoted by
P =<, Q.

Informally, a local reformulation transforms all (localptima of the original problem into op-
tima of the reformulated problem, although more than onernefilated optimum may corre-
spond to the same original optimum. A local reformulatioesiaot lose any local optimality
information and makes it possible to map reformulated optirack to the original ones; on
the other hand, a local reformulation does not keep trackaifaiity: some global optima in
the original problem may be mapped to local optima in therratdated problem, or vice-versa
(see Example 2.3.7).

2.3.7 Example

Consider the problen? = [mzinz ]sin(x) and@ = [11121112 ] 5@ + sin(x). Itis easy to verify
xe|—2m,2m xe|—2m,21

that there is a bijection between the local optim&)oénd those oP (see Fig. 2.5). However,

althoughy) has a unique global optimum, every local optimuniis global (hence no mapping

cannot be surjective).

Figure 2.5: Plots ofin(z) andiz + sin(x).

2.3.8 Definition
@ is aglobal reformulationof P if there is a functionp : F((Q)) — F(P) such that (ap(y) €
G(P)forally € G(Q), (b)y restricted taj (Q) is surjective. This relation is denoted By<, ().

Informally, a global reformulation transforms all globgbtona of the original problem into
global optima of the reformulated problem, although mowntbne reformulated global opti-
mum may correspond to the same original global optimum. &leformulations are desirable,
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in the sense that they make it possible to retain the usdiuinration about the global optima
whilst ignoring local optimality. At best, given a difficytroblem P with many local minima,
we would like to find a global reformulatiof where£(Q) = G(Q).

2.3.9 Example y
Consider a problen with O(P) = {f}. Let@ be a problem such tha&?(Q) = {f} and

F(Q) = con( F(P)), where conyF(P)) is the convex hull of the points ¢f(P) andf is the
convex envelope of over the convex hull ofF(P) (in other words,f is the greatest convex
function underestimating on F(P)). Since the set of global optima &f is contained in the
set of global optima of) [44], the convex envelope is a global reformulation.

Unfortunately, finding convex envelopes in explicit formnist easy. A considerable amount
of work exists in this area: e.g. for bilinear terms [80, @ijrtear terms [81], fractional terms
[108], monomials of odd degree [71, 59] the envelope is knowaxplicit form (this list is not
exhaustive). See [106] for recent theoretical results amchebibliography.

2.3.10 Definition
@ is anopt-reformulationof P (denoted byP < (Q)) if there is a functionp : F(Q) — F(P)
such thatP? <, Q andP <, Q.

This type of reformulation preserves both local and glolpgiloality information, which makes
it very attractive. Even so, Defn. 2.3.10 fails to encomphsse problem transformations that
eliminate some global optima whilst ensuring that at leas global optimum is left. Such
transformations are specially useful in Integer Prograngrproblems having a lot of symmetric
optimal solutions: restricting the set of global optima utls cases may be beneficial. One
such example is the pruning of Branch-and-Bound regions baséte symmetry group of the
problem presented in [78]: the set of cuts generated by theepure fails in general to be a
global reformulation in the sense of Defn. 2.3.8 becausentimber of global optima in the
reformulated problem is smaller than that of the originalgem.

2.3.11 Lemma
The relations<, <1, < are reflexive and transitive, but in general not symmetric.

Proof. For reflexivity, simply takep as the identity. For transitivity, leP < ¢ < R with
functionsy : F(Q) — F(P) andy : F(R) — F(Q). Thend = ¢ o ¢ has the desired
properties. In order to show that is not symmetric, consider a problemwith variablesz
and a unique minimum* and a problend) which is exactly likeP but has one added variable
w € [0,1]. Itis easy to show thaP < @) (takey as the projection ofz, w) onz). However,
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since for allw € [0, 1] (z*,w) is an optimum of@, there is no function of a singleton to a
continuously infinite set that is surjective. 0

Given a pair of problem®, Q where<, <1, < are symmetric on the pair, we céllasymmetric
reformulationof P. We remark also that by Lemma (2.3.11) we can compose elanyent
reformulations together to create chained reformulat{ses Sect. 3.4 for examples).

Continuous reformulations are of an altogether differepety These are based on a con-
tinuous mapr (invertible on the variable domains) acting on the contiicelaxation of the
feasible space of the two problems.

2.3.12 Definition
For P, Q having the following properties:

(a) |P| =n, |Q| =m,
(b) V(P) =z, V(Q) =y,

(c) O(P) = (f,d),0(Q) = (f',d") wheref is a sequence of expression<ifP) andd is a
vector with elements ig—1,1} (and similarly forf’, d'),

(d) C(P) = (9,—1,0),C(Q) = (¢, —1,0) whereg is a sequence of expression<ifP), 0
(resp.1) is a vector of Os (resp. 1s) of appropriate size (and siiyifar ¢'),

(e) f, [ are continuous functions amndg’ are sequences of continuous functions,

Q) is acontinuous reformulatiomf P with respect to aeformulating bijectionr (denoted by
P =, Q)if r:R" — R™ is a continuous map, invertible on the variable domais., B(z:),
suchthatf’or = f, g o = g andB(y) = 7(B(x)), and such that™! is also continuous.

It is easy to show that is an invertible mapF(P) — F(Q). Change of variables usually
provide a continuous reformulations. For example, (1167 yield a continuous invertible

map 7 that provides a continuous reformulation of the KNP in pa@aordinates. Continuous

reformulations are in some sense similar to reformulatiortke sense of Defn. 2.3.5: they are
stronger, in that they require the invertible mapping to tetiouous; and they are weaker, in
that they impose no additional condition on the way the dbjedunctions are reformulated.

2.3.13 Lemma
~, IS an equivalence relation.
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Proof. Takingr as the identity shows reflexivity, and the fact thas a bijection shows sym-
metry. Transitivity follows easily by composition of refaulating bijections. O

In the next results, we underline some relations betwederdiit reformulation types.

2.3.14 Lemma
If P ~, Q with |P|=n,|Q| =m, forallx € R™ which is bound and constraint feasiblel
7(z) is bound and constraint feasibleGh

Proof. Suppose without loss of generality that the constraintstemdds forP can be ex-
pressed ag(z) < 0 for x € R"™ and those fo) can be expressed g§y) < 0 fory € R™.

Theng'(y) = ¢'(7(z)) = (¢ o 7)(z) = g(x) < 0. m

2.3.15 Proposition

If P~, QwithV(P) =2xV(Q) =y, |P| =n]|Q =m, |OP)] =]0Q)] =1
(f,d) is the objective function oP and(f’,d’) is that ofQ, d = d', T (z) = 0,7 (y)
7 is a bijectionC(P) — L(Q) andG(P) — G(Q).

such that
=0, then

Proof. Letz € L(P). Thenthere is a neigbourhodd P) of z such that for alk’ € N(P) with
x' € F(P)we havedf (z') < df(z). Sincer is a continuous invertible mapN (Q) = 7(N(P))
is a neighbourhood of = 7(z) (so7~'(N(Q)) = N(P)). Forally € F(Q), by Lemma
2.3.14 and because all problem variable are continuougy’) € F(P). Hence for ally’ €
N@Q)NF(Q), o' = 77 (y) € N(P) N F(P). Thus,d f'(yf) = df'(r(a)) = d(f' o 7)(a') =
df(') < df(x) = d(fo7m ') (y) = df'(y). Thus for allz € L(P), 7(z) € L(Q). The
same argument applied to! shows that for aly € £(Q), 7~!(y) € L(P); sot restricted to
L(P) is a bijection. As concerns global optima, let € G(P) andy* = 7(z*); then for all
y € F(Q) withy = 7(z), we haved'f'(y) = d'f'(7(x)) = d(f o 7)(x) = df () < df (z7) =
d'(for H(y*) = d'f'(y*), which shows that* € G(Q). The same argument appliedto!
shows that- restricted toG(P) is a bijection. O

2.3.16 Theorem

If P~, QwithV(P)=2zV(Q) =y, |P|=n,|Q =m,|O(P) =|0(Q)| = 1 such that
(f,d) is the objective function oP and(f',d') is that ofQ, d = d’', T (z) = 0,7 (y) = 0, then
P < QandQ < P.

Proof. The fact thatP < @ follows from Prop. 2.3.15. The reverse follows by considgri

1 O
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2.3.17 Proposition

Let P, Q) be two problems with’(P) = z,V(Q) =y, |P| = n,|Q| =m, |O(P)| = |0(Q)| =1
such that f, d) is the objective function oP and(f’,d’) is that ofQ, d = d’', L(P) andL(Q)
both consist of isolated points in the respective Euclideaologies, and assunie < ) and
Q) < P. Then there is a continuous invertible mapF(P) — F(Q).

Proof. SinceP < (@ there is a surjective functiop : £(Q)) — L(P), which implies|£(Q)| >
|L(P)|. Likewise, since) < P there is a surjective functiop : £(P) — L(Q), which
implies|L(P)| > |£(Q)]. This yields|L(P)| = |£(Q)|, which means that there is a bijection
7: L(P) — L(Q). BecauseL(P) C R" andL(Q) € R™ only contain isolated points, there is
a way to extend to R” so that it is continuous and invertible on the@ariable domains, and so
that~—! enjoys the same properties (defina the natural way on the segments between pairs
of points in£(P) and “fill in the gaps”). O

In summary, continuous reformulations of continuous peots are symmetric reformula-
tions, whereas symmetric reformulations may not necdgdaei continuous reformulations.
Furthermore, continuous reformulations applied to diecproblems may fail to be opt-re-
formulations. This happens because integrality conggaln not transform with the map
along with the rest of the problem constraints.

2.3.18 Definition
Any problem() that is related to a given problei by a formulaf(Q, P) = 0 wheref is a
computable function is called auxiliary problemwith respect taP.

Deriving the formulation of an auxiliary problem may be adtask, depending ofi. The most
useful auxiliary problems are those whose formulation canldrived algorithmically in time
polynomial in| P|.

2.4 Standard forms in mathematical programming

Solution algorithms for mathematical programming proldaad a formulation as input and
attempt to compute an optimal feasible solution as outpatufslly, algorithms which exploit
problem structure are usually more efficient than thosedbatot. In order to be able to exploit
the structure of the problem, solution algorithms solvebpgms that are cast instandard form
that emphasizes the useful structure. We remark that gasfimoblem in a standard form is an
opt-reformulation. A good reformulation framework shoblel aware of the available solution
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algorithms and attempt to reformulate given problems ineorhost appropriate standard form.
In this section we review the most common standard forms.

2.4.1 Linear Programming

A mathematical programming problemis a Linear Programming (LP) problem if (&| = 1
(i.e. the problem only has a single objective function);dlg a linear form for alk € £; and
(¢) 7 (v) = 0 (i.e.v is a continuous variable) for all € V.

An LP is in standard form if (ay. = 0 for all constraintsc € C (i.e. all constraints are
equality constraints) and (I§(v) = [0, +oo] for all v € V. LPs are expressed in standard form
whenever a solution is computed by means of the simplex rde@]. By constrast, if all
constraints are inequality constraints, the LP is knownetanlzanonical form

2.4.2 Mixed Integer Linear Programming

A mathematical programming problefis a Mixed Integer Linear Programming (MILP) prob-
lem if () |O| = 1; and (b)e is a linear form for alk € &.

A MILP is in standard form ifs, = 0 for all constraints: € C and if B(v) = [0, +oc] for all

v € V. The most common solution algorithms employed for solvindL®R& are Branch-and-
Bound (BB) type algorithms [47]. These algorithms rely on remaly partitioning the search
domain in a tree-like fashion, and evaluating lower and ujyoeinds at each search tree node
to attempt to implicitly exclude some subdomains from cdestion. BB algorithms usually
employ the simplex method as a sub-algorithm acting on aiiatyxproblem, so they enforce
the same standard form on MILPs as for LPs. As for LPs, a MILRmetall constraints are
inequalities is ircanonical form

2.4.3 Nonlinear Programming

A mathematical programming problef is a Nonlinear Programming (NLP) problem if (a)
|O] =1and (b)T (v) =0forallv e V.

Many fundamentally different solution algorithms are ¢aalie for solving NLPs, and most
of them require different standard forms. One of the moselyidised is Sequential Quadratic
Programming (SQP) [36], which requires problem constsair C to be expressed in the form
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le <c<uc.withl.,u. € RU{—00,+0c}. More precisely, an NLP is in SQP standard form if
forall c € C (a) s. # 0 and (b) there ig’ € C such thakt, = e, ands. = —s..

2.4.4 Mixed Integer Nonlinear Programming

A mathematical programming problefis a Mixed Integer Nonlinear Programming (MINLP)
problem if (O] = 1. The situation as regards MINLP standard forms is genetaélysame as
for NLPs, save that a few more works have appeared in thatiter about standard forms for
MINLPs [102, 103, 85, 64]. In particular, the Smith standféodn [103] is purposefully con-
structed so as to make symbolic manipulation algorithmg &aesarry out on the formulation.
A MINLP is in Smith standard form if:

e O ={d,,e,} Wheree, is a linear form;

e C can be partitioned into two sets of constraifitsC, such that: is a linear form for all
c € Cy andc = (e, 0,0) for ¢ € C, wheree, is as follows:

1. r(e.) is the sum operator

2. 0" (r(e.)) = {®, v} where (a)® is a nonlinear operator where all subnodes are leaf
nodes, (b)x(v) = —1 and (c)7(v) € V.

Essentially, the Smith standard form consists of a linear gamprising objective functions
and a set of constraints; the rest of the constraints have@agorm®(z,y) — v = 0, with
v,z,y € V(P) and® a nonlinear operator i).. By grouping all nonlinearities in a set of
equality constraints of the form “variable = operator(ahies)” (calleddefining constrainfs
the Smith standard form makes it easy to construct auxilgoplems. The Smith standard
form can be constructed by recursing on the expression dfelegiven MINLP [101] and is an
opt-reformulation.

Solution algorithms for solving MINLPs are usually extenss of BB type algorithms [103,
64, 61, 111, 84].

2.4.5 Separable problems

A problem P is in separable form if (aD(P) = {(d,,e,)}, (b) C(P) = () and (c)e, is such
that:
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e r(e,) is the sum operator

e for all distinctu, v € §7(r(e,)), A(w) N A(v) N V(P) = 0.

The separable form is a standard form by itself. It is usetdduse it allows a very easy
problem decomposition: for all € §*(r(e,)) it suffices to solve the smaller probleng,
with V(Q) = A(v) N V(P), O(Q) = {(d,,u)} andB(Q) = {B(P)(v) | v € V(Q)}. Then

U =(V(Q.)) is a solution forP.
u€dt(r(eo))

2.4.6 Factorable problems

A problemP is in factorable form [80, 117, 100, 111] if:

1. O ={(dy,e0)}
2. r(e,) € V (consequently, the vertex setqfis simply {r(e,)})
3. forallc e C:

e 5.=0
e r(e.) is the sum operator

e forallt € 67 (r(e.)), either (a) is a unary operator antf (¢) € A(e.) (i.e. the only
subnode of is a leaf node) or (b) is a product operator with* (¢) = {u, v} such
thatu, v are both unary operators with only one leaf subnodes.

The factorable form is a standard form by itself. Factor&mms are useful because it is easy to
construct many auxiliary problems (including convex ral@gons, [80, 4, 100]) from problems
cast in this form. In particular, factorable problems camdfermulated to separable problems
[80, 111, 84].

2.4.7 D.C. problems

The acronym “d.c.” stands for “difference of convex”. Giveset? C R", a functionf : 2 —

R is ad.c. functionif it is a difference of convex functions, i.e. there exisheex functions
g,h :  — R such that, for alke € 2, we havef(z) = g(z) — h(z). Let C, D be convex
sets; then the sét\ D is ad.c. set An optimization problem igl.c. if the objective function is
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d.c. and? is a d.c. set. In most of the d.c. literature, however [114, UB], a mathematical
programming problem is d.c. if:

o O={(ds e},
e ¢, is ad.c. function;

e cis alinear form for alk € C.

D.C. programming problems have two fundamental propertide first is that the space
of all d.c. functions is dense in the space of all continuauscfions. This implies that any
continuous optimization problem can be approximated asetyoas desired, in the uniform
convergence topology, by a d.c. optimization problem [M5], The second property is that
it is possible to give explicit necessary and sufficient gladptimality conditions for certain
types of d.c. problems [114, 105]. Some formulations of ¢hgi®bal optimality conditions
[104] also exhibit a very useful algorithmic property: if atfeasible point: the optimality
conditions do not hold, then the optimality conditions tisehes can be used to construct an
improved feasible point’.

2.4.8 Linear Complementarity problems

Linear complementarity problems (LCP) are nonlinear fabtsyilproblems with only one non-
linear constraint. A mathematical programming problemeireed as follows [35], p. 50:

e O =1

e there is a constraint = (e,0,0) € C such that (a) = r(e) is a sum operator; (b) for all
u € 67 (t), uis a product of two terms, f such that € V and(f, 1,0) € C;

e forallc € C\ {¢}, e.is alinear form.

Essentially, an LCP is a feasibility problem of the form:

Ax > b
z > 0
r'(Az —b) = 0,

wherez € R", A is anm x n matrix andb € R™.
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Many types of mathematical programming problems (inclgdtiLPs with binary variables
[35, 48]) can be recast as LCPs or small extensions of LCP prsb|é8]. Furthermore, some
types of LCPs can be reformulated to LPs [75] and as separdibleds programs [76]. Certain
types of LCPs can be solved by an interior point method [52, 35]

2.4.9 Bilevel Programming problems

The bilevel programming (BLP) problem consists of two nestethematical programming
problems named thHeaderand thefollower problem.

A mathematical programming problef is a bilevel programming problent there exist
two programming problems, I’ (the leader and follower problem) and a subset () of all
leaf nodes o€ (L) such that any leaf nodec ¢ has the form(v, F) wherev € V(F).

The usual mathematical notation is as follows [28, 12]:

min, F(z(y),y)
min, f(z,y) (2.2)
st. re X, yey,

whereX, Y are arbitrary sets. This type of problem arises in econopyptieations. The leader
knows the cost function of the follower, who may or may not \krnibat of the leader; but
the follower knows the optimal strategy selected by the éegde. the optimal values of the
decision variables of) and takes this into account to compute his/her own optitnalegy.

BLPs can be reformulated exactly to MILPs with binary varestdnd vice-versa [12], where
the reformulation is as in Defn. 2.3.4. Furthermore, twadgpBranch-and-Bound (BB) algo-
rithms for the considered MILPs and BLPs have the property tthethe MILP BB can be
“embedded” in the BLP BB (this roughly means that the BB tree ef MLP is a subtree of
the BB tree of the BLP); however, the contrary does not holds §kems to hint at a practical
solution difficulty ranking in problems with the same degoéevorst-case complexity (both
MILPs and BLPs aré&lP-hard).

2.4.10 Semidefinite Programming problems

Consider known symmetrie x n matricesC', A, for £ < m, a vectorh € R™ and a symmetric
n x n matrix X = (z;;) wherex;; is a problem variable for all, j; < n. The following is a
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semidefinite programming proble8DP) in primal form:

miny CeX
X = 0,

where X > 0 is a constraint that indicates that should be positive semidefinite. We also
consider the SDP in dual form:

max, s bly
S = 0,

whereS' is a symmetric: x n matrix andy € R™. Both forms of the SDP problem are convex
NLPs, so the duality gap is zero. Both forms can be solved bytacpkar type of polynomial-
time interior point method (IPM), which means that solvinQFR is practically efficient [7,
112]. SDPs are important because they provide tight ralzosto (nonconvex) quadratically
constrained quadratic programming problems (QCQP), iahlpms with a quadratic objective
and quadratic constraints (see Sect. 4.3.2).

SDPs can be easily modelled with the data structure descnibBefn. 2.1.1, for their ex-
pression trees are linear forms where each leaf node ceraagmmetric matrix. There is no
need to explicitly write the semidefinite constraitfs’= 0,S > 0 because the solution IPM
algorithms will automatically find optimaX, S matrices that are semidefinite.
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Reformulations

In this chapter we give a systematic study of various typeseshentary reformulations (Sect. 3.1)
and exact linearizations (Sect. 3.2). Sect. 3.4 providesvarforked out examples. In this sum-
mary, we tried to focus on two types of reformulations: thtbed are in the literature, but may
not be known to every optimization practitioner, and thdse tepresent the “tricks of the trade”
of most optimization researchers but have never (to thediesir knowledge) been formalized
explicitly; so the main contributions of this chapter arstsynatic and didactic. Since the final
aim of automatic reformulations is let the computer arrivaraalternative formulation which is
easier to solve, we concentrated on those reformulatiomdwvgmplified nonlinear terms into
linear terms, or which reduced integer variables to cowrsuvariables. By contrast, we did
not cite important reformulations (such as the LP dualithiclh are fundamental in solution
algorithms and alternative problem interpretation, butclldo not significantly alter solution
difficulty.

3.1 Elementary reformulations

In this section we introduce some elementary reformulatiarthe proposed framework.

3.1.1 Obijective function direction

Given an optimization problen®, the optimization directior, of any objective functiorn €
O(P) can be changed by simply settidg <— —d,. This is an opt-reformulation wherg is
the identity, and it rests on the identityin f(z) = — max — f(z). We denote the effect of this
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reformulation carried out for all objective functions in izen setO by ObjDir(P, O).

3.1.2 Constraint sense

Changing constraint sense simply means to write a constraixpressed as. < b. as—e, >
—b., Ore. > b. as—e. < —b.. This is sometimes useful to convert the problem formutat®m
a given standard form. This is an opt-reformulation whers the identity. It can be carried out
on the formulation by setting(r(e.)) < —x(r(e.)), sc < —s. andb. = —b.. We denote the
effect of this reformulation carried out for all constraim a given se’ by ConSensg>, C).

3.1.3 Liftings, restrictions and projections

We define here three important classes of auxiliary prohldiftimgs, restrictions and projec-

tions. Essentially, a lifting is the same as the originalpgpeon but with more variables. A

restriction is the same as the original problem but with sofrtbe variables replaced by either
parameters or constants. A projection is the same as thie@rjgroblem projected onto fewer
variables. Whereas it is possible to give definitions ofrlis and restrictions in terms of sym-
bolic manipulations to the data structure given in Defn.2.&uch a definition is in general not
possible for projections. Projections and restrictioresiargeneral not opt-reformulations nor
reformulations in the sense of Defn. 2.3.5.

3.1.3.1 Lifting

A lifting @ of a problemP is a problem such thatP(Q) 2 P(P), V(Q) 2 V(P), O(Q) =
O(P), £@Q) 2 &(P), C(Q) = C(P), B(Q) 2 B(P), T(Q) 2 T(P). This is an opt
reformulation wherep is a projection operator fro¥(Q)) onto V(P): for y € F(Q), let
o(y) = (y(v) | v € V(P)). We denote the lifting with respect to a new set of variatielsy

Lift (P, V).

Essentially, a lifting is obtained by adding new variableam optimization problem.

3.1.3.2 Restriction

A restriction of a problemP is such that:



Chapter 3. Reformulations 38

e P(Q)2P(P)

e V(Q) S V(P)

e |0(Q) = [O(P)]

e [C(Q) = Ic(P)]

e for eache € £(P) there ise¢’ € £(Q) such that’ is the same as with any leaf node

v € V(P) ~ V(Q) replaced by an element &f(Q) U R.

We denote the restriction with respect to a sequence ofblaria with a corresponding se-
quence of values! by RestrictP, V, A).

Essentially, a restriction is obtained by fixing some vdgalat corresponding given values.

3.1.3.3 Projection

A projection( of a problemP is such that:

e P(Q) 2 P(P)

e V(Q) S V(P)

e £,0,C,B,7(Q) are so that for ally € F(Q) there isz € F(P) such thate(v) = y(v)
forallv € V(Q).

In general, symbolic algorithms to derive projections deptargely on the structure of the
expression trees if. If £ consists entirely of linear forms, this is not difficult (seg. [14],
Thm. 1.1). We denote the projection onto a set of variables V(Q) as Pro{ P, V).

Essentially (and informally} (Q) = {y | 3z (z,y) € F(P)}.
3.1.4 Equations to inequalities
Converting equality constraints to inequalities may be wisief conform to a given standard

form. SupposeP has an equality constraint = (e.,0,b.). This can be reformulated to a
problemq as follows:
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e add two constraints, = (e., —1,b.) andc, = (e, 1, b.) to C;

e removec fromC.

This is an opt-reformulation denoted by Eq2I0&¢).

Essentially, we replace the constraipt= b. by the two constraints. < b, e. > b..

3.1.5 Inequalities to equations

Converting inequalities to equality constraints is usafutdnvert problems to a given standard
form: a very well known case is the standard form of a LineaigPamming problem for use
with the simplex method. Given a constrairtgxpressed as. < b., we can transform it into an
equality constraint by means of a lifting operation and aps&nsymbolic manipulation on the
expression tree., namely:

e add a variable),. to V(P) with interval bounds3(v.) = [0, +oc] (added toB(P)) and
type7 (v.) = 0 (added toZ (P));

e add a new root node, corresponding to the operater (sum) toe. = (V, A), two arcs
(ro,r(ec)), (ro,v) to A, and we then set(e.) « 7o;

e sets, «+ 0.

We denote this transformation carried out on the set of caimssC' by SlacK P, C'). Naturally,
for original equality constraints, this transformatiordefined as the identity.

Performing this transformation on any number of inequaliiystraints results into an opt-
reformulation.

3.1.1 Proposition
Given a set of constraints C C(P), the problent) = SlacK P, C) is an opt-reformulation of
P.

Proof. We first remark tha?V’(P) C V(Q). Considerp defined as follows: for eache F(Q)
letp(y) =z = (y(v) | v € V(P)). Itis then easy to show thatsatisfies Defn. 2.3.10. O
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3.1.6 Absolute value terms

Consider a problen? involving aterme = (V, A) € £ wherer(e) is the absolute value operator
| - | (which is continuous but not differentiable everywheré)ce this operator is unary, there
is a single expression nodesuch that(r(e), f) € A. This term can be reformulated so that it
is differentiable, as follows:

e add two continuous variables, ¢t~ with bounds0, +oc];
e replacec byt +t;

e add constraint§f —t* —t~,0,0) and(¢*¢~,0,0) toC.

This is an opt-reformulation denoted by AbsDif e).

Essentially, we replace all termg| in the problem by a sum™ + ¢~, and then add the
constraintsf = t* — ¢~ andt*¢t~ = 0 to the problem.

3.1.7 Product of exponential terms

Consider a problen®” involving a producty = [],, h; of exponential terms, wherte, = efi
for all : < k. This term can be reformulated as follows:

e add a continuous variable to V with 7 (w) = 0 and bound#3(w) = [0, +o0];
e add a constraint = (e, 0,0) wheree. =}, fi — log(w) to C;

e replaceg with w.

This is an opt-reformulation denoted by ProdERpy). It is useful because many nonlinear
terms (product and exponentials) have been the reducedytooa (the logarithm).

Essentially, we replace the prodydt e/ by an added nonnegative continuous variable
and then add the constraiog(w) = >, f; to the problem.

3.1.8 Binary to continuous variables

Consider a problen®? involving a binary variabler € V with (7 (z) = 2). This can be
reformulated as follows:
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e add a constraint = (e, 0,0) to C wheree, = 2% — z;

° setT(x) =0.

This is an opt-reformulation denoted by Bin2C@htz).. Since a binary variable € V can
only take values i0, 1}, any univariate equation im that has exactly = 0 andz = 1 as
solutions can replace the binary constrairet {0, 1}. The most commonly used is the quadratic
constraintz? = z.

In principle, this would reduce all binary problems to nomeex quadratically constrained
problems, which can be solved by a global optimization (Gayes for nonconvex NLPs. In
practice, GO solvers rely on an NLP subsolver to do most ofctiraputationally intensive
work, and NLP solvers are generally not very good in handhogconvex/nonlinear equality
constraints such a8 = x. This reformulation, however, is often used in conjunctidgth the
relaxation of binary linear and quadratic problems (se¢.3et.3).

3.1.9 Integer to binary variables

It is sometimes useful, for different reasons, to conveniegal integer variables to binary (0-1)
variables. One example where this yields a crucial stepantomplex linearization is given
in Sect. 3.4.2. There are two established ways of doing thig entails introducing binary
assignment variables for each integer values that theblar@an take; the other involves the
binary representation of the integer variable value. Ssppthe integer variable value is
the first way employs)(n) added binary variables, whereas the second way only employs
O(log,(n)). The first way is sometimes used to linearize complex noafirexpressions of
integer variables by transforming them into a set of coristém choose from (see example
in Sect. 3.4.2). The second is often used in an indirect wasytand break symmetries in 0-1
problems: by computing the integer values of the binaryeegntation of two 0-1 vectors, z-

as integer problem variables, v,, we can impose ordering constraints such@as. v, + 1 to
exclude permutations af;, z, from the feasible solutions.

3.1.9.1 Assignment variables

Consider a problen® involving an integer variable € V with type 7 (v) = 1 and bounds
B(v) = [L,,U,] such that/, — L, > 1. LetV = {L,,...,U,} be the variable domain. Then
P can be reformulated as follows:
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e forall j € V add a binary variable); to V with 7 (w;) = 2 andB(w,) = [0, 1];
e add a constraint = (e., 0, 1) wheree, = 3, w; t0 C;
e add an expression= 3, jw; t0 &;

e replace all occurrences ofin the leaf nodes of expressionsdrwith e.

This is an opt-reformulation denoted by Int2Bif v).

Essentially, we add assignment variablgs= 1 if v = j and O otherwise. We then add an

assignment constrailitjjev w; = 1 and replace with Zjev Jw; throughout the problem.

3.1.9.2 Binary representation

Consider a problen® involving an integer variable € V with type 7 (v) = 1 and bounds
B(v) = [L,,U,]| such thatV,, — L, > 1. LetV = {L,,...,U,} be the variable domain. Then
P can be reformulated as follows:

e let b be the minimum exponent such that| < 2°;

e addb binary variablesuv,, ..., w, to V such that7 (w;) = 2 andB(w;) = [0, 1] for all
J<b

e add an expression= L, + 3, w;2’

e replace all occurrences ofin the leaf nodes of expressions&rwith e.

This is an opt-reformulation denoted by BinaryR&pu).

Essentially, we write the binary representationafsL, + > i<b w; 2.

3.1.10 Feasibility to optimization problems

The difference between decision and optimization probl@msomputer science reflects in
mathematical programming on the number of objective fumstin the formulation. A formu-
lation without objective functions models a feasibilitypptem; a formulation with one or more
objective models an optimization problem. As was pointetlguthe example in the intro-
duction (see Ch. 1, p. 10), for computational reasons it isetiones convenient to reformulate
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a feasibility problem in an optimization problem by intrailig constraint tolerances. Given
a feasibility problemP with @ = (), we can reformulate it to an optimization probleépmas
follows:

e add a large enough constantto P(Q);

e add a continuous nonnegative variabl® V(Q)) with 7 (¢) = 0 andB(e) = [0, M];
e for each equality constraint= (e, 0,b.) € C, apply Eq2InegP, ¢);

¢ add the expressionto £(Q);

e add the objective function = (¢, —1) to O(Q);

e for each constraint = (e, s.,b.) € C (we now haves. # 0), lete!, = e. + s.c and
d = (€., se, be); addd to C(Q).

As the original problem has no objective function, the uglefinitions of local and global
optima do not hold. Instead, we define any pointAP) to be both a local and a global
optimum (see paragraph under Defn. 2.3.2). Provided tlggnadiproblem is feasible, this is an
opt-reformulation denoted by Feas2Qpj.

3.1.2 Proposition
ProvidedF (P) # 0, the reformulation Feas2Qjit) is an opt-reformulation.

Proof. Let F' be the projection ofF(Q)) on the space spanned by the variable®d{.e. all
variables ofQ bute, see Sect. 3.1.3.3), and tebe the projection map. We then ha¥épP) C F
(this is because the constraintsi@essentially define a constraint relaxationfgfsee Sect. 4.1
and Defn. 4.1.3). Let’ € F(P). We definey : ' — F(P) to be the identity o7 (P) and
trivially extend it toF (Q)\ F' by settingy(z) = o' forall z € F(Q)~ F. The functionp = yor
mapsF () to F(P), and preserves local minimality by construction, as penD2f3.6. Since
¢ i1s bounded below by zero, and the restriction (see SecB8.2)lof @ to e = 0 is exactly P,
anyz€G(Q) is also inF(P). Moreover, by definitiorG(P) = F(P) asO(P) = 0, showing
that the identity (projected oR) preserves global minimality in the sense of Defn. 2.3.80
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3.2 Exact linearizations

3.2.1 Definition
An exact linearizationof a problemP is an opt-reformulatiord) of P where all expressions
e € £(P) are linear forms.

Different nonlinear terms are linearized in different wag@we sometimes speak of a lineariza-
tion of a particular nonlinear term instead of a lineariaatof a given problem. The amount
of work on exact linearizations is considerable, speciallyhe field of mixed 0/1 quadratic
programming (see e.g. [39, 16, 42]). In this Section, weljasthe elementary reformulations
in this field.

3.2.1 Piecewise linear objective functions

Consider a problen® having an objective function = (d,,e,) € O(P) and a finite set of

expressiong;, for k € K such thate, = d, Ikréi;? dyei (this is a piecewise linear objective
function of the formmin max;, e, Or max miny e, depending onl,). This can be linearized by
adding one variable ands| constraints to the problem as follows:

e add a continuous variabteo V bounded in—oo, +o0];

e forall k € K, add the constraint, = (e, — t¢,d,,0) toC.

This is an opt-reformulation denoted by MinM&X).

Essentially, we can reformulate an objective functioim max,cx e, aSmint by adding a
continuous variablé and the constraintsk € K ¢t > ¢, to the problem.

3.2.2 Product of binary variables

Consider a problen® where one of the expressionsc £(P) is [] v, wherev, € V(P),
keK
B(vy) = [0,1] and7 (vy,) = 2 for all k € K (i.e. v, are binary 0-1 variables). This product can

be linearized as follows:

e add a continuous variable tp V bounded ino, 1];

e add the constrainty_, z vi — w, —1,|K| — 1) toC;
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e forall k € K add the constraintw — vy, —1,0) to C.

This is an opt-reformulation denoted by P(6YK ).

Essentially, a product of binary variablgy, . ; v can be replaced by an added continuous
variablew € [0,1] and added constrainté € K w < v, andw > Y, v, — |K| + 1.

As products of binary variables model the very common ANDrapen, linearizations of
binary products are used very often. Hammer and Rudeanu if#JB8] as the first published
appearance of the above linearization for cases wh€fe= 2. For problemsP with products
v;v; for a given set of pairg:, j} € K wherev;,v; are all binary variables, the linearization
consists of Q| applications of ProdbifP, {i, j}) for each{:, j} € K. Furthermore, we replace
each squared binary variabi¢ by simply v; (asv? = v; for binary variables;). We denote
this linearization by ProdSgp, K).

3.2.3 Product of binary and continuous variables

Consider a problenP involving productsy,v; for a given setk” of ordered variable index
pairs (i, j) wherev; is a binary 0-1 variable and; is a continuous nonnegative variable with
B(v;) = [0,U;]. The problem can be linearized as follows:

e forall (7, j) € K add a continuous variable;; bounded byj0, U;] to V;
e forall (i, j) € K replace the product termsv; by the variablev;;;
e forall (7, j) € K add the constraints
(wij - Ujvi, —]_7 0)7 (wij - Uj, —]_, 0), (Uj + Ujvi — ’LUZ'j, —]_, U]) to C
This is an opt-reformulation denoted by ProdBinGantx).

Essentially, a product of a binary variable and a continuous nonnegative variable
bounded above by/; can be replaced by an added variablg and added constraints;; <
Ujvi, Wij < V; andwi]‘ > vj + UjUi — Uj.

3.2.4 Complementarity constraints

Consider a problen® involving constraints of the form = (e.,0,0) where (a)r(e.) is the
sum operator, (b) for each nod@utgoing fromr(e.), e is a product operator, (c) each of these
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product nodes has two outgoing nodeg g such thatf > 0 andg > 0. We can linearize such
a constraint as follows:

e for each product operator nodeutgoing fromr(e.) and with outgoing nodesg, g:

1. add a parametévl > 0 (as large as possible) 1,
2. add a binary variable to V with 7 (v) = 2 andB = [0, 1]
3. add the constrainty’ — Mw, —1,0) and(g + Mw,—1,M)toC

e delete the constraint
Provided we sefl/ as an upper bound to the maximum values attainablg &ydg, this is an
opt-reformulation which is also a linearization. We deribtey CCLin(P).

Essentially, we linearize complementarity constrapts_, frgr = 0 where f, g, > 0
by eliminating the constraint, adding 0-1 variableg for all £ € K and the linearization
constraintsf, < Mw; andg;, < M (1 — wy).

3.2.5 Minimization of absolute values

Consider a problen? with a single objective function = (d,, e,) € O wheree, = (—d,) >_ ex
keK
where the operator represented by the root nddg) of ¢, is the absolute valuge- | for all

k € K C K. Since the absolute value operator is undry(r(e;)) consists of the single el-
ementf,. Providedf, are linear forms, this problem can be linearized as followsr each
ke K:

e add continuous variableg, ¢,” with bounds|0, +oc];

e replacee;, by t; + ¢ ;

e add constraint§f, — t —t,/,0,0) toC.

This is an opt-reformulation denoted by MinAls% K).

Essentially, we can reformulate an objective functiom }", x| fi| @asmin}_, (¢} +
t;) whilst adding constraintsk € K f, = t{ — ¢, to the problem. This reformulation is
related to AbsDiffP, ¢) (see Sect. 3.1.6), however the complementarity conssrgjnf = 0
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are not needed because of the objective function direcéiba:global optimum, because of the
minimization of#; + ¢;, at least one of the variables will have value zero, thusymplthe
complementarity.

3.2.6 Linear fractional terms

Consider a problen® where an expression 1 has a sub-expressierwith a product operator
and two subnodes,, e; where{(e;) = 1, £(e3) = —1, andey, e, are affine forms such that
e1 = Y ey Vi +bandey = > ., cv; + d, wherev C V and7 (v;) = 0 foralli € V (in
other words is a linear fractional terrﬁig—ﬂl on continuous variableg. Assume also that the
variablesv only appear in some linear constraints of the problém= ¢ (A is a matrix and;

is a vector inP). Then the problem can be linearized as follows:

e add continuous variables, 5 to V (fori € V) with 7 (a;) = T(5) = 0;

replacee by .., a;a; + bf3;

replace the constraints itw = ¢ by Ao — ¢85 = 0;

add the constrain}_,_,, c;a; +d3 =1,

remove the variablesfrom V.

This is an opt-reformulation denoted by LinFrgete).

Essentiallyo; plays the role o%, andg that ofﬁ. It is then easy to show thatcan
be re-written in terms ofy, 3 asa'«a + b3, Av = ¢ can be re-written asla = ¢3, and that
c'a + dp = 1. Although the original variables are removed from the problem, their values

can be obtained by, 5 after the problem solution, by computing= % foralli e V.

3.3 Advanced reformulations

In this section we review a few advanced reformulations @litlerature.
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3.3.1 Hansen'’s Fixing Criterion

This method applies to unconstrained quadratic 0-1 prableinthe form I?in} ' Qx where
zc{0,1}™

Q@ is ann x n matrix [41], and relies on fixing some of the variables to eslguaranteed to
provide a global optimum.

Let P be a problem withP = {n € N, {¢;; e R |1 <i,j <n}},V ={z; |1 <i < n},
E={f=2<ntiiz;}, O={(f,—1)},C=0,B=[0,1]", T = 2. This can be restricted
(see Sect. 3.1.3.2) as follows:

e initialize two sequencel = (), A = ;

e foralli <n:

1. if g + 3, min(0, gij) + >, min(0, g;;) > 0 then append; to V and0 to A;

2. (else) ifgi + >, max(0, gi;) + >, max(0, ¢;;) < 0then append; to V" and1
to A;

e apply RestrictP, V, A).

This opt-reformulation is denoted by Fix@B).

Essentially, any time a binary variable consistently dases the objective function value
when fixed, independently of the values of other variabtas,fixed.

3.3.2 Compact linearization of binary quadratic problems
This reformulation concerns a problefhwith the following properties:

e there is a subset of binary variables_ V with |z| = n, 7 (z) = 2, B(x) = [0,1]™;

o thereisasetl = {(i,j) | 1 < i < j < n}in P such that the terms,;z; appear as
sub-expressions in the expressiégn®r all (i, j) € E;

e there is an integek < n in P and a covering/, | £ < K} of {1,...,n} such that
(Yer, w0, 1) isinCforall k < K;

e thereisacoveringJ, | k < K} of {1,...,n} suchthatl; C J, forall ¥ < K such that,
letting ' = {(i,7) | 3k < K((i,7) € I x Jp V (i,7) € Ji x I1)}, we haveE C F.
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Under these conditions, the probldican be exactly linearized as follows:

e forall (i, j) € F' add continuous variables;; with 7 (w;;) = 0 andB(w;;) = [0, 1];
o forall (i, j) € E replace sub-expressianz; with w;; in the expressions;
e forall k£ < K, j € J, add the constrainty _,., w;; —z;,0,0) toC.

e forall (i, j) € F add the constraint;; = wj; toC.

This opt-reformulation is denoted by RCI(R F). It was shown in [66] that this linearization
is exact and has other desirable tightness properties.66¢éof examples.

3.3.3 Reduction Constraints

This reformulation concerns a problefhwith the following properties:
e there is a subset C V with [z| = nandasettl = {(i,5) | 1 <i < j <n}inP such
that the terms;;z; appear as sub-expressions in the expressidosall (i, j) € E;
e there is a numbem < n, anm x n matrix A = (a;;) and anm-vectorb in P such that

(3 aij;,0,b;) € C foralli < m.

LetFF ={(z,7) | (1,7) € EV3k < m(ax; # 0}. Under these condition#, can be reformulated
as follows:

e forall (i, j) € F add continuous variables; with 7 (w;;) = 0 andB(w;;) = [—o0, +00];
o forall (i, j) € E replace sub-expressianz; with w;; in the expressions;

e foralli < n,k <maddthe constraint(szjgn agjw;; —bgz;,0,0) toC: we call this linear
system theReduction Constraint SystefRCS) and(}_,,, ax;jwi;, 0,0) the companion
system;

o let B ={(i,j) € I' | wy; is basic in the companign
o let N = {(i,j) € F' | wy; is non-basic in the companipn

e add the constraintsu;; — z;x;,0,0) for all (z,j) € N.
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This opt-reformulation is denoted by RedCeét), and its validity was shown in [63]. It is
important because it effectively reduces the number of aiadterms in the problem (only
those corresponding to the sEtare added). This reformulation can be extended to work with
sparse set§ [72], namely setd” whose cardiality is small with respect%@(n +1).

Essentially, the constraints; = x;z; for (i, j) € B are replaced by the RGS < n (Aw, =
l’i>, Wherewi = (wil, c ,wm).

3.4 Advanced examples

We give in this section a few advanced examples that illtestiflae power of the elementary
reformulations given above.

3.4.1 The Hyperplane Clustering Problem

As an example of what can be attained by combining these sinefdrmulations presented in
this chapter, we give a MINLP formulation to the

HYPERPLANE CLUSTERING PROBLEM (HCP) [26, 22]. Given a set of poinis=

{pi | 1 <i < m}inR?we wantto find a set of hyperplanesy = {wjz; +...+

Wjq = w? | 1 < j <n}inR?and an assignment of points to hyperplanes such that
the distances from the hyperplanes to their assigned paiatsiinimized.

We then derive a MILP reformulation. For clarity, we emplbg tusual mathematical notation
instead of the notation given Defn. 2.1.1.

The problemP can be modelled as follows:

e ParametersThe set of parameters is given py= R™*¢ m,n,d € N.

e Variables We consider the hyperplane coefficient variableg R"*¢, the hyperplane
constants® € R, and the 0-1 assignment variables {0, 1}™*".

e Objective functionWe minimize the total distance, weighted by the assignmaable:

i<m j<n
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e Constraints We consider assignment constraints: each point must gasisto exactly
one hyperplane:

V@Sm injzla

Jj<n
and the hyperplanes must be nontrivial:
Vi<n Y lwul =1,
k<d

for otherwise the trivial solution witlv = 0, w® = 0 would be optimal.

This is a MINLP formulation because of the presence of theinear terms (absolute val-
ues and products in the objective function) and of the birzessignment variables. We shall

now apply several of the elementary reformulations preseimt this chapter to obtain a MILP
reformulation() of P.

Let K = {(i,j) [ i <m,j <n}.

1. Becauser is nonnegative and because we are going to solve the refat@tuMILP to
global optimality, we can apply an reformulation similaMmAbs( P, K') (see Sect. 3.2.5)
to obtain an opt-reformulatioR; as follows:

i,J
J
Vio|wll =1

Vi, j t;“j —tl; = wpi— w?,

Wheretjj,t;j € [0, M] are continuous added variables bounded above by a (large and
arbitrary) constanfi/ which we add to the parameter $&t We remark that this upper
bound is enforced without loss of generality because® can be scaled arbitrarily.

2. Apply ProdBinContP,, K) (see Sect. 3.2.3) to the produd:j}%j andt;;z;; to obtain a
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opt-reformulationp, as follows:

min Y (55 +y;)

i
st Vi Y xy; = 1
j

Viofwil =1
Vi,j ot -ty

0
wjpi — wj

Vi,j oy < min(Mag,t])
Vi,j oy > M+t —M
Vi,j oy < min(Mua,t;)
Vi,j y; = Mz +t;— M,

wherey;’, y;; € [0, M] are continuous added variables.

3. For each terme;;, = |w;;,| apply AbsDiff( P, e;;) to obtain an opt-reformulatio®; as

follows:
man(y;;—i-y;)
,J
st Vi Y @ = 1
J
Vi,j ot —t; = wjpi—w?
Vi, j y;; < min(Mxij,t;-;)
Vi.j oyl > My +th— M
Vi,j oy < min(M:z:ij,t;j)
Vg Z(uﬁ—i—uj_k) =1
k<d
Vi kuj, —uy = wi

Vi kujuy = 0,

whereujk,uj‘k € [0, M] are continuous variables for ajl k. Again, the upper bound
does not enforce loss of generalifi; is an opt-reformulation of: whereasP was not

everywhere differentiable because of the absolute valdesnly involves differentiable
terms.
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4. We remark that the last constraints Bf are in fact complementarity constraints. We
apply CCLin(P;) to obtain the reformulated problex

min Y (i + ;)

/[:7j
J

Vi,j ot —t;

I
—

0
wjpi — U}j

Vi,j oy < min(Max,t)
Vi,j oy > M+t —M
Vi,j oy < min(Mwxy,t;)
Vij oy, > May+i;— M
Vg Z(u;rk +uy) = 1

k<d

Vi, k Ujk — Uy, = Wik
Vi, k ujk < Mz
Vi kuy, < M(1— 2u),

wherez;;, € {0,1} are binary variables for ajl, k. ¢) is a MILP reformulation ofP (see
Sect. 2.4.2).

This reformulation allows us to solvE by using a MILP solver — these have desirable
properties with respect to MINLP solvers, such as numestatility and robustness, as well
as scalability and an optimality guarantee. A small instacansisting of 8 points and 2 planes
in R, withp = {(1,7), (1,1),(2,2), (4, 3), (4,5),(8,3),(10,1), (10,5)} is solved to optimality
by the ILOG CPLEX solver [47] to produce the following output:

Nor mal i zed hyper pl anes:

1: (-0.205479) x_1 + (0.547945) x_2 + (-0.684932) =0
2: (0.769231) x_1 + (1.15385) x_2 + (-8.84615) =0
Assi gnnent of points to hyperplanar clusters:

hyp cluster 1 ={ 2 3 4 8}

hyp_cluster 2 = { 156 7 }.

3.4.2 Selection of software components

Large software systems consist of a complex architectunet@fdependent, modular software
components. These may either be built or bought off-thd.sHée decision of whether to
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build or buy software components influencese the cost,@glivme and reliability of the whole
system, and should therefore be taken in an optimal way [115]

Consider a software architecture withcomponent slots. Lef; be the set of off-the-shelf
components and; the set of purpose-built components that can be pluggeckifitthcompo-
nent slot, and assundgN J; = (. LetT" be the maximum assembly time aRde the minimum
reliability level. We want to select a sequencenobff-the-shelf or purpose-built components
compatible with the software architecture requiremenras thinimize the total cost whilst sat-
isfying delivery time and reliability constraints. Thisgilem can be modelled as follows.

e Parameters

1. LetN € N;
2. foralli < n, s; is the expected number of invocations;

3. foralli < n,j € I, ¢;; is the cost;; is the delivery time, ang,; the probability
of failure on demand of thg-th off-the-shelf component for slot

4. foralli < n,j € J, ¢; is the costy;; is the estimated development time; the
average time required to perform a test casgis the probability that the instance
is faulty, andb;; the testability of the/-th purpose-built component for slot

e Variables

1. Letx;; = 1 if component; € I; U J; is chosen for slot < n, and O otherwise;
2. LetN;; € Z be the (non-negative) number of tests to be performed onutEope-
built componenyj € J; for i < n: we assumeV,; € {0,..., N}.

e Objective function We minimize the total cost, i.e. the cost of the off-thefshempo-
nentsc;; and the cost of the purpose-built component&;; + 7, NV;;):

minz (Z CijTij + Z Gij(ti; + TijNij)xij> .
i<n \j€l; jinJ;
e Constraints

1. assignment constraints: each component slot in thetaothie must be filled by
exactly one software component

Vi<n injzl;

Jjel;UJ;
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2. delivery time constraints: the delivery time for an dfetshelf component is simply
d;;, whereas for purpose-built components it;is+ 7, V;;

VZ S n Z dl-jxl-j + Z(tz] + TijNij)xij S T;
JEL; JE€J;

3. reliability constraints: the probability of failure oihand of off-the shelf compo-
nents isy;;, whereas for purpose-built components it is given by

Pigbi (L — byy) eV
(1= pij) + pij(1 — byy) U -bea)Nis”

191‘]’ —

so the probability that no failure occurs during the exenutf thei-th component
IS

Jjel; Jje€J;

s,-( > MigTigt 20 192‘]'9%‘)
Yi =€

Y

whence the constraint is

H%’ > R;

1<n
notice we have three classes of reliability constraintsliing two sets of added
variablesy, .

This problem is a MINLP with no continuous variables. We khalv apply several reformula-
tions to this problem (call iP).

1. Consider the term = [],,, ¢: and apply ProdEX@”, g) to P to obtainP; as follows:

min Z (Z CijTij + Z Cij (tij + Tz‘sz‘j)ZL‘ij>

i<n Jjel; JjeJ;
Jjel;UJ;
Vi S n Z dijxij + Z(t” + TijNij>-Tij S T
J€l; Jj€J;

Pijbi (1 — byy) PN
(1= pij) + pij(1 = byy) U =bea)Nis
w > R

Z S; <Z [ Tij + Z ﬁija:ij) = log(w),

i<n jel; jeds
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and observe that > R implieslog(w) > log(R) because thég function is mono-
tonically increasing, so the last two constraints can beiged into a simpler one not
involving logarithms of problem variables:

Z S; (Z i Tsj + Z 19@'1’2']') Z lOg(R)

i<n Jjel; jed;

2. We now make use of the fact ths}; is an integer variable for all< n, j € J;, and apply
Int2Bin(P, N;;). Fork € {0,...,N} we add assignment variable§ so thatv} = 1
if N;; = k and O otherwise. Now for alt € {0,..., N} we compute the constants

b (1—b, (A0 k .
9k = (1_1‘;7_1’)12_(’Tﬂ_)b”)(f_bij)k, which we add to the problem parameters. We remove the
constraints de?iningj?ij in function of NV;;: since the following constraints are valid:

Vi<mgjeldi Y v =1 (3.1)
k<N
k<N
Vi<n,jeldiy o o= 0y (3.3)
k<N

the second constraints are used to replageand the third to replace;;. The first
constraints are added to the formulation. We obtain:

min Z (Z CijTij + Z Cij(tij + Tij Z kVZ)%J)

i<n jel; jed; k<N
jel;UJ;
V1 S n Zdijmij + Z(tw + Tij Z kl/lkj)l’” § T
J€l; J€J; k<N
SR POTTETED D ST IR
i<n J€I; j€Jd; k<N

Vi<n,j€J; Zufz = 1

k<N

3. We distribute products over sums in the formulation tcaobthe binary product sets
{zi;v); | k < N}foralli <n,j e J: by repeatedly applying the Prod reformulation to
all binary products of binary variables, we get a MILP odbrenulation of P where
all the variables are binary.
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We remark that the MILP opt-reformulatiap derived above has a considerably higher cardi-
nality than|P|. More compact reformulations are applicable in step 3 bezat the presence
of the assignment constraints (see Sect. 3.3.2).

Reformulation? essentially rests on linearization variablefi§ which replace the quadratic
termeijufj throughout the formulation. A semantic interpretation tefos3 is as follows. We
notice that fori < n,j € J;, if 2;; = 1, thenz;; = >, yfj (because only one valuewill be

selected), and if;; = 0, thenz;; = 3, v/ (because no value will be selected). This means
that
k<N

is a valid problem constraint. We use it to replaggeverywhere in the formulation where it
appears withj € I;, obtaining a opt-reformulation with;; for j € I; and quadratic termg;;..
Now, because of (3.1), these are zero whien) # (I, p) or k # h and are equal to}; when
(1,7) = (I,p) andk = h, so they can be linearized exactly by replacing them by elier z/fj
according to their indices. What this really means is thatéfi@rmulation(), obtained through
a series of automatic reformulation steps, is a semantichflerent formulation defined in
terms of the following decision variables:

1 if j € I, is assigned ta

0 otherwise.

1 if j € J; is assigned t@ and there aré tests to be performed

Vi<n,jeJ,k<N v = _
0 otherwise.

This is an important hint to the importance of automatic mefalation in problem analysis:
automatic reformulation is a syntactical operation, treulteof which, when interpreted can
really be given a new meaning.
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Relaxations

Loosely speaking, a relaxation of a probldtis an auxiliary problem o with fewer con-
straints. Relaxations are useful because they often yielblgms which are simpler to solve
yet they provide a bound on the objective function value ataptimum.

Such bounds are mainly used in Branch-and-Bound type algwsitivhich are the most
common exact of-approximate (for a given > 0) solution algorithms for MILPs, nonconvex
NLPs and MINLPs. Although the variants for solving MILPs, R& and MINLPs are rather
different, they all conform to the same implicit enumeratgearch type. Lower and upper
bounds are computed for the problem over the current varidbmains. If the bounds are
sufficiently close, a global optimum was found in the currdomain: store it if it improves
the incumbent (i.e. the current best optimum). Otherwisetitppn the domain and recurse
over each subdomain in the partition. Should a bound be wadf¢kan the current incumbent
during the search, discard the domain immediately witheatirsing on it. Under some reg-
ularity conditions, the recursion terminates. The Branati-Bound algorithm has been used
on combinatorial optimization problems since the 1950s [i§]first application to nonconvex
NLPs is [29]. More recently, Branch-and-Bound has evolved Branch-and-Cut and Branch-
and-Price for MILPs [83, 120, 47], which have been used twessbme practically difficult
problems such as the Travelling Salesman Problem (TSP) Bdine recent MINLP-specific
Branch-and-Bound approaches are [90, 9, 4, 3, 103, 111, 64].

A further use of bounds provided by mathematical prograngnfionmulations is to evaluate
the performance of heuristic algorithms without an appr@ation guarantee [25]. Bounds are
sometimes also used to guide heuristics [88].

In this chapter we define relaxations and review the mosuliseks. In Sect. 4.1 we give
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some basic definitions. We then list elementary relaxatim®&ct. 4.2 and more advanced ones
in Sect. 4.3. We discuss relaxation strengthening in Sett. 4

4.1 Definitions

Consider an optimization probleid = (P, V,&,0,C,B,7) and letQ be such thatP(Q) 2
P(P),V(Q) =V(P),E(Q) 2 £(P) andO(Q) = O(P).

We first define relaxations in full generality.

4.1.1 Definition
Q is arelaxationof P if F(P) C F(Q).

What we might call the fundamental theorem of relaxationtestthat relaxations provide
bounds to the objective function.

4.1.2 Theorem
LetQ) be a relaxation oP and lef( f, d) be an objective function d?, x € G(P) andy € G(Q).
Thendf (y) > df (x).

Proof. SinceF(Q) 2 F(P),forallz € G(P), x € F(Q), which implies the result. O
Defn. 4.1.1 is not used very often in practice because it do¢say anything on how to
construct). The following elementary relaxations are more useful.
4.1.3 Definition
Qisa:
e constraint relaxatiorof P if C(Q) € C(Q);
e bound relaxatiorof P if B(Q) € B(Q);

e acontinuous relaxatiowf P if Jv € V(P) (7 (v) > 0) and7 (Q) = 0.

4.2 Elementary relaxations

We shall consider two types of elementary relaxations: mticuous relaxation and the convex
relaxation. The former is applicable to MILPs and MINLPsd déime latter to (nonconvex) NLPs
and MINLPs. They are both based on the fact that whereasngpMiLPs and MINLPs is
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considered difficult, there are efficient algorithms fornéod LPs and convex NLPs. Since the
continuous relaxation was already defined in Defn. 4.1.3taw@lly consists in considering
integer/discrete variables as continuous ones, in theofetstis section we focus on convex
relaxations.

Formally (and somewhat obviously), is aconvex relaxatiomf a given problenP if Q is a
relaxation of P and(@ is convex. Associated to all sBB in the literature there is@@onvex)
NLP or MINLP in standard form, which is then used as a stapioigt for the convex relaxation.

4.2.1 Outer approximation

Outer approximation (OA) is a technique for defining a potyfia¢ approximation of a convex
nonlinear feasible region, based on computing tangentset@onvex feasible set at suitable
boundary points [27, 31, 51]. An outer approximation reteotarelaxes a convex NLP to an LP,
(or a MINLP to a MILP) and is really a “relaxation scheme” rathhan a relaxation: since the
tangents tall boundary points of a convex set define the convex set itsslfchoice of (finite)
set of boundary points of the convex can be used to defineexeiiff outer approximation. OA-
based optimization algorithms identify sets of boundaringsothat eventually guarantee that
the outer approximation will be exact near the optimum. b [$he following convex MINLP

is considered:
min  Ly(z) + cy

st. L(z)+By < 0
< oz <Y
y € {07 1}q>
wherel; : R" — R, L : R* — R™ are convex once-differentiable functionse R?, B is
anm x ¢ matrix. For a given/ € {0,1}9, let P(y') be (4.1) withy fixed aty’. Let {3’} be
a sequence of binary-vectors. Letl’ = {j | P(y’) is feasible with solution’}. Then the
following is a MILP outer approximation for (4.1):

(4.2)

ming , , i
VjeT Lo(x7)+VEi(z?)(xz—a))+cy < 7
Vj L(z7)+ VL(z?)(x—27)+ By < 0
< x <2V
y € {0,137 )

wherex’ is the solution taF’(y7) (defined in [31]) wheneveP(y7) is infeasible.
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4.2.2 «oBB convex relaxation

The aBB algorithm [9, 4, 3, 32] targets single-objective NLPs wehéne expressions in the
objective and constraints are twice-differentiable. Toevex relaxation of the probleif:

min, f(x)
st. g(z)
W) — 4.2)

0
0
b < x <2V

is obtained as follows.

1. Apply the Eq2Ineq reformulation (see Sect. 3.1.4) to gamflinear equality constraint
in C, obtaining an opt-reformulatiof?, of P.

2. For every nonconvex inequality constraint (e, s, b.) € C(P;):

(a) if the root noder of the expression tree. is a sum operator, for every subnode
s € 0% (r) replaces with a specialized convex underestimatorsifs a bilinear,
trilinear, linear fractional, fractional trilinear, uraviate concave term. Otherwise
replace witho-underestimator;

(b) otherwise, replace with a specialized if is a bilinear, trilinear, linear fractional,
fractional trilinear, univariate concave term. Otherwisglace withh-underestimator.

The specialized underestimators are as follows: McCormiekielopes for bilinear terms [80,
6], the second-level RLT bound factor linearized produc®s g8, 95] for trilinear terms, and a
secant underestimator for univariate concave terms. iBredterms are dealt with by extending
the bilinear/trilinear underestimators to bilinearitidar products of univariate functions and
then noting that: /y = ¢1(x)¢2(y) Whereg, is the identity andy,(y) = 1/y [77]. Recently, the
convex underestimator for trilinear terms have been regpladth the convex envelopes [81].

The general-purpose-underestimator:
— ) (4.3)

is a quadratic convex function that for suitable values &f “convex enough” to overpower the
generic nonconvex term. This occurs for

1
a2max{0,—§ min  A\(x)},

L <x<gU
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wheremin \(x) is the minimum eigenvalue of the Hessian of the generic noveoterm in
function of the problem variables.

The resultingyBB relaxation of P is a convex NLP.

4.2.3 Branch-and-Contract convex relaxation

The convex relaxation is used in the Branch-and-Contracti#thgo [121], targeting nonconvex
NLPs with twice-differentiable objective function and ebraints. This relaxation is derived
essentially in the same way as Sect. 4.2.2. The differerrees a

e the problem is assumed to only have inequality constrairtseoforme = (e., —1,0);

e each function (in the objective and constraints) consits sum of nonlinear terms in-
cluding: bilinear, linear fractional, univariate concaaed generic convex.

The convex relaxation is then constructed by replacing @acitonvex nonlinear term in the
objective and constraints by a corresponding envelopelaxaton. The convex relaxation for
linear fractional term had not appeared in the literatufereg121].

4.2.4 Symbolic reformulation based convex relaxation

This relaxation is used in the symbolic reformulation sgid@iranch-and-Bound algorithm pro-
posed in [102, 103]. It can be applied to all NLPs and MINLPsvithich a convex underes-
timator and a concave overestimator are available. It st8i reformulating® to the Smith
standard form (see Sect. 2.4.4) and then replacing evemimgfconstraint with the convex
and concave under/over-estimators. In his Ph.D. thesit][Bmith had tried both NLP and
LP convex relaxations, finding that LP relaxations were nret@ble and faster to compute,
although of course with slacker bounds. The second impléatien of the sBB algorithm he
proposed is described in [62, 64] and implemented indl@PS software framework [73].
Both versions of this algorithm consider under/overestorsator the following terms: bilinear,
univariate concave, univariate convex (linear fractiop@ing reformulated to bilinear). The
second version also included estimators for piecewiseedogncave terms. One notable fea-
ture of this relaxation is that it can be adapted to deal withrerterms. Some recent work
in polyhedral envelopes, for example [106], gives condgiander which the sum of the en-
velopes is the envelope of the sum: this would yield a conveelepe for a sum of terms. It
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would then suffice to provide for a defining constraint in tineit® standard form linearizing the

corresponding sum. The Smith relaxation is optionallyrgjteened via LP-based optimality

and feasibility based range reduction techniques. Afteryexange reduction step, the convex
relaxation is updated with the new variable ranges in aafitex fashion until no further range

tightening occurs [101, 62, 64].

This relaxation is at the basis of the sBB solver [64] inéh&PS software framework [73],
which was used to obtain solutions of many different probtdasses: pooling and blending
problems [43, 72], distance geometry problems [54, 56], ampiantum chemistry problem
[57, 69].

4.2.5 BARON'’s convex relaxation

BARON (Branch And Reduce Optimization Navigator) is a comnarBranch-and-Bound
based global optimization solver (packaged within the GAM$] modelling environment)
which is often quoted as being tke factostandard solver for MINLPs [111, 110]. Its convex
relaxation is derived essentially in the same way as in 8e2#4. The differences are:

e better handling of fractional terms [107, 109]

e advanced range reduction techniques (optimality, feltgileind duality based, plus a
learning reduction heuristic)

e optionally, an LP relaxation is derived via outer approxiiom

4.3 Advanced relaxations

In this section we shall describe some more advanced redasahamely the Lagrangian relax-
ation, the semidefinite relaxation, the reformulatioreéinzation technique and the signomial
relaxation.
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4.3.1 Lagrangian relaxation

Consider a MINLP
f*=min, f(z)
st glz) < 0 (4.4)
r € XCR",
wheref : R" — R andg : R® — R™ are continuous functions and is an arbitrary set. The
Lagrangian relaxation consists in “moving” the weightedstoaints to the objective function,
namely:

L(p) =inf, f(x) + plg(x)
r € X CR"

for some nonnegative € R7. For allz € X with g(x) < 0, we haveu' g(z) < 0, which
implies L(p) < f* for all x> 0. In other wordsL(x) provides a lower bound to (4.4) for all
w1 > 0. Thus, we can improve the tightness of the relaxation byisglthe Lagrangian problem

max L (), (4.5)

n=>0

(namely, we attempt to find the largest possible lower boutfd@.4) is an LP problem, it is
easy to show that the Lagrangian problem (4.5) is the dual roBlpm. In general, solving
(4.5) is not a computationally easy task [84]. However, ohie nice features of Lagrangian
relaxations is that they provide a lower bound for each value > 0, so (4.5) does not need
to be solved at optimality. Another useful feature is thag anbset of problem constraints
can be relaxed, foX can be defined arbitrarily. This is useful for problems that @most
block-separable, i.e. those problems that can be decomjposeme independent subproblems
bar a few constraints involving all the problem variabldsdaalled complicating constraints).
In these cases, one considers a Lagrangian relaxation obthplicating constraints and then
solves a block-separable Lagrangian problem. This apprisacalled Lagrangian decomposi-
tion.

The Lagrangian relaxation has some interesting theotgtioperties: (a) for convex NLPs
it is a global reformulation [20]; (b) for MILPs, it is at less tight as the continuous relaxation
[120]; (c) for MINLPs, under some conditions (i.e. some ¢oaist qualification and no equality
constraints) it is at least as tight as any convex relaxattmained by relaxing each nonconvex
term or each constraint one by one [46], such as all thosa giv8ect. 4.2. Further material on
the use of Lagrangian relaxation in NLPs and MINLPs can bedan [84, 46].

Consider a problen® such thaO(P) = {(e,, d,) } and a subset of constraintsC C(P). A
Lagrangian relaxation af’ in P (denoted by LagRéP, (")) is a problem? defined as follows.
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V(Q) =V(P),B(Q) = B(P), T(Q) = T(P),
P(Q) =P(P)U{pc | cecCl,

e C(Q)=C(P)\C,
o O(Q) ={(e,,d,)}, wheree, = e, + > ..o theC-

The Lagrangian problem cannot itself be defined in the datectsire of Defn. 2.1.1, for the
max operator is only part of); as long as it has a finite number of arguments.

4.3.2 Semidefinite relaxation

As was pointed out in Sect. 2.4.10, SDPs provide very tiglaixegions for quadratically con-
strained quadratic MINLPs (QCQP). A QCQP in general form isodews [10]:

. )
min, ' Qo + agx

Viel x2'Qur+alx
VieE 2'Qx+ajr =
xk < x
vieJ z; € Z, )
where/UE = {1,...,m}, J C{1,...,n}, z € R, Q; is ann x n symmetric matrix for
all i < m. For general matriceQ,; and.J #, the QCQP is nonconvex. Optionally, the integer
variables can be reformulated exactly to binary (see Int2Batt. 3.1.9) and subsequently to
continuous (see Bin2Cont, Sect. 3.1.8) via the introductfoihe constraints:? — z; = 0 for
all i € J: since these constraints are quadratic, they can be accdataetbin formulation (4.6)
by suitably modifying the&); matrices. Many important applications can be modelled as QC-
QPs, including graph bisection (see Sect. 2.1.1.2) anchgragitioning [66], scheduling with
communication delays [25], distance geometry problemé siscthe KNP (see Sect. 2.1.1.3)
[54] and the Molecular Distance Geometry Problem (MDGP) [BH, pooling and blending
problems from the oil industry [43, 72] and so on.

|
Sl
S &

(4.6)

IN
8
<

The SDP relaxation of the QCQP is constructed as follows:

e replace all quadratic productsz; in (4.6) with an added linearization variablg;

o form the matrixX = (X;;) and the variable matrix

z X



Chapter 4. Relaxations 66

e for all 0 < ¢ < m form the matrices

A —bz CL;F/Q
Qi_<ai/2 Qi >

¢ the following is an SDP relaxation for QCQP:

(4.7)

>IN
Y =
SN © O
S
d

As for the SDP formulation of Sect. 2.4.10, the SDP relaxatian be easily represented by the
data structure described in Defn. 2.1.1.

4.3.3 Reformulation-Linearization Technique

The Reformulation-Linearization Technique (RLT) is a reléo@ method for mathematical
programming problems with quadratic terms. The RLT linesgiall quadratic terms in the
problem and generates valid linear equation and inequeditstraints by considering multi-
plications of bound factors (terms like — /' andz! — ;) and constraint factors (the left
hand side of a constraint such 35, a;z; — b > 0 or>_7  a;z; — b = 0). Since bound
and constraint factors are always non-negative, so aregheducts: this way one can generate
sets of valid problem constraints. In a sequence of papdtsped from the 1980s onwards
(see e.g. [96, 99, 93, 98, 94, 100, 92]), RLT-based relaxsiticgre derived for many different
classes of problems, including IPs, NLPs, MINLPs in genfmathulation, and several real-life
applications. It was shown that the RLT can be used in a lifijaroject fashion to generate the
convex envelope of binary and general discrete problems297

4.3.3.1 BasicRLT

The RLT consists of two symbolic manipulation steps: refdatian and linearization. The
reformulation step is a reformulation in the sense of Def8.1D. Given a problen®, the
reformulation step produces a reformulati@hwhere:
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e V(Q) =V(P);
o £(Q) 2&(P);

e C(Q) 2C(P);

* O(Q) =0O(P);
e B(Q) = B(P);
o T(Q) =T(P);

e Vz,y € V(P), add the following constraints (Q’):

(= Ls)(y—Ly) = 0 (4.8)
(= L)(Uy—y) = 0 (4.9)
Up—2)y—1Ly) = 0 (4.10)
(U —2)(Ly —y) > O (4.11)

o Vz € V(P),c = (e s b.) € C(P) such thak, is an affine forms. = 1 andb. = 0 (we
remark that all linear inequality constraints can be easfgrmulated to this form, see
Sect. 3.1.2), add the following constraintsx@)’):

ec(x — L) 0 (4.12)
e(Uy —2) > O (4.13)

v

e Vz € V(P),c = (e seb.) € C(P) such thak, is an affine forms. = 0 andb. = 0 (we
remark that all linear equality constraints can be triyiadformulated to this form), add
the following constraint t@(Q’):

e.r = 0. (4.14)

Having obtained)’, we proceed to linearize all the quadratic products engexdday (4.8)-
(4.14). We derive the auxiliary proble®@ from @’ by reformulating@’ in Smith’s standard
form (see Sect. 2.4.4) and then performing a constrainkaélan with respect to all defin-
ing constraints. Smith’s standard form is a reformulatiéthe lifting type, and the obtained
constraint relaxation) is a MILP whose optimal objective function valifeis a bound to the
optimal objective function valu¢* of the original problem”. The bound obtained in this way
is shown to dominate, or be equivalent to, several other d®umthe literature [2].
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We remark in passing that (4.8)-(4.11), when linearizeddplacing the bilinear termy
with an added variable), are also known in the literature as McCormick relaxationthey
were first proposed as a convex relaxation of the nonconvest@ntw = zy [80], shown to
be the convex envelope [6], and widely used in spatial BraradrBound (sBB) algorithms for
global optimization [103, 4, 3, 111, 64]. RLT constraintsyyge (4.14) have been the object of
further research showing their reformulating power [6Q,6&, 72, 66] (also see Sect. 3.3.2 and
Sect. 3.3.3).

4.3.3.2 RLT Hierarchy

The basic RLT method can be extended to provide a hierarctgjafations, by noticing that we
can form valid RLT constraints by multiplying sets of bound @onstraint factors of cardinality
higher than 2, and then projecting the obtained constraiatk to the original variable space.
In [97, 2] it is shown that this fact can be used to construet¢bnvex hull of an arbitrary
MILP P. For simplicity, we only report the procedure for MILP in stkard canonical form
(see Sect. 2.4.2) where all discrete variables are binary7i(v) = 2 for all v € V(P). Let
|[V(P)| = n. For all integerd < n, let P, be the relaxation oP obtained as follows:

e for all linear constraint = (e., 1,0) € C(P), subsetl’ C V(P) and finite binary se-
quenceB with |V| = |B| = d such thatB, is thez-th term of the sequence fare V,
add the valid constraint:

e H x H (1—2)| >0; (4.15)
zeV zeV
Bg=0 Byp=1

we remark that (4.15) is a multivariate polynomial ineqyali

e for all monomials of the form
a H xr
zeJCV(P)

with @ € R in a constraint (4.15), replacf] « with an added variable ; (this is equiva-
zeJ
lent to relaxing a defining constraint; = [] in the Smith’s standard form restricted to

zeJ
(4.15).

Now consider the projectioX; of P, in theV(P) variable space (see Sect. 3.1.3.3). It can be
shown that

conV(F(P)) € F(X,) € F(Xno1) ... ©F(Xy) C F(P).
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We recall that for a set” C R”™, conyY) is defined as the smallest convex subseR6f
containingY’.

A natural practical application of the RLT hierarchy is to geate relaxations for polynomial
programming problems [94], where the various multivara@nomials generated by the RLT
hierarchy might already be present in the problem formaitati

4.3.4 Signomial programming relaxations

A signomial programming problem is an optimization probletmere every objective function
is a signomial function and every constraint is of the fare (g, s, 0) whereg is a signomial
function of the problem variables, ard# 0 (so signomial equality constraints must be refor-
mulated to pairs of inequality constraints as per the EqRhe¢ormulation of Sect. 3.1.4). A
signomialis a term of the form:

K
a H xr, (4.16)
k=1

wherea,r, € R for all £ € K, and ther, exponents are assumed ordered so that 0
forall k < mandr, < 0 form < k < K. Because the exponents of the variables are real
constants, this is a generalization of a multivariate maabterm. A signomial functionis a
sum of signomial terms. In [17], a set of transformationshefformz; = fi.(z;) are proposed,
wherexy, is a problem variables, is a variable in the reformulated problem afidis suitable
function that can be either exponential or power. This Wedd opt-reformulation where all
the inequality constraints are convex, and the variablasd the associated (inverse) defining
constraintse, = fi(z,) are added to the reformulation for &llc K (over each signomial term

of each signomial constraint).

We distinguish the following cases:

e If a > 0, the transformation functiong, are exponential univariate, i.e, = e*. This
reformulates (4.16) as follows:

eXk<m Tk7k
K |71
Hk:m+1 Ty,

Vk < K 1z, = e,

1
e If a < 0, the transformation functions are power univariate, ie.= z/* for k < m
_1 .. "
andz, = z, " for k > m, whereR = >, _, |ri|. This is also called gotential
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Figure 4.1: Piecewise linear underestimating approxionatifor concave (left) and convex
(right) univariate functions.

transformation This reformulates (4.16) as follows:

\T'k\ 3\
R
a HkgK 2k,

1
Vk<m xp =2z
1

Vk>m xp=2z"
R=3% <kl )

This opt-reformulation isolates all nonconvexities in tnerse defining constraints. These are
transformed as follows:
Vi < Kxp=¢e¢"* — Vk< Kz, =loguxy
Vk<m 2z =af
Vk>m z,= a:,;R,

and then relaxed using a piecewise linear approximationead-fg. 4.1. This requires the
introduction of binary variables (one per turning point).

The signomial relaxation is a convex MINLP; it can be furthelexed to a MILP by outer
approximation of the convex terms, or to a convex NLP by cardus relaxation of the discrete
variables.

4.4 Valid cuts

Once a relaxation has been derived, it should be strengii{epeit should be modified so that
the deriving bound becomes tighter). This is usually donédiytening the relaxation, i.e. by
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adding inequalities. These inequalities have the propkdtthey are redundant with respect to
the original (or reformulated) problem but they are not rethnt with respect to the relaxation.
Thus, they tighten the relaxation but do not change the rmalgbroblem. In this section we
discuss such inequalities for MILPs, NLPs and MINLPs.

4.4.1 Definition
Given an optimization problen? and a relaxatiors), avalid inequalityis a constraint =
(e, S¢, be) SUCh that the problei®’ obtained by.) from addinge to C(Q) hasF(P) C F(Q').

Naturally, becausé can be seen as a constraint relaxatio@9fwe also haveF (Q)') C F(Q).
Linear valid inequalities are very important as adding &dininequality to an optimization
problem usually does not significantly alter the solutiondti

For any problemP and anyc € C(P), let F. be the set of points iiR™ that satisfyc. Let @)
be a relaxation of.

4.4.2 Definition
A linear valid inequality is avalid cutif there existy) € Q such that) ¢ F..

Valid cuts are linear valid inequalities that “cut away” atpaf the feasible region of the re-
laxation. They are used in two types of algorithms: cuttitenp algorithms and Branch-and-
Bound algorithms. The typical iteration of a cutting plangaaithm solves a problem relaxation
QQ (say with solutionz’), derives a valid cut that cuts away; the cut is then added to the re-
laxation and the iteration is repeated. Convergence imatlavhen:’ € F(P). Cutting plane
algorithms were proposed for MILPs [37] but then deemed tmbelow for practical purposes,
and replaced by Branch-and-Bound. Cutting plane algorithme a#so proposed for convex
[50] and bilinear [53] NLPs, and pseudoconvex MINLPs [1188]L

4.4.1 Valid cuts for MILPs

This is possibly the area of integer programming where tiggdst number of papers is pub-
lished annually. It would be outside the scope of this thiesiglate on all valid cuts for MILPs,
so we limit this section to a brief summary. The most effextutting techniques usually rely
on problem structure. See [83], Ch. 1I.2 for a good technicsdwkssion on the most standard
techniques, and [78, 79, 49] for recent interesting grdwgotetical approaches which are ap-
plicable to large subclasses of IPs. Valid inequalitiesy@merated by all relaxation hierarchies
(like e.g. Chatal-Gomory [120] or Sherali-Adams’ [98]). The best knowengral-purpose
valid cuts are the Gomory cuts [37], for they are simple torseéind can be written in a form
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suitable for straightforward insertion in a simplex tabig@many strengthenings of Gomory cuts
have been proposed (see e.g. [58]). Lift-and-project tieckas are used to generate new cuts
from existing inequalities [14]. Families of valid cuts fgeneral Binary Integer Programming
(BIP) problems have been derived, for example, in [15, 74$edeon geometrical properties
of the definition hypercub¢0, 1}™. In [15], inequalities defining the various faces of the unit
hypercube are derived. The cuts proposed in [74] are defipdithdiing a suitable hyperplane
separating a unit hypercube vertekom its adjacent vertices. Intersection cuts [13] are @efin
as the hyperplane passing through the intersection paéttsaen the smallest hypersphere con-
taining the unit hypercube andhalf-lines of a cone rooted at the current relaxed solutibn o
(. Spherical cuts are similar to intersection cuts, but thesiered sphere is centered at the
current relaxed solution, with radius equal to the distandde nearest integral point [65]. In
[19], Fenchel duality arguments are used to find the maximistarce between the solution of
@ and the convex hull of thg(P); this gives rise to provably deep cuts calléehchel cuts
See [23] for a survey touching on the most important genaugbose MILP cuts, including Go-
mory cuts, Lift-and-project techniques, Mixed Integer Rdimg (MIR) cuts, Intersection cuts
and Reduce-and-split cuts.

4.4.2 Valid cuts for NLPs

Valid cuts for NLPs with a single objective functiginsubject to linear constraints are described
in [45] (Ch. Ill) when an incumbent* with f(z*) = ~ is known, in order to cut away feasible
pointsz’ with f(x’) > ~. Such cuts are calleg-valid cuts Given a nondegenerate vertexof

the feasible polyhedron for whicfi(z") > ~, we consider the: polyhedron edges emanating
from z’. For eachi < n we consider a point’ on the:-th edge fromz’ such thatf(z%) > ~.
The hyperplane passing through the intersection ofrthis a~-valid cut (see Fig. 4.2). More
precisely, let) be the matrix whoséth column isz® — 2’ ande the unitn-vector. Then by [45]
Thm. .1 eQ~(z — 2’) > 1 defines ay-valid cut. Under some conditions, we can firidsuch
that f(x) = z* and define the strongest possiblalid cut, also called¢oncavity cut

The idea for definingy-valid cuts was first proposed in [113]; this was applied tb Idrear
programs by means of a simple reformulation in [89]. It i®likthat this work influenced the
inception of intersection cuts [13] (see Sect. 4.4.1), Whvas then used as the basis for current
work on Reduce-and-Split cuts [8].

Some valid cuts for pseudoconvex optimization problemspaoposed in [119]. An opti-
mization problem is pseudoconvex if the objective funci®a linear form and the constraints
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Figure 4.2: Av-valid cut.

are in the forme = (g, —1,0) whereg(z) is a pseudoconvex function of the problem variable
vectorz. A functiong : S C R™ — R is pseudoconveif for all =,y € S, g(z) < g(y) implies
Vg(y)(z —y) < 0. So it follows that for each, y € S with g(y) > 0, there is a constamt > 1
such that

9(y) +a(Vg(y))(z —y) < g(z) (4.17)

is a (linear) outer approximation to the feasible regionhaf problem. Ifg is convex,a = 1
suffices.

In [84], Ch. 7 presents a non-exhaustive list of NLP cuts, iapple to a MINLP standard
form ([84] Eqg. (7.1): minimization of a linear objective gabt to linear inequality constraints
and nonlinear inequality constraints): linearizationsoi@uter approximation, see Sect. 4.2.1),
knapsack cuts (used for improving loose convex relaxatmfngiven constraints), interval-
gradient cuts (a linearization carried out on an interva¢sgtthe gradient of a given constraint
is defined), Lagrangian cuts (derived by solving Lagrangialmproblems), level cuts (defined
for a given objective function upper bound), deeper cutedus tighten loose Lagrangian re-
laxation; they involve the solution of separation problenwlving several variable blocks).

Another NLP cut based on the Lagrangian relaxation is pregpos[111]: consider a MINLP
in the canonical fornmin,, <o f(z) and letL(-, u) = f(z) + p" g(z) be its Lagrangian relax-
ation. Letf be a lower bound obtained by solvidgand f be an upper bound computed by
evaluatingf at a feasible point’. From f < f(z) + p'g(z) < f + p"g(z) one derives the
valid cutg;(z) > —(f — f) foralli < m (whereg : R* — R™).
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4.4.3 Valid cuts for MINLPs

Naturally, both MILP and NLP cuts may apply to MINLPs. Somerenspecific MINLP cuts
can be derived by reformulating integer variables to biraee Sect. 3.1.9) and successively
to continuous (see Sect. 3.1.8). The added quadratic eamstmay then be relaxed in a La-
grangian (see Sect. 4.3.1) or SDP fashion (see Sect. 483R)dny of the NLP cuts described
in Sect. 4.4.2 applied to such a reformulation is essentzadipecific MINLP valid cut.
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Conclusion

This thesis is a study of mathematical programming refoatih and relaxation techniques.
The introductory chapter presents some motivations tasvateth a study, the principle of
which being that Mixed Integer Nonlinear Programming sdveeed to be endowed with auto-
matic reformulation capabilities before they can be asbédi, functional and efficient as their
industrial-strength Mixed Integer Linear Programmingveos have been. The second chapter
presents a general framework for representing and manipgllenathematical programming
formulations, as well as some definitions of the concept fafrneulation together with some
theoretical results; the chapter is concluded by listingsof the most common standard forms
in mathematical programming. In the third chapter we preagrartial systematic study of ex-
isting reformulations. Each reformulation is presenteith o symbolic algorithmic terms (i.e. a
prototype for carrying out the reformulation automatigati terms of the provided data struc-
tures is always supplied) and in the more usual mathemagcais. This should be seen as
the starting point for an exhaustive such study: eventuallyseful reformulations might find
their place in an automatic reformulation preprocessiripsoe for Mixed Integer Nonlinear
Programming. In chapter four, we attempt a similar work weébpect to relaxations, although
this seems to be an even larger task, for there are in generalways to relax a mathematical
programming problem rather than to reformulate it; agaishould be seen as the paving stones
for an exhaustive work that is still to come.

Thus, the future work stemming from this thesis will focusammpleting the existing re-
views in reformulation and relaxation techniques, and @dpcing new and useful reformu-
lation methods for mathematical programming. Hopefullg shall one day also produce the
accompanying software.
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