
HAL Id: hal-00163562
https://hal.science/hal-00163562

Submitted on 14 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Reformulation and Convex Relaxation Techniques for
Global Optimization

Leo Liberti

To cite this version:
Leo Liberti. Reformulation and Convex Relaxation Techniques for Global Optimization. Other
[cs.OH]. Imperial College London, 2004. English. �NNT : �. �hal-00163562�

https://hal.science/hal-00163562
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Reformulation and Convex Relaxation Techniques
for Global Optimization

LEO SERGIO LIBERTI

15th March 2004

A thesis submitted for the degree of Doctor of Philosophy of the University of London

and for the Diploma of Imperial College

Department of Chemical Engineering and Chemical Technology

Imperial College London

South Kensington Campus

London SW7 2AZ



Abstract

Many engineering optimization problems can be formulated as nonconvex nonlinear pro-

gramming problems (NLPs) involving a nonlinear objective function subject to nonlinear con-

straints. Such problems may exhibit more than one locally optimal point. However, one is

often solely or primarily interested in determining the globally optimal point. This thesis is

concerned with techniques for establishing such global optima using spatial Branch-and-Bound

(sBB) algorithms.

A key issue in optimization is that of mathematical formulation, as there may be several

different ways in which the same engineering problem can be expressed mathematically. This

is particularly important in the case of global optimization as the solution of different mathe-

matically equivalent formulations may pose very different computational requirements. Based

on the concept of reduction constraints, the thesis presents a set of graph-theoretical algorithms

which automatically reformulate large sparse nonconvex NLPs involving linear constraints and

bilinear terms. It is shown that the resulting exact reformulations involve fewer bilinear terms

and have tighter convex relaxations than the original NLPs. Numerical results illustrating the

beneficial effects of applying such automatic reformulations to the well-known pooling and

blending problem are presented.

All sBB algorithms rely on the construction of a convex relaxation of the original NLP prob-

lem. Relatively tight convex relaxations are known for many categories of algebraic expres-

sions. One notable exception is that of monomials of odd degree, i.e. expressions of the form
��������� where 	 
��

, when the range of the variable � includes zero. These occur often (e.g. as

cubic or quintic expressions) in practical applications. The thesis presents a novel method for

constructing the convex envelope of such monomials, as well as a tight linear relaxation of this

envelope.

Finally, the thesis discusses some of the software engineering issues involved in the design

and implementation of codes for sBB, especially in view of the large amounts of both sym-

bolic and numerical information required by these codes. A prototype object-oriented software

library, 
�
������ , is described.



Acknowledgments

After nearly four years of research, it is hard to think whom not to thank in this Ph.D. thesis.

Besides, I feel I owe everyone who has been around me during my stay in London a gesture of

thanks. However, this would result into a short biography of my last four years rather than a

Ph.D. acknowledgment.

I naturally want to thank my supervisor Costas Pantelides for his support, both technical and

financial. I would also like to thank: Panagiotis Tsiakis and Benjamin Keeping for produc-

ing the 
�
������ � software, on which my 
�
������ software is heavily based; Fabrizio Bezzo

for listening to many of my woes and lamentations about my latest theoretical ideas leading

to nothing, and helping whenever he could; Gerard Gorman for our lengthy talks about C++,

coding and debugging techniques; and Panagiotis Karamertzanis for crucial help with the bu-

reaucratic pitfalls of thesis submission. A lot of other people, both in the CPSE and elsewhere,

have helped me in my research, but the list is just too long to include it here. As too long would

be the list of all people who have extended their moral support and friendship to me during these

years: so please excuse me if you are not on this page. You are in my memory nonetheless.

Finally, I would like to thank my family and three dearest friends, Jacopo, Giovanna and

Cecilia, for their love and support in times of need.



Contents

1 Introduction 17

1.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Classification of optimization problems . . . . . . . . . . . . . . . . . . . . . 18

1.3 Algorithms for global optimization of NLPs . . . . . . . . . . . . . . . . . . . 19

1.3.1 Formulation of the NLP . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.2 A brief history of global optimization . . . . . . . . . . . . . . . . . . 20

1.3.3 Two-phase global optimization algorithms . . . . . . . . . . . . . . . . 23

1.4 The branch-and-select strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4.1 Fathoming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5 Mathematical formulation and convex relaxation for nonconvex NLPs . . . . . 27

1.6 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Overview of reformulation techniques in optimization 31

2.1 Reformulations to standard forms . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.1 Box-constrained problems . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.1.1 Penalty and barrier functions . . . . . . . . . . . . . . . . . 33

2.1.1.2 Lagrangian and Lagrange coefficients . . . . . . . . . . . . . 34



Contents 5

2.1.2 Separable problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.2.1 Separation of bilinear forms . . . . . . . . . . . . . . . . . . 35

2.1.2.2 Global solution of separable box-constrained problems . . . 36

2.1.3 Linear problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.3.1 Reformulating quadratic binary problems to linear binary prob-

lems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.4 Convex problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1.5 Binary problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.5.1 Reformulating discrete problems to binary problems . . . . . 39

2.1.5.2 Reformulating binary problems to continuous problems . . . 40

2.1.6 Concave problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.1.6.1 Reformulating binary problems to concave problems . . . . . 41

2.1.6.2 Reformulating bilinear problems to concave problems . . . . 41

2.1.6.3 Reformulating complementarity problems to concave problems 42

2.1.6.4 Reformulating max-min problems to concave problems . . . 42

2.1.7 D.c. problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.7.1 Reformulating continuous functions to d.c. functions . . . . 43

2.1.8 Factorable problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.1.8.1 Reformulation of factorable problems to separable form . . . 45

2.1.9 Smith’s standard form . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2 Exact reformulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2.1 Equality/inequality constrained problems . . . . . . . . . . . . . . . . 47

2.2.2 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 Convex relaxations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.1 � BB convex relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . 49



Contents 6

2.3.2 Smith’s convex relaxation . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.3 BARON’s convex relaxation . . . . . . . . . . . . . . . . . . . . . . . 53

2.4 Linear relaxations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.4.1 Reformulation-linearization technique . . . . . . . . . . . . . . . . . . 56

2.5 Other reformulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3 Reduction constraints for sparse bilinear programs 60

3.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Fundamental properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 An algorithm for the identification of valid reduction constraints . . . . . . . . 67

3.3.1 Valid reduction constraint sets . . . . . . . . . . . . . . . . . . . . . . 67

3.3.2 A graph-theoretical representation of linear constraints . . . . . . . . . 68

3.3.3 Efficient identification of dilations . . . . . . . . . . . . . . . . . . . . 69

3.4 A detailed example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4.1 Valid reduction constraints by multiplication with variable � � . . . . . . 74

3.4.2 Valid reduction constraints by multiplication with variable � � . . . . . . 76

3.4.3 Valid reduction constraints by multiplication with variable ��� . . . . . . 77

3.4.4 Valid reduction constraints by multiplication with variables �������������	��
 . 78

3.4.5 The reformulated NLP . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.6 Generalization of the graph-theoretical algorithm . . . . . . . . . . . . . . . . 85

3.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 A convex relaxation for monomials of odd degree 90



Contents 7

4.1 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 The tangent equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 The roots of
����� ��� and their uniqueness . . . . . . . . . . . . . . . . . . . . . 93

4.3.1 Bounding the roots of
����� ��� . . . . . . . . . . . . . . . . . . . . . . . 94

4.4 Nonlinear convex envelopes . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5 Tight linear relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 Comparison to other relaxations . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6.1 Reformulation in terms of bilinear products . . . . . . . . . . . . . . . 99

4.6.2 Underestimation through � parameter . . . . . . . . . . . . . . . . . . 100

4.7 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Spatial Branch-and-Bound algorithm with symbolic reformulation 105

5.1 Overview of spatial Branch-and-Bound algorithms . . . . . . . . . . . . . . . 106

5.2 Smith’s sBB algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.1 Choice of region (step 2) . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.2 Convex relaxation (step 3) . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.2.1 Reformulation to standard form . . . . . . . . . . . . . . . . 108

5.2.2.2 Convexification . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.3 Branching (step 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.4 Bounds tightening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.4.1 Optimization-based bounds tightening (step 1) . . . . . . . . 111

5.2.4.2 Feasibility-based bounds tightening (step 2) . . . . . . . . . 112

5.3 Improvements to Smith’s sBB algorithm . . . . . . . . . . . . . . . . . . . . . 112

5.3.1 Avoiding the introduction of slack variables . . . . . . . . . . . . . . . 112



Contents 8

5.3.2 Avoiding unnecessary local optimizations . . . . . . . . . . . . . . . . 113

5.3.2.1 Branching on added variables . . . . . . . . . . . . . . . . . 114

5.3.2.2 Branching on original variables . . . . . . . . . . . . . . . . 114

5.4 The 
�
���� � software framework for optimization . . . . . . . . . . . . . . . . 114

5.4.1 Main features of 
 
 � � � . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4.2 Object classes in 
�
 � � � . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4.3 Typical usage scenario for 
 
 ����� . . . . . . . . . . . . . . . . . . . . 119

5.4.4 Solver components for use within 
 
 � � � . . . . . . . . . . . . . . . . 120

5.5 An sBB solver for the 
�
 � � � framework . . . . . . . . . . . . . . . . . . . . 121

5.5.1 Overview of the sBB code . . . . . . . . . . . . . . . . . . . . . . . . 121

5.5.2 The convexifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5.3 Storing the list of regions . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6 Concluding remarks 127

Bibliography 130

A 
�
 � � � Reference Manual 142

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.2 Fundamental concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.2.1 Object classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.2.2 Multidimensional sets in 
 
 � � � . . . . . . . . . . . . . . . . . . . . 143

A.2.3 Constants, variables, constraints and objective function . . . . . . . . 144

A.2.4 Nonlinear expressions and constants . . . . . . . . . . . . . . . . . . 145



Contents 9

A.2.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.3 General software issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.3.1 Software constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.3.2 The si, sd and li Argument Types and the IntSeqAuxiliary Function147

A.4 The MINLP object class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A.4.1 MINLP instantiation: the NewMINLP function . . . . . . . . . . . . . 148

A.4.2 MINLP construction methods . . . . . . . . . . . . . . . . . . . . . . 148

A.4.2.1 Method NewContinuousVariable . . . . . . . . . . . 148

A.4.2.2 Method NewIntegerVariable . . . . . . . . . . . . . . 149

A.4.2.3 Method NewConstraint . . . . . . . . . . . . . . . . . . 150

A.4.2.4 AddLinearVariableSliceToConstraintSlice . 151

A.4.2.5 Method NewConstant . . . . . . . . . . . . . . . . . . . 152

A.4.2.6 Method NewConstantExpression . . . . . . . . . . . 153

A.4.2.7 Method NewVariableExpression . . . . . . . . . . . 153

A.4.2.8 Method BinaryExpression . . . . . . . . . . . . . . . 154

A.4.2.9 Method UnaryExpression . . . . . . . . . . . . . . . . 154

A.4.2.10 AssignExpressionSliceToConstraintSlice . . 155

A.4.2.11 Method NewObjectiveFunction . . . . . . . . . . . . 156

A.4.2.12 AddLinearVariableSliceToObjectiveFunction 157

A.4.2.13 Method AssignExpressionToObjectiveFunction 157

A.4.3 MINLP modification methods . . . . . . . . . . . . . . . . . . . . . . 158

A.4.3.1 Method SetVariableValue . . . . . . . . . . . . . . . 158

A.4.3.2 Method SetVariableBounds . . . . . . . . . . . . . . . 159

A.4.3.3 Method SetConstraintBounds . . . . . . . . . . . . . 160



Contents 10

A.4.3.4 Method SetConstantValue . . . . . . . . . . . . . . . 160

A.4.3.5 Method SetConstantSliceValue . . . . . . . . . . . 161

A.4.3.6 Method SetKeyVariable . . . . . . . . . . . . . . . . . 161

A.4.4 Structured MINLP Information Access Methods . . . . . . . . . . . . 162

A.4.4.1 Method GetVariableInfo . . . . . . . . . . . . . . . . 162

A.4.4.2 Method GetConstraintInfo . . . . . . . . . . . . . . . 163

A.4.4.3 Method GetObjectiveFunctionInfo . . . . . . . . . 164

A.4.4.4 Method GetProblemInfo . . . . . . . . . . . . . . . . . 165

A.4.5 Flat MINLP Information Access Methods . . . . . . . . . . . . . . . . 165

A.4.5.1 General Properties of the Flat MINLP . . . . . . . . . . . . 165

A.4.5.2 Method GetFlatMINLPSize . . . . . . . . . . . . . . . 166

A.4.5.3 Method GetFlatMINLPStructure . . . . . . . . . . . 167

A.4.5.4 Method GetFlatMINLPVariableInfo . . . . . . . . . 168

A.4.5.5 Method SetFlatMINLPVariableBounds . . . . . . . 169

A.4.5.6 Method GetFlatMINLPVariableValues . . . . . . . 170

A.4.5.7 Method SetFlatMINLPVariableValues . . . . . . . 170

A.4.5.8 Method GetFlatMINLPConstraintInfo . . . . . . . 171

A.4.5.9 EvalFlatMINLPNonlinearObjectiveFunction . 172

A.4.5.10 Method EvalFlatMINLPNonlinearConstraint . . 172

A.4.5.11 GetFlatMINLPObjectiveFunctionDerivatives . 173

A.4.5.12 Method GetFlatMINLPConstraintDerivatives . 174

A.4.5.13 Method GetFlatMINLPNoPartitions . . . . . . . . . 175

A.4.5.14 Method GetFlatMINLPPartition . . . . . . . . . . . 175

A.4.6 Standard Form MINLP Information Access Methods . . . . . . . . . . 176



Contents 11

A.4.6.1 Method GetSFNumberOfVariables . . . . . . . . . . . 176

A.4.6.2 Method GetSFVariableInfo . . . . . . . . . . . . . . . 177

A.4.6.3 Method GetSFObjFunVarIndex . . . . . . . . . . . . . 177

A.4.6.4 Method GetSFNumberOfLinearConstraints . . . . 178

A.4.6.5 Method GetSFLinearBounds . . . . . . . . . . . . . . . 178

A.4.6.6 Method GetSFLinearStructure . . . . . . . . . . . . 179

A.4.6.7 Method GetSFMatrix . . . . . . . . . . . . . . . . . . . 179

A.4.6.8 Method GetSFNumberOfNonlinearConstraints . . 180

A.4.6.9 Method GetSFNonlinearConstraint . . . . . . . . . 180

A.4.6.10 Method UpdateSolution . . . . . . . . . . . . . . . . . 181

A.5 MINLP solvers and systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

A.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

A.5.1.1 MINLP solver managers and MINLP systems . . . . . . . . 182

A.5.1.2 Algorithmic parameters for MINLP solvers . . . . . . . . . . 182

A.5.2 The ssolpar and sstat argument types . . . . . . . . . . . . . . . 182

A.5.3 NewMINLPSolverManager . . . . . . . . . . . . . . . . . . . . . 183

A.5.4 MINLP solver managers . . . . . . . . . . . . . . . . . . . . . . . . . 184

A.5.4.1 Method GetParameterList . . . . . . . . . . . . . . . 184

A.5.4.2 Method SetParameter . . . . . . . . . . . . . . . . . . . 185

A.5.4.3 Method NewMINLPSystem . . . . . . . . . . . . . . . . . 185

A.5.5 MINLP systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.5.5.1 Method GetParameterList . . . . . . . . . . . . . . . 186

A.5.5.2 Method SetParameter . . . . . . . . . . . . . . . . . . . 186

A.5.5.3 Method GetStatistics . . . . . . . . . . . . . . . . . . 187



Contents 12

A.5.5.4 Method Solve . . . . . . . . . . . . . . . . . . . . . . . . 187

A.5.5.5 Method GetSolutionStatus . . . . . . . . . . . . . . . 188

A.6 Auxiliary interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.6.1 The convexification module . . . . . . . . . . . . . . . . . . . . . . . 188

A.6.1.1 Convexifier manager instantiation: the function NewCon-

vexifierManager . . . . . . . . . . . . . . . . . . . . . 189

A.6.1.2 Method GetConvexMINLP . . . . . . . . . . . . . . . . . 189

A.6.1.3 Method UpdateConvexVarBounds . . . . . . . . . . . 190

A.6.1.4 Methods of the convex MILP . . . . . . . . . . . . . . . . . 191

A.6.2 The FlatExpression interface . . . . . . . . . . . . . . . . . . . 192

A.6.2.0.1 Method GetKind . . . . . . . . . . . . . . . . . 192

A.6.2.1 The FlatConstantExpression interface . . . . . . . 193

A.6.2.1.1 Method GetValue . . . . . . . . . . . . . . . . . 193

A.6.2.2 The FlatVariableExpression interface . . . . . . . 193

A.6.2.2.1 Method GetVarIndex . . . . . . . . . . . . . . 193

A.6.2.3 The FlatOperatorExpression interface . . . . . . . 194

A.6.2.3.1 Method GetOperator . . . . . . . . . . . . . . 194

A.6.2.3.2 Method GetOperand . . . . . . . . . . . . . . . 194

A.6.2.4 Usage of FlatExpression interface . . . . . . . . . . . 195

A.7 Implementation restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

A.8 An Example of the use of 
�
������ . . . . . . . . . . . . . . . . . . . . . . . . 196

A.8.1 Creating the MINLP . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

A.8.1.1 Creating variables . . . . . . . . . . . . . . . . . . . . . . . 198

A.8.1.2 Creating constraints . . . . . . . . . . . . . . . . . . . . . . 198

A.8.1.3 Adding variables to constraints . . . . . . . . . . . . . . . . 199



Contents 13

A.8.1.4 Objective function . . . . . . . . . . . . . . . . . . . . . . . 200

A.8.1.5 Objective function coefficients . . . . . . . . . . . . . . . . 200

A.8.1.6 Modifying the variable bounds . . . . . . . . . . . . . . . . 201

A.8.1.7 Modifying the constraint bounds . . . . . . . . . . . . . . . 201

A.8.1.8 Creating the nonlinear parts . . . . . . . . . . . . . . . . . . 201

A.8.1.9 Assigning expressions to constraints and objective function . 202

A.8.2 MINLP solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

A.8.2.1 Creating an MINLP solver manager object . . . . . . . . . . 203

A.8.2.2 Creating an MINLP system . . . . . . . . . . . . . . . . . . 203

A.8.2.3 Solving the MINLP . . . . . . . . . . . . . . . . . . . . . . 203

A.8.3 Accessing the Solution of the MINLP . . . . . . . . . . . . . . . . . . 203

A.8.3.1 Obtaining information on the variables . . . . . . . . . . . . 203

A.8.3.2 Obtaining information on the objective function . . . . . . . 204



List of Figures

1.1 Fathoming via upper bound computation. . . . . . . . . . . . . . . . . . . . . 27

2.1 The Hilbert space-filling curve in 2-dimensional space. . . . . . . . . . . . . . 48

3.1 Linearity embedded in a bilinear constraint. . . . . . . . . . . . . . . . . . . . 64

3.2 Algorithm for the construction of an augmenting path emanating from a linear

constraint node � in graph ��� . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 Algorithm for identification of set of valid reduction constraint set � for variable

��� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4 Generation of valid reduction constraints for multiplier variable � � . . . . . . . . 74

3.5 Generation of valid reduction constraints for multiplier variable � � . . . . . . . . 76

3.6 Generation of valid reduction constraints for multiplier variable � � . . . . . . . . 77

3.7 Unified bipartite graph for problem (3.34) in the generalized algorithm. . . . . 87

4.1 Convex envelope of � � � ��� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 The case when ���	� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Tight linear relaxation of � � � ��� . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Convex relaxation of � � by reformulation to bilinear product. . . . . . . . . . . 100

4.5 Convex relaxation of � � by the � method. . . . . . . . . . . . . . . . . . . . . 101

4.6 Graphical description of simple test problem for 
�� �
(in 2D). . . . . . . . . . 102



List of Figures 15

4.7 Graphical description of simple test problem for 
�� �
(in 3D). . . . . . . . . . 103

5.1 If the locally optimal solution in � ��� � ����� has already been determined to be at
��� , solving in � ��� � �	�
� is unnecessary. . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 The region tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



List of Tables

3.1 Test problem statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2 Numerical results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 Numerical values of the roots of
� ��� ��� for 
�� �

��� � �
���

(to 10 significant digits). 93

4.2 Summary of linear relaxations for � � � � � ��� , ��� ��� � � � , ��� �
� � . . . . . . . . 98

4.3 Numerical results from the simple test problem. . . . . . . . . . . . . . . . . . 104

A.1 Variable sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

A.2 Parameters appearing in the RTN formulation . . . . . . . . . . . . . . . . . . 197



Chapter 1

Introduction

Optimization is a branch of mathematics that studies the problem of finding the best choice

among a set of entities satisfying some imposed requirements.

In general, the problem is formulated in terms of finding the point � in a space set � (called

the feasible region) where a certain function ������� � (called the objective function), attains

a minimum or a maximum. � is any ordered set.

1.1 Basic definitions

In this section we shall introduce some basic definitions which will be used throughout this

thesis.

The set ���
	 � is convex if, for all � ��� � � and for all � � � � � � � , the vector � ��
 � ��� � � �
is also in � . The intersection of an arbitrary collection of convex sets is convex. Let ����	 � .

The intersection of all the convex subsets of 	 � containing � is called the convex hull of � .

The convex hull of a finite subset ��� � ��������������� of 	 � consists of all the linear combinations� ����
� �
� � � where �

� 
 �
for all ���! and

� ��"�
� �
�
� �

. A function �#��	 � � 	 is convex if

and only if it is defined on a convex set � and is such that for all � ��� � � and for all � � � � � � �
we have

� � � �$
 � ��� � � � � � �%� � ���&
 � �'� � � � � � � �
A function � is concave if

� � is convex.



Chapter 1. Introduction 18

A function � is pseudo-convex if, for all � � � � � such that � � � � � � � � � � � , we have
� � � � � � � � � �

� � � � �
.

A function � is quasi-conovex if all its sublevel sets ��� �!� ��� � � ��� � � � are convex.

A function � � �!� 	 is a d.c. function if it is a difference of convex functions, i.e. there

exist convex functions � ��� � � � 	 such that, for all ��� � , we have � � ��� �	� � ��� � � � ��� . Let

��� be convex sets; then the set


�
 � is a d.c. set1. It can be shown that a set � for which

there exist convex functions � ��� � 	 � such that � � � ��� � � ��� � ��� � � ��� 
 � � is a d.c. set.

D.c. functions and sets have many interesting properties. See Section 2.1.7 for a more thorough

discussion.

Let � � ��� be a nonconvex function. A convex relaxation of � � ��� is a convex function � � ���
such that, for all � , we have � � ��� ��� � ��� . Likewise, a concave relaxation of � � ��� is a concave

function �� � ��� such that for all � we have �� � ��� 
 � � ��� . Let � be the set of all convex relaxations

of � and �� the set of all concave relaxations. The convex envelope of � is �����%��� � ����� � � � � ;
the concave envelope of � is �����%��� � ����� � � �� � .

Given an inequality � � ��� � �
, the set � ��� � � ��� � � � is convex if � � ��� is a convex function.

Notice that, if � � ��� is concave, then � � ��� 
 �
is a convex inequality.

1.2 Classification of optimization problems

The field of optimization can be subdivided into many categories according to the different

possible formulations of the problem.

 Classification with respect to the type of optimization decisions.

– Continuous optimization. The set � is a subset of a Euclidean space.

– Integer optimization. � is finite or countable.

– Mixed integer optimization. �	�"!$#&% where ! is a subset of a Euclidean space

and % is finite or countable.

 Classification with respect to the type of objective function and constraints.

– Constrained optimization. � is defined by a set of constraints



to be satisfied.

1I.e. a difference of convex sets; here ')(�* is taken to be all the elements in ' which are not in * .



Chapter 1. Introduction 19

– Unconstrained optimization. The set of constraints



to be satisfied is empty.

However, problems with variable ranges as their only constraints are sometimes

also classified as “unconstrained problems”.

– Linear optimization. The function � and the constraints in



are linear functions

of � .

– Nonlinear optimization. The function � and the constraints in



may be nonlinear

functions of � .

– Convex optimization. The function � is convex and feasible region � is convex. In

particular, a problem with convex constraints belongs to this class.

– Concave optimization. The function � is concave (usually, but not always, the

constraints in



are convex).

– D.c. optimization. The function � is d.c. and the feasible region � is a d.c. set.

– Nonconvex optimization. The function � and the constraints in



may be general

nonconvex functions.

 Classification with respect to the type of solution obtained.

– Local optimization. The solution � is such that there is a subset % ��� , such that
� � % , where � � � % � � � ��� � � � � � � . The point � is called a local minimizer,

or a local optimum of � with respect to % . It is nearly always the case that % is a

neighbourhood of � in the topological sense.

– Global optimization. The solution � is such that � � � � � � � ��� � � � � � � . � is called

a global minimizer, or a global optimum of � .

One of the most interesting and most challenging classes of problems is global nonlinear con-

strained optimization. Problems belonging to this class are called nonlinear programs (NLPs).

1.3 Algorithms for global optimization of NLPs

Algorithmic methods for globally solving NLPs are usually divided into two main categories:

deterministic and nondeterministic (or stochastic). In deterministic optimization, the solution



Chapter 1. Introduction 20

method never employs random choices, and convergence theorems do not use probability argu-

ments. In stochastic optimization2 algorithms, the solution methods employ random3 choices.

Convergence is proved through arguments based on probability.

1.3.1 Formulation of the NLP

In this thesis, we are interested in constrained NLPs of the following form:

� � ��� � � ���
� � � � ��� � �
� � � � �

������ (1.1)

where � � 	 � are the (continuous) decision variables, � �
�

are the lower and upper bounds

of the constraints, and � � � are the lower and upper bounds of the variables. The function

� �'	 � � 	 is called the objective function and � ��	 � � 	 � are the constraints of the

problem. We limit the discussion to the minimization of the problem; the maximization is

equivalent to solving � � ��� � � � ��� subject to the same constraints.

Notice that formulation (1.1) is slightly unusual because of the form of the constraints � �
� � ��� � �

. The most common constraint formulation in the literature is � � ��� � ��� � � ��� � �
.

We employ the former because it makes the software representation of an optimization problem

more compact.

1.3.2 A brief history of global optimization

Generic optimization problems have been important throughout history in engineering applica-

tions. The first significant work in optimization was carried out by Lagrange in 1797 [66]. Nev-

ertheless, before the introduction and extensive usage of electronic computers, the requirement

for global optimization was not even an issue given the tremendous amount of computational

effort it requires. Global optimality of solutions was guaranteed only when locally optimizing

convex functions, a rather limited class of problems.

The methods that were first used in global optimization were deterministic techniques, mostly

based on the divide-and-conquer principle. This was introduced in the late 1950s with the ad-

2Albeit an abuse of terminology, the term “nondeterministic optimization” is sometimes also used.
3The term “random” is used here in the special sense of pseudo-random.



Chapter 1. Introduction 21

vent of the first electronic computers into the research environment. In contrast with the com-

putational principles employed before the introduction of computers, whereby people would

try to minimize the amount of actual computations to perform with respect to the theoretical

framework, the divide-and-conquer principle applies to the intrinsic iterative nature of methods

used when working with electronic computers: keep the complexity of the theoretical struc-

tures involved to a minimum, and rely on intensive computation to explore the solution space.

Thus, instead of trying to locate a minimum by solving a set of equations by symbolic/algebraic

methods, one would try to construct a sequence of approximate solutions which would converge

to the true solution, by dividing the problem into smaller subproblems. One typical algorithm

which embodies the divide-and-conquer principle is the Branch-and-Bound algorithm (BB).

Because of the nature of the algorithm, where the subproblems are produced by branching a

problem entity (e.g. variable) into its possible instances, the BB algorithm applies very well to

cases where problem entities are discrete in nature. Thus, the first applications of BB to global

optimization problems were devoted to discrete problems such as the Travelling Salesman Prob-

lem (TSP).

The first paper concerning continuous global optimization with a BB (deterministic) tech-

nique dates from 1969 [34]. In the 1970s and 1980s, work on continuous or mixed-integer

deterministic global optimization was scarce. Most of the papers published in this period dealt

either with applications of global optimization to very specific cases, or with theoretical results

concerning convergence proofs. One notable exception was the work of McCormick [80] who

considered symbolic transformations of problems: his methods are such that they can, in theory,

be carried out automatically by a computer.

A major reason for the slow pace of progress in continuous global optimization is that it is

computationally very expensive, and it was not until the 1990s that computer hardware with the

necessary power became available. Toward the end of the 1980s, however, the first elementary

textbooks began to appear on the subject. They explained the basics of local optimization (La-

grange multipliers and Karush-Kuhn-Tucker conditions) and some of the early techniques in

deterministic [92] and stochastic [131] global optimization. Early topics in deterministic global

optimization include convex optimization [94], Branch-and-Bound techniques restricted to par-

ticular classes of problems (e.g. concave minimization problems [53]) and some theoretical and

complexity-related studies [135, 97]. Stochastic algorithms based on adaptive random search

appeared between the 1970s and early 1980s [74, 77]. It is worth noting that the first deter-

ministic global optimization technique that was able to deal with generic nonconvex continuous

NLPs was Interval Optimization [48, 49]). Unfortunately, it often has slow convergence due to

the fact that Interval Arithmetic generally provides very wide intervals for the objective function



Chapter 1. Introduction 22

value.

Toward the end of the 1980s, many articles on deterministic global optimization started to

appear in the literature. They were mostly concerned with iterative methods applied to partic-

ular classes of problems [89, 81, 54, 56, 134, 63, 82], but there were also theoretical studies

[50, 55] and parallel implementation studies and reports [90, 42, 33]. In the area of stochastic

optimization, some of the first algorithms employing “tunnelling” [145] began to appear in the

same period.

Since the beginning of the 1990s, the optimization research community has witnessed an ex-

plosion of papers, books, algorithms, software packages and resources concerning deterministic

and stochastic global optimization. In the early 1990s, most of the articles were still concerned

with applications of global optimization or algorithms which perform well on particular classes

of problems. It is significant that one of the first and most widely used book in global optimiza-

tion [59], first published in 1990 and successively re-published in 1993 and 1996, does not even

mention general nonconvex NLPs in the generic form (1.1). The same is true even for a “survey

book” ([57]) which appeared in 1995.

The first method that was able to deal directly with the generic nonconvex NLPs in the

form (1.1) was Ryoo and Sahinidis’ Branch-and-Reduce algorithm which appeared in an paper

published in May 1995 [99, 100]. Shortly afterward, Floudas’ team published their first article

on the � BB branch-and-bound method [13] which was then thoroughly explored and analysed

in several subsequent papers by Adjiman [7, 6, 3, 4, 5, 8]. The first � BB variant that addressed

problems in the form (1.1) appeared in 1997 [3].

One notable limitation of the � BB algorithm is that it relies on the functions being twice

differentiable in the continuous variables. Since the inception of the � BB algorithm, a number

of Branch-and-Select algorithms geared toward the most generic nonconvex MINLP formu-

lation appeared in the literature, like Smith and Pantelides’ symbolic reformulation approach

[114, 115, 116], Pistikopoulos’ Reduced Space Branch-and-Bound approach [32] (which only

applies to continuous NLPs), Grossmann’s Branch-and-Contract algorithm [146] (which also

only applies to continuous NLPs) and Barton’s Branch-and-Cut framework [61]. Within the

Branch-and-Select strategy, we can also include modern Interval Analysis based global opti-

mization methods [137, 84, 136].

Branch-and-Select is by no means the only available technique for deterministic global op-

timization, but it seems to be the method which least relies on the problem having a particular

structure: this is an advantage insofar as one needs to implement software which solves prob-



Chapter 1. Introduction 23

lems in the general form (1.1). For example, d.c. optimization and the Extended Cutting Planes

(ECP) method [143, 142] are structurally different from Branch-and-Select approaches; how-

ever, both make use of a problem which is already in a special form4. It must be said, however,

that “special forms” are sometimes general enough to accommodate large classes of problems.

For instance, the ECP method solves mixed-integer NLPs (MINLPs) in the following form:

� � �%� � � � � � � � � � � � ���
� � �

���
� � � � � � 	 � #�� � � , where � is a pseudo-convex func-

tion, � is a set of pseudo-convex functions,
�
�
�

are matrices and � � � are vectors. Although not

all functions are pseudo-convex, the latter do form quite a large class. It is the pseudo-convexity

condition that allows the ECP method to derive a new valid cutting plane at each iteration.

In the stochastic global optimization field, recent advances include Differential Evolution

[119], Adaptive Lagrange-Multiplier Methods [140], Simulated and Nested Annealing [96],

Ant Colony Simulation [78, 25], Quantum Dynamics in complex biological evolution [52],

Quantum Thermal Annealing [68], Ruin and Recreate Principle [105] and Tabu Search [23].

1.3.3 Two-phase global optimization algorithms

Most methods for global optimization are based on two phases [104]: a global search phase

and a local search phase. The reason for this is that there are very efficient local optimization

methods which can be employed in the local search phase, but these methods are not generally

capable of determining a global optimum of a problem in its most generic form (1.1). The

local phase is nearly always deterministic in nature whereas the global phase may be either

deterministic or stochastic.

In the global phase, the problem is limited to a particular region of space where one can prove

(or just hopes) that a local search will find the global optimum. This procedure is iterative in

nature so that the search space can be explored exhaustively.

Local optimization of nonconvex problems is an NP-hard problem [93]. Because all iterative

methods for global optimization rely on a local search phase, under the most general conditions

global optimization of NLPs is an NP-hard problem. The only non-iterative method for global

optimization, based on Gröbner bases [47], is also NP-hard [26].

This research focuses on deterministic algorithms for global optimization. In particular, the

Branch-and-Select family of algorithms promises a good performance in terms of computational

4I.e., objective function and constraints must be pseudo-convex. This form is needed to guarantee global

optimality.



Chapter 1. Introduction 24

time, it can be applied to problems in very general form, and is deterministic in nature.

1.4 The branch-and-select strategy

Branch-and-Select algorithms include well-known techniques such as Branch-and-Cut and Br-

anch-and-Bound, and are among the most effective methods for the deterministic solution of

global optimization problems. They started out as divide-and-conquer type algorithms to solve

combinatorial optimization problems like the Travelling Salesman Problem [9] but were very

soon applied to continuous and mixed-integer nonlinear optimization [34, 59, 92]. In this sec-

tion, we present a general theory of such algorithms (based on material from [133]), together

with the necessary convergence proofs.

Branch-and-Select algorithms can be used to solve the widest possible class of optimization

problems (1.1) to global optimality, even when objective function and constraint values are

provided by black-box procedures. In fact, they can be designed to rely on no particular feature

of the problem structure. However, in their basic form and without any acceleration devices

(such as pre-processing steps or improved algorithmic steps), they tend to be very inefficient.

Furthermore, their performance may depend very much on the formulation of the problem,

meaning that a different algebraic form of the same equations might lead to quite different

algorithmic performance.

Let � � 	 � . A finite family of sets � is a net for � if it is pairwise disjoint and it covers � ,

that is, ��� � � � � � ��� � ��� � and � ���	��

��� . A net � � is a refinement of the net � if there are

finitely many pairwise disjoint � �� � � � such that � ��� � � �� � � and ���� � . In other words, if

� � is a refinement of � , it has been obtained from � by finitely partitioning some set � in � and

then replacing � by its partitions.

Let � � be an infinite sequence of nets for � such that, for all � ��� , �
�

is a refinement of

�
���
� , and let � � be an infinite sequence of subsets of � such that �

� � � � . � � is a filter for � �
if � � ��� � �

� � � ��� � � . Let ��� ��� � 

� � � be the limit of the filter.

We will now present a general framework for Branch-and-Select algorithms that globally

solve the generic problem � � � � � � ����� � � � � . Let � � 	 . Given any net � for ��� � ��� � � ��� �
� � , we consider a selection rule that determines:

1. a distinguished point � � � � for every � � � ,



Chapter 1. Introduction 25

2. a subfamily � of qualified members of � ,

3. a distinguished member � � � � � of � ,

such that, for all � � �	� 
 �����	� , we have � � ��� 
 � . Basically, the selection rule rejects regions

which cannot contain the global optimum by choosing the qualified members; for each of these

members, it calculates a distinguished point (for example, by applying a local optimization

procedure to the specified region) and a distinguished member for further net refinement. The

prototype algorithm below also relies on a selection rule used to partition a region.

1. (Initialization) Start with a net � � for � , set ��� � � and let � � be any upper bound for

� � � � . Set � � � � � , 
 � �
, � � � � .

2. (Evaluation) Let � � � � � � � ��� � � � � � be the set of all distinguished points.

3. (Incumbent) Let � � be the point in � � � � � �	�
� � such that � � � � � � � � is lowest.

4. (Screening) Determine the family � � of qualified members of � � (in other words, reject

the unqualified members, i.e. those that can be shown not to contain a solution better than

� � ).
5. (Termination) If � � � � , terminate. The problem is infeasible if � � 
 � � ; otherwise � �

is the global optimum.

6. (Selection) Select the distinguished member � � � � � � � � � � � � and partition � �
according to a pre-specified branching rule. Let � � ��� be the partition of � � . In � � ,
replace � � by � � ��� , thus obtaining a new refinement net � � ��� . Set 
�� 
 
 �

and go

back to Step 2.

A Branch-and-Select algorithm is convergent if � � � ����
 � � � � ��� ��� ��� ��� � . A selection

rule is exact if:

1. the infimum objective function value of any region that remains qualified during the whole

solution process is greater than or equal to the globally optimal objective function value,

i.e.

� � �
��
� � � �

� � ����
�� � ��� � � 
 � � �

2. the limit ��� of any filter � � is such that � ��
 � � � � ��� � 
 � � .



Chapter 1. Introduction 26

In this theoretical set-up, it is easy to show that a Branch-and-Select algorithm using an exact

selection rule converges.

1.4.1 Theorem

A Branch-and-Select algorithm using an exact selection rule converges.

Proof. Suppose, to get a contradiction, that there is � � � with � � ��� � � � . Let � � �
with � � � � for some 	 ��� . Because of condition (1) above, � cannot remain qualified

forever; furthermore, unqualified regions may not, by hypothesis, include points with better

objective function values than the current incumbent � � . Hence � must necessarily be split at

some iteration 	 � � 	 . So � belongs to every � � in some filter � � � � , thus � � � � � � . By

condition (2) above, � � ��� 
 � ��
 � � � � � � � 
 � � . The result follows. �

It is worth noting that in this algorithmic framework does not provide a guarantee of a finite

convergence. Consequently, most Branch-and-Select implementations make use of the concept

of � -optimality, rather than the usual definition of optimality. Recall that � � � � is a global

optimum if, for all � � � , we have � � � � � ��� � ��� . Given � � �
, �� � � is � -globally optimal if

there exist bounds  � � � ��� � � � such that � � ���� � �  ��� � and � �  ��� . By employing

this notion and finding converging lower and upper bounds sequences to the incumbent at each

step of the algorithm, it is easier to ensure a finite termination with an � -global optimum. For a

theoretically proven finite termination, we would need some additional regularity assumptions

(see for example [106, 11]); � -optimality, however, is sufficient for most practical purposes.

1.4.1 Fathoming

Let � � be the net at iteration 
 . For each region � � � � , find the lower bound � � � � of � � � � � �
and define � � � � ��� � � � . A set � � � � is qualified if � � � � � � � . The distinguished region is

usually selected as the one with the lowest �
� � � (this may vary in some implementations).

The algorithm is accelerated if one also computes an upper bound � � � � of � � � � � � and

uses it to bound the problem from above by rejecting any � for which �
� � � exceeds the best

upper bound that has been encountered so far. In this case, we say that the rejected regions have

been fathomed (see Fig. 1.1). This acceleration device has become part of most Branch-and-

Bound algorithms in the literature. Usually, the upper bound �
� � � is computed by solving the

problem to local optimality in the current region: this also represents a practical alternative to

the implementation of the evaluation step (step (2) in the algorithm of Section 1.4), since we



Chapter 1. Introduction 27

can take the distinguished points � � � � to be the local solutions �
� � � of the problem in the

current regions. With a good numerical local solver, the accuracy of � -global optimum is likely

to be better than if we simply use �
� � � to define the distinguished points.

l
2

l
3

l

u

( )M1

1

1

u

u

3

2

M
2 3

M

region 
is not

fathomed

region
is fathomed

Figure 1.1: Fathoming via upper bound computation.

The convergence of the Branch-and-Bound algorithm is ensured if every filter � � � � 
 ��� �
contains an infinite nested sequence � � � � 
 ��� � � such that:

��� ������� 
	��
 �
� � � � � � � � (1.2)

To establish this, we will show that under such conditions the selection procedure is exact.

Let � � � � 
 ��� � be any filter and ��� its limit. Because of equation (1.2), ����
 � � � � � � � 

� � � � � � � � , hence � ��
 � � � �)��� � 
 � � . Furthermore, if � � � � for all 
 then ����
�� � � �)� � 


� � � � 
 � � � � � � � � as 
 � 
 , i.e. � � 
 � � ��� � � 
 � � . Thus the selection procedure is exact

and, by theorem 1.4.1, the Branch-and-Bound algorithm converges.

1.5 Mathematical formulation and convex relaxation for non-

convex NLPs

This thesis is concerned with techniques for the determination of global optima of nonconvex

NLPs of the general form (1.1). We are particularly interested in improving the performance of

branch-and-bound algorithms of the type outlined in Section 1.4. As indicated by the literature

review presented in Section 1.3.2 this has been an area of much active research worldwide,

especially over the past decade.



Chapter 1. Introduction 28

Albeit themselves relatively new, branch-and-bound algorithms for global optimization have

many similarities to those which have been routinely used for the solution of mixed integer

linear programming (MILP) problems for more than four decades – indeed, both classes of al-

gorithms5 conform to the general Branch-and-Select framework described in Section 1.4. It is,

therefore, instructive to draw analogies between these two closely related types of algorithm

when trying to identify directions for fruitful research. In particular, the experience of applying

branch-and-bound algorithms to MILPs points out the extreme importance of mathematical for-

mulation. More specifically, the same engineering problem (e.g. process scheduling) may often

be expressed mathematically in two or more different ways. Although all of these formulations

are mathematically completely equivalent, the computational effort required for their solution

is very different, often varying by several orders of magnitude. This indicates that the issue

of formulation is likely to be central to devising efficient global optimization solution meth-

ods, perhaps much more so than, for instance, algorithmic details such as rules for selecting

branching variables.

Better mathematical formulations for specific NLPs may sometimes be devised on the basis

of insight and intuition. However, it is clear that methods which could automatically reformulate

wide classes of nonconvex NLPs to a better behaved form would be highly desirable.

A topic that is closely related to that of mathematical formulation is that of the convex re-

laxation of a given nonconvex NLP. This is essential for all sBB algorithms as a means for

establishing a lower bound on the objective function in any given region. The analogous con-

vex relaxation for the case of Branch-and-Bound algorithms for MILPs is the “relaxed” linear

programming (LP) problem, i.e. one obtained from the MILP by dropping the integrality re-

quirement on (some of the) integer variables. This convex relaxation is universally used by

MILP solution algorithms, and therefore, a “good” mathematical formulation for an MILP is

usually considered as one which exhibits the smallest gap between the optimal objective func-

tion of the original MILP and that of its LP relaxation.

Interestingly, a significant difference between branch-and-bound algorithms for MILPs and

those for nonconvex NLPs is that, in the latter (sBB) case, there is no single convex relaxation of

a nonconvex NLP. Consequently, albeit still closely related, the issues of formulation and convex

relaxation are no longer identical. For example, it is one important issue how to formulate an

engineering optimization problem so that it exhibits the minimum number of nonconvexities –

5In this thesis, we shall follow the established practice of referring to branch-and-bound algorithms for global

optimization as spatial branch-and-bound (sBB) algorithms in order to distinguish them from those traditionally

used for MILPs.



Chapter 1. Introduction 29

and there may be several ways in which to address this requirement, each leading to a different

NLP. Now, given any particular nonconvex NLP formulation, there may then also be more than

one way in which to construct its convex relaxation, and selecting the best one is quite another

issue.

1.6 Outline of this thesis

In view of the discussion in the previous section, it is clear that both the mathematical formu-

lation and the convex relaxation of nonconvex NLPs deserve close attention. Chapter 2 of this

thesis presents a review of the related literature, attempting to come up with a rational classifi-

cation of the quite diverse approaches and techniques that have been reported to date.

Chapter 3 presents a novel automatic reformulation method for nonconvex NLPs that include

linear constraints and bilinear terms. The latter are well-known sources of nonconvexity in a

wide range of models of engineering systems, for example whenever an extensive variable (e.g.

flowrate) multiplies an intensive one (e.g. composition, enthalpy etc.) within a conservation law.

The method presented automatically reformulates the nonconvex NLP to one that (a) involves

fewer bilinear terms and more linear constraints than the original, and (b) has a tighter convex

relaxation when the remaining bilinear terms are convexified using standard techniques.

The objective function and constraints in nonconvex NLPs usually involve a variety of types

of sub-expressions (e.g. bilinear, trilinear and linear fractional terms) and other mathematical

functions. Relatively tight convex relaxations exist for many of these categories of expressions.

One notable exception is that of terms involving monomials of odd degree (i.e. expressions

of the form ��� where 	 is odd) when the range of the variable � includes zero. These occur

often (e.g. as cubic or quintic expressions) in practical applications. Chapter 4 presents a

novel method for constructing the convex envelope of such monomials, as well as a tight linear

relaxation of this envelope.

The automatic reformulation and convex relaxation techniques outlined above fit within the

framework of a general sBB algorithm. The form of this algorithm as discussed in the literature

is reviewed in Chapter 5. The software implementation of such an algorithm places special

demands since, beyond the usual numerical information required by most optimization codes,

a substantial amount of symbolic information must also be made available. The architecture

of 
�
������ , a general object-oriented software framework that attempts to fulfill these, is also

presented in Chapter 5.



Chapter 1. Introduction 30

Finally, Chapter 6 summarizes the main points of the work presented and draws some general

conclusions.



Chapter 2

Overview of reformulation techniques in

optimization

A key theme of this thesis is the issue of problem reformulations that can be carried out in an

automatic manner via symbolic and numerical procedures. Such reformulations can be used

for various tasks, both prior to the actual problem solution and during the solution process.

Many types of automatic reformulations have appeared in the literature; however, to the best

of our knowledge, no attempts have been made, to date, to review them and classify them in a

systematic manner. This chapter, therefore, attempts to present such a literature review.

A reformulation of an optimization problem � is a problem � � which shares some mathe-

matical properties with � . A reformulation may be useful as part of an algorithmic procedure

to solve � , or if it offers qualitative or quantitative insights regarding the properties of � .

A reformulation � � is exact if the global solution � � 	 � of � can be directly inferred from

the global solution ��� of � � (“directly inferred” meaning that � can be computed from ��� in

linear time depending on 	 ). An exact reformulation is convenient if finding � � requires less

computational resources than finding � .

A useful reformulation which is not exact is usually called a relaxation of the problem.

For example, many algorithms for the solution of discrete optimization problems involve a

continuous relaxation of the problem (i.e. the discrete variables are reformulated to continuous

variables). Most Branch-and-Bound techniques for nonconvex optimization problems use a

convex relaxation of the problem to compute the lower bound at each iteration.



Chapter 2. Overview of reformulation techniques in optimization 32

Reformulations can be constructed by using algebraic-symbolic manipulation of the equa-

tions in the original problem, or by using numerical computations. In both cases, it is necessary

to prove theoretically, or at least offer strong evidence, that the reformulation is indeed useful.

If a reformulation is sometimes useful but it cannot always be decided a priori whether it will

be useful or not, and to what extent, then it is called heuristic.

In the rest of this chapter we shall give a detailed account of the most useful reformulation

techniques used in conjunction with deterministic methods for global optimization.

2.1 Reformulations to standard forms

Closely associated with the idea of a reformulation is the concept of a standard form for an

optimization problem. Solution algorithms often require the optimization problem to be in a

pre-specified form called the standard form with respect to that algorithm. Most reformulations

are meant to unearth some structural mathematical property of � which was not evident before,

or to transform � into a standard form.

In this section we refer to optimization problems in the following form:

� � �� 
�� � � ��� (2.1)

where � is the feasible region.

Notation-wise, by
� � � � we mean a system of  linear equations in 	 variables, where

�

is an  # 	 matrix, � � 	 � (unless specified otherwise) and � � 	 � . Likewise, we express

a system of linear inequalities as
� � � � . By ��� � � � ��� we mean a set of ranges on the

variables: � � � 	 � ���� � � � � ���� � , and ��� � ��� � 	 � .

2.1.1 Box-constrained problems

An optimization problem (2.1) is box-constrained if the only constraints of the problem are the

variable ranges (i.e. � � � � � ��� � � � ��� � ). In other words, no equation or inequality

constraints are present (sometimes such problems are called unconstrained problems, though in

fact a truly unconstrained optimization problem would lack variable bounds as well). This is a

very well-studied and interesting class of problems [35, 14, 38], and much effort has gone into

reformulations of other types of problems to this type. Moreover, most stochastic optimization



Chapter 2. Overview of reformulation techniques in optimization 33

methods are originally devised for box-constrained problems, and are then extended to deal

with constraints.

2.1.1.1 Penalty and barrier functions

The most widely used reformulation for eliminating equation or inequality constraints from

constrained optimization problems is to employ penalty or barrier functions. This embeds the

constraints into the objective function � itself, so that � attains high values at infeasible points;

hence a minimization of the objective function automatically excludes the infeasible points.

Consider the optimization problem (2.1) where:

� � � � � 	 � � � � �
 � �
� � ��� � � � � � � �
 � � � � � ��� � � � � � � � � � � � � � (2.2)

Let
� �
� �
� � 	 � � � � 
�� be boolean functions that specify whether a constraint is satisfied: for

all � �  define
� � � � � � ��� � � �

if �
� � ��� � �

and
� � � � � � ��� � � 
 if �

� � ��� �� �
. Likewise for

inequality constraints, for all � �  � define �
� � � � � ��� � � �

if �
� � ��� � �

and �
� � � � � ��� � � 


otherwise. Now, reformulating the problem to:

� � ������ ��� ��� � � ��� � � � ���&

�� �"�
�
� � � � � � ��� � 


�	�� ���
�
�
� � � � � ��� � (2.3)

is an exact reformulation of the original problem to a box-constrained form. If � is feasible in

the original problem, then the objective function � of the reformulation reduces to � � ��� ; if it is

infeasible, � becomes 
 .

The main disadvantage of this reformulation is that it is highly non-smooth. Furthermore, the

introduction of infinity in the definition of
� �
� �
�

is questionable from a numerical point of view.

The latter point can be disposed of in case the function � is Lipschitz (i.e. there is a real constant

� � �
such that for all � ��� � � we have � � � ��� � � � � ��� � � � � � � � � � ), in which case it is possi-

ble to find a global upper bound 
 of � on � , and 
 can be replaced by 
 . The non-smoothness

is a more delicate question. Unless one devises an entirely symbolic method for solving (2.3),

one has to replace the functions
� �
� �
�

with smoother functions. Unfortunately, this means that

the reformulation may no longer be exact. In [14, 35] a host of different penalty functions are

introduced, and their properties are discussed. The simplest “realistic” penalty function involves

a reformulated objective function � � ��� � � � ��� 
���
 � ���� � � � � � ����� 
 � ����"� � ����� � � � � � � ��� ��� . In

this case the main drawback is the determination of the parameter � . There is a value of �
such that this reformulation is exact, but it cannot be known a priori. Furthermore, absolute



Chapter 2. Overview of reformulation techniques in optimization 34

value and pointwise maximum are not smooth functions everywhere. Other penalty and barrier

functions involve logarithms, inverses, powers and so on.

2.1.1.2 Lagrangian and Lagrange coefficients

The Lagrangian function of an optimization problem in form 2.1, where � is defined as in equa-

tion (2.2), is defined as 
 � � � � � � � � � � ��� 
 � ��"� � � � � � � ��� 
 � � ��"� � � � � � � ��� with the requirement

that � � 
 �
for all � �  � . The parameters �

�
� � � are called the Lagrange multipliers. The

Lagrangian is often used in deriving theoretical conditions of optimality in methods of local

optimization (Karush-Kuhn-Tucker necessity and sufficiency conditions, see [38, 85]).

In fact, the theory of Lagrange multipliers is also linked to duality theory for general opti-

mization problems. It can be shown that, for a convex problem � , its Lagrangian dual:

� ������ ��� � � � ���� � ��� ��� 
 � � � � � � � (2.4)

has exactly the same solution as � . For a nonconvex problem it can be guaranteed only that the

solution of the dual problem is a lower bound to the solution of the original problem (2.2). The

difference between the value of the dual objective function and the original objective function

is called the duality gap. In view of the fact that the solution to the dual problem (2.4) is often

used as a lower bounding technique in Branch-and-Bound algorithms, it is important to find

methods to reduce the duality gap.

There are various such methods: in [17] a suitable partition of the variable ranges is em-

ployed. The dual problem is then solved over each subset of the partition. In [70, 69] the

Lagrangian 
 � � � � � � � is reformulated to:


�� � � � � � � � � � � � ��� 

�� ���
�
�
�
� � � � ��� 


� �� �"�
�
� � � �� � ���

where �

 �

is an exponent. The reformulated Lagrangian has local convexity properties in

correspondence of local solutions of the original problem. More precisely, under some further

regularity conditions, the Hessian of 
	� is positive definite at ��� (a locally optimal solution of

the original problem (2.2)) for large enough � . This is a sufficient condition for 

� to be locally

convex in a neighbourhood of � � , and hence for 
�� to be a valid lower bounding function for

the original problem.



Chapter 2. Overview of reformulation techniques in optimization 35

2.1.2 Separable problems

Separable programming problems are useful because the objective function can be expressed as

a sum of functions of one variable only. Thus, each term in the sum is independent of the other

terms. Separable problems have a special structure which offers wide scope for decomposition

strategies. If the problem is separable and box-constrained (i.e. � � � ��� � � � � � � � � ), then

it can easily be solved to global optimality via interval analysis (see Section 2.1.2.2). If linear

or nonlinear constraints are present, interval analysis offers a very fast way to calculate lower

bounds on the objective function: it is no surprise that the first Branch-and-Bound approaches

to global optimization were restricted to separable problems [34, 117, 15].

Let � � � � � ��� ����� � � ��� � . A function ��� 	 � � 	 is separable if and only if there are

� � ������� � � � � 	 � 	 such that for all � � � we have � � ��� � � ��"�
� � � � � � � .

If the objective function � of a problem (2.1) is separable, then the problem is separable.

The definition of the feasible region � varies. Usually [14, 35, 79], � is defined by a system

of separable inequalities
� �� � � � � � � � � � � �

�
, � � �  , where �

� � � 	 � 	 for each � ��� . Some

authors [27, 58] require � to be a polytope.

2.1.2.1 Separation of bilinear forms

In the procedure of Section 2.1.8.1, the basic idea is the separation of a bilinear form � � . This

idea rests on the relationship
� � 
 � � � � ��� 
���� � 
 � ��� � � � �

�
��� � � ��� � � � � and

� � � 
 � .

It was already known in the 18th century that the quadratic form
� ��
	 � � � � � � � � � � could always

be reduced to a sum or difference of squares:

� �� 
 ����� 
 � �� � � �� ��� � ��� �
� � �� �
� (2.5)

via a real linear transformation � � � � � � � � � � (for all � � 	 ) having non-zero determinant.

Cauchy, Sylvester and Jacobi all worked on this problem. If
� � �

, then the form is called

positive definite; if
� � �

then the form is called semidefinite (these terms were introduced

by Gauss in his Disquisitiones arithmeticae [62]). Their work is also relevant to the theory of

convex, concave and d.c. functions, since a positive quadratic term is a convex function and a

negative quadratic term is a concave function.

The problem of reducing quadratic forms is tightly linked to the problem of diagonalizing

a square matrix. Let � � � � � ��������� � � � , � � � � � ����� � � � � � and
� � �

�
� � � be an 	�# 	 matrix.

The expression ��� � � � � ���	 � � � � � � � � is called a generalized bilinear form. We are specially



Chapter 2. Overview of reformulation techniques in optimization 36

interested in the case where � � � . To reduce a generalized bilinear form to a semidefinite

quadratic form, we have to find a non-singular transformation � � � � , where � is an 	�# 	
matrix and � � � � � � ����� � � � � such that � � � � � � � � � � � � and � � � � is diagonal. Constructing

such a matrix � is a classical problem in matrix theory (see for example [76], p. 322).

Reformulating generalized bilinear forms to semidefinite quadratic forms is usually conve-

nient. It is an exact reformulation and it often gives rise to better convex relaxations (see Section

2.3).

2.1.2.2 Global solution of separable box-constrained problems

Finding the global optimum of the separable box-constrained problem

� � �� � � ��� � �
�� �"�
�
� � � � � �

reduces to finding the global optimum of each of the one-dimensional problems

������ �� � � � � � �� �
� � � � � �

and can therefore be totally decomposed. Interval arithmetic provides an extremely fast and

effective way to find the bounds on a univariate function � � � � � � given the range � ���� � ���� � of �
�
.

Let
�
�!��� � ��� ��� ��� ��� be a partition of � � ����� � � 	 � , and for each � �
 let ���

���
�!� � � � � �

� � � . The function � � 	 � � 	 is semi-separable if and only if for each ���  there exist

functions � � � 	
	 � � 	 � 	 such that � � ��� � � ��"� � � � � ���
���
� . The method described in the example

below also works when applied to problems with semi-separable objective functions.

2.1.1 Example

Find the global minima of the problem:

������ 
 	 ��
 	 ��� 	 ��� � � ��� � � � � � 
 � �
�
� ��� � �

�

������ ��� � � �

��� � � � � � � � �

��� � � � � ���

� � � ��� � �
Notice � is semi-separable, with � � � � � � � � � � � � � � , � � � � � � � � �

�
� � � � �

� and ��� � � � � � ����� ��� ��� � .
Interval analysis on the product � � � � shows that the global minima of � � � � � � � � � in the specified



Chapter 2. Overview of reformulation techniques in optimization 37

range are attained at
� � � � � � � �

� � �
�
� � and

� � � � � � � �
� �
�
��� � . The global minimum of

� � � � � � can be found either algebraically, as � �� � � � � ��� � ��
��� � � �

� � ��� �
�
� � � � � � � � implies a

global minimum at � � � ���
� , or numerically, by applying Newton’s method in one dimension

for finding the roots of the derivative. Finally, the global minimum of � � � � � � � ����� ��� ��� � can

be found by setting ����� ��� ��� � � ���
, which implies

� ��� � � � 
 
 � ��� for all 
 � � , i.e. � � �
� �	� � � � 
 
 � ��� � . Given the range of � � , we have to impose 
 � �

and so � � � � �	� � � � � �
�
� �
��� � .

Thus the global solutions to the problem are at
� � � � � � � � � � � � � �

��
 �
��� � � ���� � � �	� � � � � .

2.1.3 Linear problems

A linear optimization problem is such that both the objective function and the constraints are

linear functions in the problem variables. A very efficient global solution method (called the

simplex method) for linear continuous optimization problems was proposed in the 1940s, by

Dantzig [27], and has been further refined since then. Nowadays there are many efficient soft-

ware codes to solve large-scale linear problems.

Unfortunately, linear reformulations are very rarely exact. In fact, most linear reformulations

are linear relaxations and are used within more complex methods for the solution of nonlinear

problems (like e.g. Branch-and-Bound). We will analyze them in Section 2.4.

2.1.3.1 Reformulating quadratic binary problems to linear binary problems

Although this reformulation only applies to a very special class of optimization problems, it is

one of the very few exact linear1 reformulations [16, 83]. Any unconstrained quadratic binary

problem � ����� 
�� � 	 ����� � � � � can be reformulated exactly to:

����� � � �
� � � � � � ��� � 	 � � � � � � � �

� � ��� � 	 � � � � � � � �
� � ��� � 	 � � � � 
 � � 
 � � � � �
� � � � � � � � � � � � � � � � � 
 �

1Since the considered problems are binary, calling this a linear relaxation is a slight abuse of notation. What

we mean is that the objective functions and the constraints are linear functions of the decision variables.



Chapter 2. Overview of reformulation techniques in optimization 38

where � is a vector consisting of the entries of the 	 # 	 matrix
�

ordered by column. Such

a reformulation belongs to a class of reformulations called liftings because of the fact that they

“lift” the geometry of the problem into a higher dimensional Euclidean space (i.e. they add new

variables to the problem). Although usually a problem with more variables is more difficult to

solve, liftings can nonetheless be useful.

2.1.4 Convex problems

An optimization problem is convex if both the objective function � and the feasible region � are

convex. This is an interesting class of problems as it is possible to show that any local solution of

a convex problem is also a global solution [85, 98]. As in the linear case, convex reformulations

are rarely exact. However, convex relaxations (which will be analysed in more detail in Section

2.3) are used within more complex procedures for the solution of nonlinear problems. Their

global minimality property makes it possible to compute lower bounds of the objective function

of nonconvex problems in given subregions of the feasible region (this notion is used in most

spatial Branch-and-Bound algorithms for the solution of NLPs and MINLPs [116, 4]).

One exact convex reformulation can be obtained when the objective function is a positive

definite bilinear form (see Section 2.1.2.1). If
� � �

in equation (2.5), then the reformulation is

exact and it makes the function completely convex.

Sometimes a nonconvex function can be reformulated exactly to a convex function by a

nonlinear change of variables [98]. The function � � ��� � � � ������� � � is nonconvex. For all � � 	
let

� � � � �	� � � ; then � � � � � �
��� 
 ������� � � � , which is convex. This, with a suitable adaptation,

also applies if the variables are discrete [95]. The following, for example, is a mixed-integer

reformulation of the function � �
� 

� ����� � � �� where �

�
are discrete variables for all � � 	 :

	�
 �� � �
� 

� ����� � � ��

� � �
� � � � 	 �
� � � 	 �

� � � 	 � �
�

discrete � �
	���
 ����
�
� � 
 � 
 ������� � � � � �� � � � �	��� � � 
 � � � � �� � � � � � � � �	��� ��	 � ��� � � �	��� � � � ( � )� � � � �� � � � � � � �� � � 	 � � � � � � � � � � �

where the discrete variable � � can take values in � � � � ����� ��� � � � � � . For an explanation of the

equality constraints ( � ), see Section 2.1.5.1.

In [95], another type of reformulation is presented, that deals with terms of the form
�
� � � ���

with � � � � � � �
. If � 
 � � �

the term is convex, therefore we only need to apply the reformu-

lation when � 
 � � �
. If we let � � � 
����� and � ��� 
����� , the original term is transformed in



Chapter 2. Overview of reformulation techniques in optimization 39

�
�
� ������ � ������ which is convex as the sum of the exponents is obviously less than or equal to 1.

If � ��� were discrete variables taking values in � � � � ����� � � � � and � � � ��� ����� � � � respectively, then

the following integrality constraints would also be necessary:

� � � � � �� 
 �
�
�� �"�
�
� � � � � � �� ��� � � � � �� �

� � � � � �� 
 �
�
�� �"�
�

�
� � � � � �� ��� � � � � �� �

�
�
�� �"�
�
� � � �

� � �� �"�
�

�
� � �

�
�
�
� � � � � � � � �

2.1.5 Binary problems

A binary optimization problem is such that the feasible region � is a subset of
� � , where

� � � � � � � (i.e. the problem variables can take only values 0 and 1). The solution space of

these problems is well suited to Branch-and-Select type searches. Each node of the search tree

has exactly two subnodes [9]. From a theoretical point of view, it is important because it is

the simplest type of discrete problem, and theorems can be stated and proved more simply if

variables can only take two values (see e.g. [109], p. 1277, Theorem 1).

2.1.5.1 Reformulating discrete problems to binary problems

A discrete optimization problem is such that the problem variables can take only discrete values.

It is possible to reformulate discrete problems to binary problems exactly [27, 144, 110]. Let

� be a discrete problem variables taking values in the set ��� � � ����� � ��� � . By introducing � new

binary variables
�
� ��� �

�
� , we can replace � by

� ��"�
� � � � � and add a linear constraint

� ��"�
�
� � �

�
to the definition of the feasible region � . This is an exact reformulation: the linear constraint

ensures that exactly one binary variable
� �

takes the value of 1, so that the expression for � takes

exactly one value in ��� � ������������� � . This reformulation involves only linear functions, so in this

sense it does not add significant complexity to the problem. This reformulation is a lifting.



Chapter 2. Overview of reformulation techniques in optimization 40

A slightly better reformulation (in the sense that it requires one less binary variable) is the

following [95]:

� ��� � 

�
�
�� �"�
�
� � � � � ��� � � � � � �

�
�� �"�
�
� � � �

�

where
� � � � � � � � for any � � 	 � �

.

2.1.5.2 Reformulating binary problems to continuous problems

Sometimes it is more convenient to approach a discrete problem with continuous methods.

To this end, the following quadratic exact reformulation can be used: substitute each binary

variable � � � � � � � with a continuous variable �� � � � � � � and add the equality constraint �� � �� �
to the formulation of the problem. This constraint, called an integrality enforcing constraint,

is equivalent to the equation �� � �� � � � � �
which has solutions

�
and

�
. Hence, any feasible

solution to the continuous problem satisfying the integrality enforcing constraint will be such

that �� � �
or �� � �

.

This reasoning can be generalized to any discrete variable � � � � � � � � � � � � . Thus, we

can relax � to a continuous variable �� � � � � �'� � � � � � � and add an equality constraint � � �� � � �

having � as solution set. If � is finite, a possible function is � � �� � � � 	 � 	��� � � �� � �
� � .

It is worth mentioning here that when trying to incorporate this relaxation within a Branch-

and-Bound algorithm which requires convex relaxations to find the lower bounds of the objec-

tive function in each region, one needs to keep in mind that the function � � �� � will be replaced by

its convex and concave relaxations, so � should be chosen so that the “convexity gap” between

� and its relaxations is minimal (see also Section 2.3 about convex relaxations). In particular,

Smith showed ([114], p. 209-210) that the simplest linear relaxation of the quadratic integrality

enforcing constraint �� � �� � just reduces to �� � � � � � � and hence no integrality is enforced on ��
when solving the relaxation.

Numerically, integrality enforcing constraints like � � � � are usually problematic for most

nonlinear local solver codes. Thus, the idea of reformulating a large-scale binary problem to a

continuous problem having high numbers of these constraints is not a workable one. However,

such constraints are sometimes useful in MINLPs having few integer variables.



Chapter 2. Overview of reformulation techniques in optimization 41

2.1.6 Concave problems

A concave optimization problem in form 2.1 is such that the objective function � is concave

and the feasible region � is convex. Concave optimization is, in a certain sense, the simplest

case of a complicated optimization problem: it is multi-extremal (i.e. in general, it has many

local minima) so that the techniques of local optimization are not sufficient to find the global

optimum. Its complexity is high enough to allow many different optimization problem families

to be reformulated exactly to a concave problem. However, its formulation is simple enough

that efficient algorithms for its global solution can be designed [58, 18].

2.1.6.1 Reformulating binary problems to concave problems

Let



be a convex set (which may be defined by a set of constraints),
� � � � � � � , �� � � � � � �

and consider a binary problem in the form ����� � � � ��� ��� � 
 � � � � , where � is Lipschitz and

twice continuously differentiable on �� � . Then there exists � � � 	 such that, for all � � � � , the

binary problem above can be reformulated exactly to:

� � �� 
������� � � � ��� ��� � ���&
 � �� �"�
�
� � � ��� � � � �

and � � ��� is concave on �� � . For the proof of this theorem see [58], p. 15. One convenient

feature of this exact reformulation is that it adds no new variables to the problem. Furthermore,

it succeeds in relaxing the binary variables to continuous whilst still keeping the reformulation

exact.

2.1.6.2 Reformulating bilinear problems to concave problems

The bilinear programming problem is stated in general terms as:

������ 
 � 	 � 
	� � � � ��� � � � � 
 � � � 
 � � (2.6)

where
�

� � are convex polyhedral sets (defined by sets of linear constraints). Assume � has at

least one vertex and for every ��� �
the problem ����� � 
�� � � � ��� � has a solution. Then problem

(2.6) can be reformulated exactly to a concave minimization problem with piecewise linear

objective function and linear constraints [58]. In particular, let % � � � be the set of vertices of � .



Chapter 2. Overview of reformulation techniques in optimization 42

Since the solution of a linear problem is attained at least at one point in % � � � , we have

� � �� 
 � 	 � 
	� � � � ��� � � ������ 
 � � � �
� 
���� ��� � � � ��� � �

� ������ 
 � � � ��� �
where � � ��� � ����� � 
���� ��� � � � ��� � . The set % � � � is finite and for each � � % � � � , � � � ��� � is a

linear function of x. Thus � � ��� is the pointwise minimum of a finite family of linear functions,

and hence is concave and piecewise linear.

2.1.6.3 Reformulating complementarity problems to concave problems

Complementarity problems are feasibility problems rather than optimization problems. The

problem is to find � � � � 	 � such that for all � �  we have �
� � ��� 
 �

, �
� � ��� 
 �

and

�
� � ��� � � � ��� � �

, where �
�
���
� � 	 � � 	 . Complementarity problems arise in the study of other

optimization problems, in the analysis of the computation of equilibria in fixed-point problems

(theory of games) and in modelling the logical notion of disjunction (which concerns the mod-

elling of constraints in certain combinatorial problems where a constraint is to be enforced only

if a certain binary variable is true) [86].

Assume � is convex and �
�
���
�

are concave functions for each � �  , and that the com-

plementarity problem has a solution � � . In this case, the complementarity problem can be

reformulated exactly to the following concave optimization problem:

������� 
�� � � ��� � � ��"�
� � � � ��� � � ��� ��� � � ��� �

s.t. � � �
 � �
� � ��� 
 �

���
� � ��� 
 � �

�

For the proof of this statement, see [58], p. 24.

2.1.6.4 Reformulating max-min problems to concave problems

A max-min optimization problem is stated as:

� � � ��� � � � � � � � � � 
 � �
s.t.

� �$
 � � � �
�

where � � � � 	 � , � � � � 	 � ,
�

is an � # 	 matrix,
�

is an � #  matrix and � � 	 � . This problem

can be reformulated exactly to a concave optimization problem
� � � � � 

	 � � � � ��� � � ��� , where:

� � � � 
 � ��� � � � � � � 
 � � � � � �
� � ��� � ����� � � � � � � � � � � � � � 
 � � �



Chapter 2. Overview of reformulation techniques in optimization 43

Note that � � ��� is a convex piecewise linear function on � , so that
� � � ��� � � � is concave and

piecewise linear.

2.1.7 D.c. problems

An optimization problem is d.c. if the objective function is d.c. and � is a d.c. set (see

Section 1.1) [132, 121, 120]; in fact in [121], the objective function is only required to be

upper semicontinuous (i.e. for all � in the domain of � we have � � � � � � ��� � � � ����� � � � � ; the

definition of lower semicontinuity is similar, with sup replaced by inf, and both semicontinuities

at one point imply ordinary continuity at that point). In [59], the feasible region is defined as
 � � , where � �!� � � � � �
 � �
� � ��� � � � �

�
is d.c. � � .

D.c. programming problems have two fundamental properties. The first is that the space

of all d.c. functions is dense in the space of all continuous functions. This implies that any

continuous optimization problem can be approximated as closely as desired, in the uniform

convergence topology, by a d.c. optimization problem [132, 59]. The second property is that it

is possible to give explicit necessary and sufficient global optimality conditions for certain types

of d.c. problems [132, 121]. Some formulations of these global optimality conditions [120] also

exhibit a very useful algorithmic property: if at a feasible point � the optimality conditions do

not hold, then the optimality conditions themselves can be used to construct a better point � � .

2.1.7.1 Reformulating continuous functions to d.c. functions

Each twice differentiable function � � 	 � � 	 is d.c, since � � ��� � � � ��� 
�� � � � is a convex

function for all sufficiently large � . However, since finding a good estimate for � is itself a

difficult problem [7], there is to date no automatic efficient procedure to reformulate any given

continuous problem to a d.c. problem. However, some progress in this field has been made for

the case of separable functions [67]. Assuming � � ��� � � ��"�
� � � � � � � and each � � is continuous

but neither concave nor convex, then it is possible to reformulate � exactly to a d.c. function.

Because � is separable and since the procedure is applied to each � � individually, we shall

dispose of the index � here and just consider � � ��� as a function of only one variable � . We

suppose that � � � � � � � and aim to find functions � � �#� 	 � 	 such that � is concave, � is

convex and � � ��� � �
� ���&
 � � ��� .

First of all find a partition
�
�!� ��� � � � � � � � � �

��� �����
� � of � � � � � such that:



Chapter 2. Overview of reformulation techniques in optimization 44

1. � � � � , � � � � ;
2. for all � � �

, we have �
�
� �

�
��� ;

3. for all ���
�
, either � restricted to ��� � � � � � is convex and � restricted to � � � ��� � � � ��� � is

concave, or the reverse is true (i.e. � � � � � 	 � � � is concave and � � � � � � 
 	 � � � 
 � is convex).

Basically � � � � � ��������� � � � � � � � are the points where � changes between concavity and con-

vexity2. Such a partition can be found by studying the behaviour of the derivatives � � � ��� � � � � � ��� .
We assume without loss of generality that � is concave on the first subinterval � � � � � � � (if � is

convex on the first subinterval just set � � � � � ). This makes it possible to infer that, if � is odd,

then � is concave on ��� � � � � � ; if � is even, then � is convex on � � � � � � � .
Now let: � � �

�
� � � � � �� � � � � � � �� � � � � � if � is odd

����� � � �� � � � � � � �� � � � � � if � is even

where � �� � ��� is the left derivative and � �� � ��� is the right derivative of � at � , and define two

affine functions � � � � � ����� � � � � 	 as follows:

� � � ��� � � � � � �&
 � � � � � � � �
� � � ��� �

��
� � �

� � � � � � � � � � ��� �
If we now define:

�
� ��� �

� � � ��� � � � � � � ��� if � � �
�

and � is odd� � � � � ��� if � � �
�

and � is even

� � ��� �
� � � � � � ��� if � � �

�
and � is odd

� � ��� � � � � � � ��� if � � �
�

and � is even �

then it can be shown [67] that � is concave and � is convex, and that �
� ��� 
 � � ��� � � � ��� , so

that this reformulation is exact.

2.1.8 Factorable problems

Most common functions can be expressed in factorable form [80]; this form is desirable because

it makes it relatively easy to construct convex relaxations in a recursive way [126, 141].

2If there are any cusp points, the function might fail to alternate in such a way; in this case we simply define an

empty interval where �����
	�� .



Chapter 2. Overview of reformulation techniques in optimization 45

A mathematical programming problem is in factorable form if it is written in the following

way:

����� � 
�� � � � � ����

 � �

� � � � � ��� � �
�
� 
 � � � � � ��� � � �

�
(2.7)

where � � � � � ����� � � � � � ,
� � � ��� � � � for

� � � � 	 and the other
� �

expressions are defined

recursively as follows: given
� � � ��� for � � �

������� ��� � �
then for � � 	 
 �

����� � ���
� � � ��� �

� �
��

�
�
�
�
�
�
� � � � ��� �&


� �
��

�
�
�

��
� � � %

�
� 	 � � � � � ��� � !

�
�
	 � � � � � ��� �

where �
�
� � !

�
� ��%

�
� are continuous functions of one variable.

The algebraic properties of the factorable form make it possible to substitute each noncon-

vex term (univariate functions and bilinear products) with a convex relaxation of it [126]. The

� BB method [13, 2, 6, 5] is based on a variation of the factorable form problem, with exten-

sions to include fractional terms and general twice-differentiable nonconvex terms (which are

underestimated by means of a quadratic convex relaxation).

Sherali [113] applied the RLT (Reformulation-Linearization Technique) relaxation technique

(see Section 2.4.1) to factorable problems.

2.1.8.1 Reformulation of factorable problems to separable form

In this reformulation [79], each nonseparable term in the objective function and the constraints is

recursively replaced by an equivalent separable expression, until no nonseparable terms remain.

The two steps to repeat are:

1. Replace any product term of the form � �
� ��� � �

� ��� by � �� � � �� and add the constraints

� �
� ��� � � � � � � and � �

� ��� � � � 
 � � to the definition of � .

2. Replace any term of the form � � � � ��� � by � � � � and add the constraint
� � ��� � � to the

definition of � .

It can be shown that the class of problems that can be reformulated to separability via the

procedure above loosely corresponds to the class of factorable problems. In fact, it is possible



Chapter 2. Overview of reformulation techniques in optimization 46

to expand this class to include terms like � �
� ��� � 
 � � � : replace this term by a new variable � and

add the following constraints to the definition of � :

� � � � �
� ���

� � � � �
� ���

� � � � �	� � � � �
��� � � � 
 � �
� � �

�
� � � �� � � �� � � �� �

� � � ���
�

2.1.9 Smith’s standard form

This standard form, a symbolic exact reformulation for NLPs and MINLPs in general form, was

first proposed in [114]. It will be discussed in detail in Section 5.2.2.1 as it forms a fundamental

part of Smith’s Branch-and-Bound algorithm, on which a considerable proportion of this thesis

is based. This reformulation is an automatic process that isolates the nonlinear terms of the

problem (1.1) in a list of simple constraints which are easy to deal with algorithmically. The

following example will suffice, for now, to explain the essence of this reformulation.

2.1.2 Example

In order to reduce the following problem:

������ 
�� � � � � � � � � � � �	� � � � � � � ��� � 
 � � 
 � 
 ��� �
to Smith’s standard form, we define new problem variables

�
� ��� �����

�
� via the following list of

constraints:

�
� � � � � �

�
� � � � 
 � �

�
� � � �	� ��� � �

�
� � ��� 


�
� � �

�
�
� �

We can now express the objective function � in terms of these new variables � ��� � � � � � ��
� 
 ��� � , by adding the above list of constraints to the definition of the feasible region � .



Chapter 2. Overview of reformulation techniques in optimization 47

Smith’s standard form is a lifting (it adds new variables to the problem), so it may not al-

ways be convenient; however, the advantage of Smith’s standard form is that it is easier for an

automatic algorithm to deal with a list of simple constraints like the one above, rather than with

a nonlinear problem in the most general formulation (2.1). Such a reformulation makes it easy

to implement symbolic algorithms: in short, it is a sort of “starting step” for more complex

reformulations.

Smith’s standard form can be carried out algorithmically in an extremely efficient way (see

section 5.2.2.1). It can be shown that this reformulation is exact: solving a problem in Smith’s

standard form to global optimality will produce the same solutions as solving the original prob-

lem.

2.2 Exact reformulations

In this section, we shall present some exact reformulations which are not considered as standard

forms.

2.2.1 Equality/inequality constrained problems

Sometimes it is convenient, for algorithmic reasons, to express an inequality constraint as an

equality constraint, and vice versa. Given an inequality � � ��� � �
, it can be reformulated exactly

as an equality via the introduction of a slack variable. Write � � ��� � �
as � � ��� 
 � � �

where �
is a new problem variable (the slack variable) such that � 
 �

. This reformulation is a lifting.

Vice versa, any equation � � ��� � �
can be reformulated exactly to a pair of inequalities

� � ��� � �
and � � ��� 
 �

, without adding any new variable to the problem.

2.2.2 Dimensionality reduction

Cantor proved that 	 � and 	 have the same cardinality � (the cardinality of the continuum)

by showing that it was possible to construct a bijection between the two sets. Cantor’s bijec-

tion, however, is not continuous in the usual topology. Peano and Hilbert suggested bijections

(known as Peano-type space-filling curves) that were everywhere continuous and nowhere dif-



Chapter 2. Overview of reformulation techniques in optimization 48

ferentiable. These bijections make it possible to devise an exact reformulation of a problem in

	 � to a problem in 	 , i.e. having a single problem variable.

Given a space-filling curve � � 	 � � � � � � � (which exists by transfinite cardinality consider-

ations [65, 24]), the dimensionality of the problem can be reduced from 	 to 1 by solving the

reduced problem ����� � 
 � � � � � � � � . The function � � � maps 	 into 	 , and may thus be mini-

mized via efficient 1-dimensional optimization methods. If � is a minimizer of � � � , then � � � �
is a minimizer for � .

The difficult part is the choice of an appropriate space-filling function. These functions are

usually a set of theoretical tools used to prove existence theorems, and as such are even difficult

to describe explicitly. This approach may be worth investigating when the Euclidean space is

approximated by a rational or integer lattice. There are some references in the literature which

explain how to generate space-filling curves algorithmically [37]. One example is the Hilbert

space-filling curve (see Fig. 2.1).

Figure 2.1: The Hilbert space-filling curve in 2-dimensional space.

This technique is based on ideas proposed in the 1970s [122]. Interest in the use of space fill-

ing curves for global optimization waned during the 80s, but recently there have been renewed



Chapter 2. Overview of reformulation techniques in optimization 49

efforts in dimensionality reduction [123, 44, 124].

2.3 Convex relaxations

A relaxation cannot be used to solve a difficult problem directly because the solution of the

original problem cannot, in general, be directly inferred from the solution of the relaxation.

Relaxations are, however, very important in the field of deterministic global optimization. One

of the most important tools in this field is the Branch-and-Bound algorithm, which uses a convex

(or linear) relaxation at each step to calculate the lower bound in a region.

Convex relaxations for nonconvex problems in form (2.1) are obtained by substituting the

(nonconvex) objective function � � ��� with a convex relaxation � � ��� and the (nonconvex) feasible

region � with a convex set �� such that � � �� . Because every local minimizer of a convex

problem is also a global minimizer, solving the convex relaxation:

� � �� 
 �� � � ��� (2.8)

with a local optimization algorithm will obtain the global solution of problem (2.8) which is

guaranteed to be a valid lower bound for the global solution of the original problem (2.1).

When the feasible region � is defined by equality and inequality constraints, as in equation

(2.2), any convex relaxation �� � � must be such that all the equality constraints are linear and

all inequality constraints are convex3.

In general, there is more than one possible convex relaxation for any given problem; we

therefore look for the best one, i.e. generally the one that gives rise to the greatest possible lower

bound. Unfortunately, finding convex relaxations and convex envelopes of arbitrary subsets of

	 � is not an easy task. Usually generic problems (1.1) need to be reformulated to some standard

form before it is possible to construct a convex relaxation.

2.3.1 � BB convex relaxation

Floudas and co-workers have proposed a Branch-and-Bound algorithm (called � BB [2, 4, 5, 8])

for general nonconvex twice-differentiable problems. The algorithm aims to solve a problem in

form (2.1) where the feasible region � is defined as in (2.2). Any nonlinear, twice-differentiable

3A more precise characterization is that inequality constraints should be quasi-convex.



Chapter 2. Overview of reformulation techniques in optimization 50

function � � ��� in the problem, be it the objective function or one of the constraints, can be

reformulated exactly as:

� � ��� � � � ��
 � � � ���&
 � � � � � � 
 � � � � � 
 � � � 
 � � � � � � 
 � � � � � 
 � � � � � � � � � 

� � � � ��� 
 � � �� � 
 � � � 


� � � � ��� 
 � � � ��� 
 � � �
� � � � � � 
 � � � � � � � � � � � 
 � � � � � � � � ��� �

where:

 ��� � � 	 � and each �
�
�
� �
� � � � � � is a real constant;

 � � � ��� is a general convex function;

 � � � � � ��� � � � � � ! � ��� � are integer functions � � � � ����� ��� 	 � .
 each � � � � � is a concave univariate function term;

 each � � � � � is a general nonconvex function term.

For a bilinear term � � , McCormick’s underestimators [80] are used. A new variable
�
� is

added to the problem (it replaces the bilinear term � � ) and the following inequality constraints

are inserted in the relaxed problem:

�
�


 � � � 
 � � � � � � � ��
�


 � � � 
 � � � � � � � ��
� � � � � 
 � � � � � � � ��
� � � � � 
 � � � � � � � � �

The above linear inequalities have been shown to be the convex envelope of a bilinear term [10].

The maximum separation of the bilinear term � � from its convex envelope � � � � � � � 
 � � � �
��� � � � ��� � 
 � ��� � ��� � ��� inside the rectangle � ��� � ����� # � � � ��� �	� occurs at the middle point
� � � � � �

� �
� � � � �
� � and is equal to

� � � � � � � � � � � � � �
� [13].



Chapter 2. Overview of reformulation techniques in optimization 51

For a trilinear term � � � a new variable
� � is introduced, to replace the trilinear term � � � ,

together with the following constraints [75]:

� � 
 � � � � � 
 � � � � � 
 � � � � � � � � � � � � �� � 
 � � � � � 
 � � � � � 
 � � � � � � � � � � � � � � � � � � �� � 
 � � � � � 
 � � � � � 
 � � � � � � � � � � � � � � � � � � �� � 
 � � � � � 
 � � � � � 
 � � � � � � � � � � � � � � � � � � �� � 
 � � � � � 
 � � � � � 
 � � � � � � � � � � � � � � � � � � �� � 
 � � � � � 
 � � � � � 
 � � � � � � � � � � � � � � � � � � �� � 
 � � � � � 
 � � � � � 
 � � � � � � � � � � � � � � � � � � �� � 
 � � � � � 
 � � � � � 
 � � � � � � ��� � � � � �

Fractional terms �
� are underestimated by replacing them with a new variable

� � and adding

two new constraints to the problem:

� � 

� � �

�

 �

� � � � �
� � if ��� 
 �

�
� � � � � �

� � � � 
 � �
� � if ��� �

�
� � 


� � �
�

 �

� � � � �
� � if ��� 
 �

�
� � � � � �

� � � � 
 � �
� � if ��� �

�

Fractional trilinear terms
� �

� can be underestimated by replacing them by a new variable
� � �

and adding the new constraints (for ��� ��� � � � � 
 �
):

� � � 
 � � �
� �


 ��� �
� �


 ��� � �
�

� � ��� � �
� �� � � 
 � � �

� �

 ��� �

� �

 ��� � �

�

� ��� � �
� �

� ��� � �
� �� � � 
 � � �

� �

 ��� �

� �

 ��� � �

�

� ��� � �
� �

� ��� � �
� �� � � 
 � � �

� �

 ��� �

� �

 ��� � �

�

� ��� � �
� �

� ��� � �
� �� � � 
 � � �

� �

 � � �

� �

 � � � �

�

� � � � �
� �

� � � � �
� �� � � 
 � � �

� �

 � � �

� �

 � � � �

�

� � � � �
� �

� � � � �
� �� � � 
 � � �

� �

 ��� �

� �

 ��� � �

�

� ��� � �
� �

� ��� � �
� �� � � 
 � � �

� �

 ��� �

� �

 ��� � �

�

� � ��� � �
� �



Chapter 2. Overview of reformulation techniques in optimization 52

To relax a concave univariate function � � � � � � ��� over � ��� � ����� , the � BB algorithm uses a chord

underestimator:

� � � � �&
 �
� � � � � � � � � �
� � � � �

� � � � � � �

The main innovation of the � BB algorithm is in the underestimation of a general nonconvex

function term � � � � � � ��� . This is underestimated over the entire domain � ��� � ����� � 	 � by the

function 
 � ��� defined as follows:


 � ��� ��� � ���&

�� �"�
�

�
� � � �� � � � � � � �� � � � �

where the �
�
are positive scalars that are sufficiently large to render the underestimating function

convex. A good feature of this kind of underestimator is that, unlike other underestimators, it

does not introduce any new variable or constraint, so that the size of the relaxed problem is the

same as the size of the original problem regardless of how many nonconvex terms it involves.

Since the sum
� ��"�

� �
� � � �� � � � � � � �� � � � � is always negative, 
 � ��� is an underestimator

for � � ��� . Furthermore, since the quadratic term is convex, all nonconvexities in � � ��� can be

overpowered by using sufficiently large values of the �
�

parameters. From basic convexity

analysis, it follows that 
 � ��� is convex if and only if its Hessian matrix
� � � ��� is positive semi-

definite. Notice that:
� � � ��� � ��� � ���&
 � �

where
���

Diag ���� � � �
� � is the matrix with �

�
as diagonal entries and all zeroes elsewhere (di-

agonal shift matrix). Thus the main focus of the theoretical studies concerning all � BB variants

is on the determination of the �
�

parameters. Some methods are based on the simplifying re-

quirement that the �
�

are chosen to be all equal (uniform diagonal shift matrix), others reject

this simplification (non-uniform diagonal shift matrix). Under the first condition, the problem is

reduced to finding the parameter � that makes
� � � ��� positive semi-definite. It has been shown

that
� � � ��� is positive semi-definite if and only if:

�

 � � � � � � �

�
� �������	 ��� � ��� ��� � � � ��� �

where �
� � ��� are the eigenvalues of

��� � ��� . Thus the problem is now of finding a lower bound

on the minimum eigenvalue of
��� � ��� . The most promising method to this end seems to be

Interval Matrix Analysis. Various 
 � 	 � � and 
 � 	 � � methods have been proposed to solve both

the uniform and the non-uniform diagonal shift matrix problem [39].

Thus, having constructed a convex underestimating function for the reformulated function

� � ��� , the relaxation of the problem is carried out accordingly, bearing in mind that:



Chapter 2. Overview of reformulation techniques in optimization 53

 the objective function is replaced by its convex underestimator;

 any nonlinear equality constraint �
� � ��� � �

is replaced by the two inequality constraints

�
� � ��� � �

and
� � � � ��� � �

;

 any nonconvex inequality constraint �
� � ��� � �

is reformulated to � � � ��� � �
where � � is

the convex underestimator for �
� � ��� .

2.3.2 Smith’s convex relaxation

In the work of Smith [114, 116], Smith’s standard form (see sections 2.1.9, 5.2.2.1) is used

as a starting point for forming the convex relaxation. All the nonconvex terms are isolated in

constraints of the forms � � � � ��� or � � � � � ��� � , where � is a univariate nonlinear function,

� is a bivariate nonlinear function and � ��� � � � 	 are single problem variables. The smallest

convex set containing � � � � � � � � � � � � � ��� � � 	 � is given by �� � � � � �	� � � �



� � ��� � � � �� � ��� � where � � �� are respectively the convex and the concave envelopes of � .

Similarly for � , the smallest convex set containing � � � � � ��� �	� � � � � � � � ��� � �#� 	 � is

given by �� � � � � � � �	� ��� � 
 � � � ��� � � � � ��
� � � � � � where � � �� are respectively the convex

and the concave envelopes of � . When the functions � are convex, concave univariate terms

and the functions � are bilinear, trilinear or fractional terms, the convex envelopes are the same

as those listed in Section 2.3.1. However, Smith’s reformulation makes it possible to extend

convex relaxations to nonlinear terms which are not twice-differentiable (as opposed to the

� BB relaxation).

Smith, in his work, did not construct the convex/concave envelopes of a piecewise convex

and concave term (like, for example, a monomial of odd power when the range of the variable

includes zero); Chapter 4 addresses this problem.

The disadvantage of Smith’s relaxation is that it is based on Smith’s standard form, which is

a lifting, and therefore adds new variables to the problem (one for each nonlinear term in the

problem). This may result in an excessively high number of problem variables.

2.3.3 BARON’s convex relaxation

BARON stands for “Branch And Reduce Optimization Navigator”. It is a global optimization

software written by Sahinidis and co-workers that relies on a Branch-and-Bound algorithm to



Chapter 2. Overview of reformulation techniques in optimization 54

solve factorable problems to global optimality [102]. The lower bound to the objective function

in each region of the Branch-and-Bound tree is calculated by means of a convex relaxation

[126]. The techniques used to form the nonlinear convex relaxation of factorable problems

include all the standard convex envelopes for nonconvex factorable terms found in Section 2.3.1

(apart from the � -parameter underestimation for general twice-differentiable nonconvex terms,

which is not part of BARON). The most innovative features of BARON in terms of convex

relaxations are the following.

 Specific mention of piecewise convex and piecewise concave univariate terms (called

concavoconvex by the authors) and the respective convex and concave envelopes (see

also the detailed study in Chapter 4) [126]. An alternative to this envelope is suggested

which circumvents the issue: by branching on the concavoconvex variable at the point

where the curvature changes (i.e. the point where the concavoconvex term changes from

concave to convex or vice versa) at a successive Branch-and-Bound iteration, the term

becomes completely concave and completely convex in each region [102].

 Convex and concave envelopes are suggested for various types of fractional terms, based

on the theory of convex extensions [127, 128]. The proposed convex underestimator for

the term �
� , where ��� � � � � � � � and � � � � � � � � � are strictly positive, is as follows:

�

 � �

���
� ��� � �&
 � �

��� �
� � �
� � � � �
� � �
� � �
� �

� � � ��� � � � � 
 � � �
� � ��� 
 � ��� � ��� � �

� � � � �

� ������������������
(2.9)

The underestimator is modified slightly when
� � � ��� � ����� :

�

 � � � � � � � � � ��� �

� � � � � ��� � �&
 � �
� � �

� � �
� � � � �
� � �
� � �
� �

� � � ��� � � � � 
 � � �
� � � � 
 � � � � � � � �

� � � � �

� ������������������
(2.10)

It is shown that these underestimators are tighter than all previously proposed convex

underestimators for fractional terms, in particular:



Chapter 2. Overview of reformulation techniques in optimization 55

– the bilinear envelope:

�����
� � � � � � � � 
 � � � �

� � � � � �
� � � � � � � 
 � � � �

� � � � � �
– the nonlinear envelope:

�

��� � 
�� � � � �� � � 
 � � ��� � �
 Having constructed a reasonably tight nonlinear convex relaxation, the authors discuss

various outer approximation techniques to reformulate this to a linear relaxation which

can be solved by using a very fast and efficient LP software [126].

BARON is a very efficient global optimization software, paying particular attention to several

important implementational aspects, such as: generating valid cuts during pre-processing (op-

timality bounds tightening [102, 126]) and during execution (feasibility bounds tightening and

range reduction techniques [99, 100]); improving the branching scheme [102, 126, 130, 101];

and most importantly of all, targeting particular problem formulations with specialized solvers

[126]. These are available for:

 mixed-integer linear programming;

 separable concave quadratic programming;

 indefinite quadratic programming;

 separable concave programming;

 linear multiplicative programming;

 general linear multiplicative programming;

 univariate polynomial programming;

 0-1 hyperbolic programming;

 integer fractional programming;

 fixed charge programming;

 problems with power economies of scale;

besides the “default” solver for general nonconvex factorable problems.



Chapter 2. Overview of reformulation techniques in optimization 56

2.4 Linear relaxations

It is possible to use linear over- and underestimators for each nonlinear term in a nonconvex

NLP in order to obtain a linear relaxation of the problem. Because a linear problem is always

convex, the convexity properties that guarantee the validity of a lower bound remain true. The

advantage of a linear relaxation with respect to a convex (possibly nonlinear) relaxation is that

linear optimization software can be employed to solve the relaxed underestimating problem.

Linear optimization codes are much more efficient than nonlinear optimization software; hence

the overall run of a Branch-and-Bound algorithm might be faster. The disadvantage, however,

is that a linear relaxation might not be a convex envelope: hence the convexity gap might be

increased and the lower bound to the original problem might not be the best possible.

2.4.1 Reformulation-linearization technique

The basic idea of the Reformulation-Linearization Technique (RLT), proposed by Sherali and

co-workers in a number of papers [109, 111, 107, 113, 112, 110, 108], consists in deriving

valid cuts to the problem by multiplying together various factors involving variables and con-

straints. This technique was initially proposed in conjunction with combinatorial problems with

binary variables, and then extended to continuous bilinear problems, polynomial problems and

factorable problems.

In this section we shall describe the RLT applied to bilinear problems [111] of the form:

� � � � � � � � 
 � ���
� � � �

��� � � � ��� �

� ���� (2.11)

where ��� ��� 	 � ,
�

is an 	 # 	 matrix,
�

is an  # 	 matrix and � � 	 � .

In order to form a linear (convex) relaxation of problem (2.11), the RLT applied to bilinear

problems considers the following sets of algebraic expressions:

 the bound factor set
� � � � � � � � �� � � � 	 � � � � �� � � � � � � 	 � ;

 the constraint factor set

 � �!� � �� � � � � � � � � � � � � �
 � .

Note that for each
� � � � the constraint

� 
 �
is a valid problem constraint, and so is � � �

for all � � 
 � .



Chapter 2. Overview of reformulation techniques in optimization 57

The RLT procedure for forming the convex relaxation consists in creating new linear valid

constraints (reformulation step) by multiplying together bound factors and constraint factors as

follows:

1. for all
�
� �

�
� � � � ,

�
�
�
� 
 �

is a valid constraint (generation via bound factors);

2. for all
� � � � and for all � � 
 � ,

� � � �
is a valid constraint (mixed generation);

3. for all � � � � � � 
 � , � � � � � �
is a valid constraint (generation via constraint factors).

Having created all these new constraints, we define new variables
� �� � � � � � for all � ��� between

1 and 	 , and use them to replace the corresponding bilinear products appearing in problem

(2.11) or in the newly generated constraints (linearization step). Assuming there are
�

distinct

bilinear terms4, we end up with a linear relaxation whose variable vector
� � � � � is in 	 ���
� .

Let � � be the region defined by the newly generated constraints. The linear relaxation of

problem (2.11) is as follows:

������� � � � 
 � � �
� � � �
� � � � � � � �
��� � � � ���
� � � � � � �

� ��������������
(2.12)

where
� � � � � � 	 � are the variable bounds on the

�
variables (obtained by simple interval

arithmetic on the bounds of the � variables via the defining relations
� �� � � � � � ).

It is also possible to derive RLT constraints from a system of inequalities
� � � � , where

�

is an  � # 	 matrix and � � 	 � � . Define the inequality constraint factor set

 �� ��� � �� � � � � � � � �� � � � �
 � � and notice that for all � � � 
 �� , we have � � � �

. Since all the bound factors
� � � �

are nonnegative, any constraint of the form
� � � � �

is a valid problem constraint.

When the RLT is applied to general polynomial programming problems, arbitrary multilinear

products: �
�

� ��� �
� �

���

may arise between the bound factors
� ���

and constraint factors � ��� .
4Note that �����
	��
������ .



Chapter 2. Overview of reformulation techniques in optimization 58

The RLT gives rise to very tight convex relaxations but it has a disadvantage: it is a heuristic

reformulation. If implemented to its full extent (i.e. adding all possible constraints deriving

from all possible bound and constraint factor products), it gives rise to relaxations which have

too many constraints and therefore take inordinate amounts of time to solve. More precisely,

with � 	 bound factors and  constraint factors, we obtain:

 � 	 � possible bound factor products;

  � possible constraint factor products;

 �  	 possible mixed factor products,

for a total of � 	 � 
 �  	 
  � new constraints. When the RLT is applied to polynomial prob-

lems, more added constraints can be obtained recursively from the newly formed factor product

constraints and the original factors, so this number increases even more.

2.5 Other reformulations

There are several other reformulation studies in the literature. These are not analysed in detail

here either because they are specific to a certain type of optimization problem (and, hence,

difficult to generalize) or because they address software implementation issues. Here follows a

short list of some of the most notable such works.

A qualitative knowledge-based software implementation, REFORM, for the generic refor-

mulation of MINLPs, is proposed in [12]; it is aimed at increasing the general robustness of an

optimization problem before submitting it to an optimization software. Frangioni [41] showed

how to reformulate a bilevel programming problem (a hierarchical two-stage optimization prob-

lem) as a MILP. Fischer [36] reformulated the complementarity problem as a minimization

problem with nonnegativity constraints. Some regularity conditions ensure that a stationary

point of the reformulation is a solution of the original problem. Bomze and co-workers [20, 21]

reformulated the maximum clique problem as a quadratic problem over a standard simplex,

and used copositivity-based procedures to solve the standardized quadratic problem. In [19],

a general method for handling disjunctive constraints in MINLPs is proposed, which relies on

reformulating disjunctive constraints to a mathematical form that can be solved using standard

MILP software. Sahinidis and co-workers [1, 129] have studied various reformulations of the

pooling problem extensively.



Chapter 2. Overview of reformulation techniques in optimization 59

2.6 Conclusion

This chapter has provided a literature review of various techniques for the reformulation of op-

timization problems, with emphasis on the most useful and generally applicable reformulation

techniques for deterministic global optimization. This includes exact reformulations leading

to standard forms (box-constrained problems, separable problems, binary problems, concave

problems, d.c. problems, factorable problems, generic nonlinear problems), exact reformula-

tions which address a specific feature of a problem, and relaxations (convex and linear).

It is clear from the review presented in this chapter that much progress has been achieved

in both exact reformulation and convex relaxation of nonconvex NLPs, especially over the past

decade. Equally clearly, there are several areas for which no satisfactory solutions exist to date.

Two of these will receive special attention in this thesis; these are respectively:

1. The tight linear relaxation of bilinear terms. Bilinear terms are almost ubiquitous in

practical applications. The RLT technique described in Section 2.4.1 represents a good

attempt to tighten the convex relaxation of NLPs involving such terms. However, the large

numbers of constraints and variables that it introduces represents a significant obstacle to

its use in large problems. An algorithm which can be applied to large sparse NLPs and

which leads to convex relaxations that are both tighter and smaller is presented in Chapter

3.

2. The tight convex relaxation of monomials of odd power. Although such terms appear fre-

quently in applications (e.g. as cubics or quintics), no convex envelope has been proposed

for them to date. As a result, they are currently treated either as general non-convexities

(cf. Section 2.3.1), or via specialized branching schemes (cf. Section 2.3.3). Neither

of these two approaches is satisfactory. A convex envelope that addresses this issue in a

more efficient manner is presented in Chapter 4 of this thesis.



Chapter 3

Reduction constraints for sparse bilinear

programs

We consider the solution of Nonlinear Programs (NLPs) of the following standard form:

� � � � � � �
�

��� (3.1)
�
� � � (3.2)

�
�
� � � � � � � � � � 
 � � (3.3)

�
�
� � �

� �
� � � � � 
 � � (3.4)

�
�
� � � � � � � � � � � � � (3.5)

�
� � � � �

� (3.6)

where � � �
� � ��� ��� �	� � � � 	 � are the problem variables, � is an index in the set � � � ����� � � � ,

� � �
�
� � � is an  # � matrix of rank  , � � 	 � ,

�
� � are sets of index triplets � � � ��� � 
 ��� � �

� ��� � 
 � � � , � is a set of index pairs � � � ��� ��� � �
� ��� � � � , � � � 	 � 	 are nonlinear univariate

functions and � � �	� � � 	 � are variable bounds. The above standard form is practically impor-

tant as it can be shown that all NLPs can automatically be reformulated to it using symbolic

manipulations [116, 114] (see Chapter 5). Therefore, any theoretical results, manipulations and

solution algorithms derived on the basis of this standard form are generally applicable.

Spatial Branch-and-Bound (sBB) algorithms [133] are among the most effective methods



Chapter 3. Reduction constraints for sparse bilinear programs 61

currently available for the global solution of nonconvex NLPs (see Chapter 1). An important

requirement for any sBB algorithm is to be able to construct a tight convex underestimator of

the NLP within any given region of the space of the variables. For the standard form � � � , the

lower bound to the objective function can be generated by replacing the nonconvex constraints

(3.3), (3.4), (3.5) with their convex relaxations; in this manner, a convex relaxation of the whole

problem can be obtained in a simple and completely automatic fashion.

Tight convex relaxations for the most common nonconvex terms are available in the liter-

ature. One of the best known is that proposed by McCormick (1976) for the relaxation of

bilinear terms. Linear fractional terms like those appearing in constraint (3.4) are reformulated

to �
�
� � � � � and replaced by the McCormick convex relaxation. For the nonlinear terms in

constraint (3.5), the convex relaxation depends on the function � � . When � � is wholly concave

or wholly convex, the function itself and its secant provide the tightest convex relaxation. For

functions � � which are partially concave and partially convex, like e.g. �
�
� �

� � ���� , where 
 ��� ,

building the convex relaxation may not be so straightforward (see, for example, [72]).

3.0.1 Example

Consider the problem

� � �� 	 � 	 �

	
�

�

�
� ��
 � � �

� � � �
� � � ��� � �	� � � � � � � � � ��� �	� � � � � � � � � � � �	� � � � � �

in standard form. To obtain the convex relaxation, we replace the nonconvex constraint
� � � �

with its McCormick convex relaxation:

� 
 � � � 
 � � � � � � � �� 
 � � � 
 � � � � � � � �� � ��� � 
 � ��� � ��� � �� � ��� � 
 � � � � ��� � �

� ��������������
� (3.7)

This chapter presents a technique to automatically reformulate optimization problems in

standard form � � � in such a way that some of the nonlinear constraints (3.3) are replaced by

linear constraints. This is possible because, in certain instances, feasible regions described by



Chapter 3. Reduction constraints for sparse bilinear programs 62

nonlinear constraints are, in fact, (linear) hyperplanes. We propose an automatic algorithm to

identify such instances in large scale systems. The solution of the reformulated problems by

sBB algorithms often requires reduced computational effort, sometimes even by several orders

of magnitude. This occurs because replacing nonlinear constraints with linear ones makes the

feasible region of the convex relaxation is much tighter.

The creation of new linear constraints via multiplication of existing linear constraints by

problem variables was proposed in [111, 108] under the name “reformulation-linearization tech-

nique” (RLT). The RLT uses linear constraints built in this way to provide a lower bound to

bilinear programming problems. The maximum possible number of new linear constraints is

created by multiplying all linear constraints by all problem variables; thus, the method may lead

to excessive computational complexity in large problems. In contrast, the algorithm presented

in this chapter identifies precisely the set of multiplications of linear constraints by variables

that are beneficial.

The rest of this chapter is organized as follows. In Section 3.1, we introduce the basic con-

cepts and ideas behind reduction constraints. Section 3.2 considers the existence of reduction

constraints in a more formal manner. This provides the basis of the fast algorithm for the iden-

tification of reduction constraints presented in Section 3.3. An example of the application of

the algorithm is presented in detail in Section 3.4. The effects of reduction constraints on the

global solution of an important class of problems with bilinear constraints, namely pooling and

blending problems, are considered in Section 3.5. Finally, Section 3.6 proposes an extension

of the algorithm of Section 3.3 that may result in better reformulations at the expense of higher

computational time and memory.

3.1 Basic concepts

This section introduces in an informal manner the motivation and general ideas behind the

work presented in this chapter. Let � be a single problem variable, and let
� � � �

� ��� ��� �
�
� �

and � � � � � ��� ��� � � � � be problem variables (with 	 � � ) such that the following constraints

exist in the problem:

�
� � 	 � � � � � � � � � (3.8)



Chapter 3. Reduction constraints for sparse bilinear programs 63

Now suppose that the problem also involves the linear constraint (cf. equation (3.2)):

��
� � � �

� � � � � �
�

(3.9)

Multiplying this constraint by � and making use of (3.8) leads to a new linear constraint:

��
� � � �

� � � � � � � � � �
� (3.10)

The linear constraint (3.10) is redundant with respect to the original constraints. Indeed, it can

be used to replace one of the bilinear constraints
� � � � � � in problem � � � without affecting

the feasible region of the problem. To see this, assume �
� � �� �

for some 
 � � � ����� ��� 	 � and

discard the nonlinear constraint
� � � � � � from the set (3.8) above. We now replace �

�
in (3.10)

with the left hand side of (3.9) to obtain:

��
� � � �

� � � � � ��
� � � �

� � � � � �
��
� � � �

� � � � � � � � � � � �
�

Since
� � � � � � for all ���� 
 , the above reduces to �

� � � � � � � � � � � �
, which implies

� � � � � � .

We have thus recovered the discarded bilinear constraint from the other 	 � � bilinear constraints

and the new linear constraint (3.10). We call the latter a reduction constraint as it reduces the

number of bilinear terms in the original problem.

The geometric significance of reduction constraints is that, given any � �
 , the set:

� � � � � ��� � � �
� � 	 � � � � � � � � �
��
� � � �

� � � � � � � � (3.11)

is less nonlinear than might appear to be the case: in fact, provided that �
� � �� �

for some 
 � 	 ,

it is equal to the set:

���������	��
���
��������� ��� � � � � 
��	� ��
� � ���

� � � � ��� � � ��
� � ���

� � � ��� � � 
 �! #" � (3.12)

where the 
 th bilinear constraint has been replaced by a linear constraint. Consequently, the

convex relaxation of the set (3.12) is tighter than that of set (3.11), which may be important in

the context of sBB algorithms.

Below, we consider an extreme example of such a reformulation.



Chapter 3. Reduction constraints for sparse bilinear programs 64

x=1

w-y=0

w=xy

0 0.20.40.60.8 1 1.21.41.61.8 2

x
–4 –2 0 2 4 6

y

–10

–8

–6

–4

–2

0

2

4

6

8

10

Figure 3.1: Linearity embedded in a bilinear constraint.

3.1.1 Example

Let
� �

� � ��� � � 	 � and consider the set:

� � �!� � � � � ��� � � � � � � � � � � � �
This set is defined as the intersection of the bilinear surface � � and the vertical plane � � �

(see

Fig. 3.1). By multiplying � � �
by � , we get the linear constraint

� � � � �
(the skew plane in

Fig. 3.1). It is evident that the set

� � � � � � � � ��� � � � � � � � � � � � �
is the same as the set

� � . However,
� � is defined only by linear relationships whereas

� � is

not. The convexification of
� � in the context of an sBB algorithm (e.g. by introducing the

McCormick relaxation of � � ) would be both unnecessary and counter-productive.

A limitation of the reformulation technique presented above is that all constraints of the

type
� � � � � � have to exist in the problem (3.1) before the linear constraint (3.10) can be

created. Consider, however, a problem that already includes bilinear constraints
� � � � � � for



Chapter 3. Reduction constraints for sparse bilinear programs 65

all � � 	 � �
, and two linear constraints:

�
�
��

� � � �
� � � � 
 �

�
� � � � �

�
(3.13)

�
�
��

� � � ���
� � � 
 ��� � � � � ��� (3.14)

where � ��� �  and �
�
� � ��� � are nonzero constants. On multiplying (3.13) and (3.14) by � , we

obtain the two linear constraints:

�
�
��

� � � �
� � � � 
 �

�
�
�
� � � � � � �

(3.15)

�
�
��

� � � ���
� � � 
 ��� �

�
� � ��� � � �

� (3.16)

where
�
� is a new variable defined via a new bilinear constraint

�
� � � � � . By forming a

suitable linear combination of the two constraints, the new variable
�
� can be eliminated, and

we now have a linear constraint similar to (3.10) which can be used to eliminate one of the

original bilinear constraints in the manner indicated earlier.

3.2 Fundamental properties

Section 3.1 has shown that it is possible, in some cases, to replace nonconvex nonlinear con-

straints by linear ones. We now proceed to provide a more rigorous foundation for these ideas.

Consider an optimization problem in standard form � � � and subsets of problem variables�
� � � 	 � and � � 	 . Suppose the problem includes the set of  linear equality constraints
� � � � , where the matrix

�
is of full row rank  .

Multiplying
� � � � by � , we create  reduction constraints of the form

� � � � � � �
, where

the variable vector
� � 	 � is defined as in equation (3.8). The following theorem shows that

the reduction constraints can be used to replace  of the 	 bilinear constraints in (3.8) without

changing the feasible region of the problem.



Chapter 3. Reduction constraints for sparse bilinear programs 66

3.2.1 Theorem

Let
� � � � ����� ��� 	 � be an index set of cardinality � � � � 	 �  and consider the sets:


 � � � � � � � � � � � � � � � �
� � 	 � � � � � � � � � (3.17)
��� � � � � � � � � � � � � � � ��� � � � � � � � �
� � � � � � � � � � � � (3.18)

Then, there is at least one set
�

such that

 � ���

.

Proof. The fact that

 � ���

for any set
�

is straightforward: if
� � � � ��� � � 
 , then it also

satisfies the constraints
� � � � � � �

, hence
� � � � ��� � � ���

.

We shall now prove the converse inclusion. Since
� � � � , the reduction constraint system

� � � � ��� �
implies

� � � � � � � �
. If we now define � � � � � � � � � � �
� � 	 , this can

be written as the linear homogeneous system
� � � �

. Since rank
� � � �  , there exists a

permutation � of the columns of
�

such that:

� � � � � � � � � � �� � � � � � �
�

where
� � is a non-singular  #  matrix, and

� � � � ��� � � � � ��� ��� is the corresponding permutation

of � with � � � � � 	 � and � � � � � 	 � � � . Let
�

be the image of � 	 �  
 �
��������� 	 � under the

permutation � , and let
� � � � ��� � � ���

. Since
� � � � ��� � satisfies

� � � � � � for all � � �
, then

� � � � � �
; since

� � � � ��� � also satisfies the reduction constraint system, we have
� � � �

, which

implies � � � � � �
as well. Hence

� � � � � � for all � � 	 . �

The above theorem concerns the multiplication of a set of linear constraints by a single

variable � . The latter could, in fact, be any one of the system variables � , so considering

multiplications by variable � � , we can modify the definitions (3.17) and (3.18) to:


 � � � � � � � � ��� � � � � � �
� � 	 ��� �� � � � � � � � � 
 � 	 (3.19)
� � � � � � � � � � ��� � � � � � � � � � � � � � � � �
� � � ��� �� � � � � � � � � 
 � 	 (3.20)

where
� � � ��� �

� ���������
� �
� � . Now, by virtue of the theorem, we will have


 � � � � �
� � 
#� 	 .

We note that the index set
�

appearing in (3.20) is the same for all 
 : the proof of the theorem

indicates that
�

is fully determined by the nature of the matrix
�

and does not depend on the

specific variable � being used to multiply the constraints. Consequently, the union of the sets
 �
over all 
 � 	 must be equal to the corresponding union of sets

� � �
. This proves that the



Chapter 3. Reduction constraints for sparse bilinear programs 67

two sets:

�
 � � � � � � � � � � � � � � 
 � 	 � � 	 ��� �� � � � � � � � (3.21)

�� � � � � � � � � � � � � � � � � � � � � � � � � 
 � 	 � �
� � � � � �� � � � � � � � (3.22)

are equal to each other.

The geometrical implications of the above results are that the intersection in 	 � of a set of

bilinear terms, and the linear form
� � � � is a hypersurface containing a degree of linearity. By

exploiting this linearity, we are able to replace some of the bilinear terms with linear constraints.

3.3 An algorithm for the identification of valid reduction con-

straints

Section 3.2 has established that, in principle, reduction constraints exist for any NLP involving

bilinear terms and linear constraints. Here we are concerned with two more practical questions.

Section 3.3.1 introduces a criterion for determining whether the introduction of reduction con-

straints is likely to be beneficial. Then sections 3.3.2 and 3.3.3 present an efficient algorithm for

the identification of such reduction constraints based on the above criterion; this is particularly

important in the case of large NLPs for which neither identification by inspection nor indiscrim-

inate multiplication of linear constraints by problem variables are practical propositions.

3.3.1 Valid reduction constraint sets

Given an NLP in the standard form [P], consider a subset � of its linear constraints (3.2). Let

the set of variables that occur in these constraints be denoted by
� � � � , i.e.

� � � � � � 
 � � � �
� �

� � � �� � � � .
Now consider multiplying the linear constraint set � by a problem variable � � . This will

create bilinear terms of the form � � � � � � 
 � � � � � . Some of these terms will already occur in the

NLP, i.e. � � � � � � � � 
 � � � . Let �
� � � � � be the subset of

� � � � that leads to new bilinear terms,

i.e.:
� � � � � � � � 
 � 
 � � � � � ��� � � � � � � � 
 � � � �



Chapter 3. Reduction constraints for sparse bilinear programs 68

The theorem of Section 3.2 indicates that we can now construct a problem that has the same

feasible region as � � � by replacing � � � bilinear constraints by linear constraints. The latter are

said to form a valid reduction constraint system if the substitution leads to a reduction in the

overall number of bilinear constraints in comparison with the original problem � � � , i.e. if the

number of new bilinear constraints introduced by the multiplication by � � is smaller than the

number of bilinear constraints eliminated by the reduction constraints:

� � � � � � � � � � � � (3.23)

Despite the apparent simplicity of this criterion, applying it in a brute force manner as a means

of identifying reduction constraint systems is impractical: for an NLP containing � linear

constraints, one would have to examine ��� � �
subsets � for each candidate multiplier variable

��� .

3.3.2 A graph-theoretical representation of linear constraints

Here we consider a fast graph-theoretical algorithm for the identification of linear constraint

subsets � that satisfy (3.23) for a given multiplier variable � � . We start by constructing a bipartite

graph [64, 45, 51] � � where the set of nodes is partitioned into two disjoint subsets
� � and

� �� .

We call these the “constraint” and “variable” nodes respectively. The former correspond to the

set of linear constraints in � � � while the latter correspond to those problem variables which do

not appear in any bilinear term (3.3) multiplied by � � , i.e.:

� �
�
� � 
 � � � � � � � � � 
 � � � �

The set of edges
� � in graph � � is defined as:

� � � � � � � 
 ��� � � � � � 
 � � �
� � � � � �� � �

Thus, edge
� � � 
 � exists if variable � � occurs in linear constraint � .

Suppose, now, that � is a subset of the nodes
� � . Let �� � � � � � denote the subset of nodes� �� that are connected to nodes in � , i.e.:

�� � � � � � � � 
 � 
 � � �
� � � � � � � � � � 
 � � � � �

It can be verified that, in view of the definitions of sets
�

,
� �� and

� � , the two sets �
� � � � �

and �� � � � � � are, in fact, identical. Consequently, a valid reduction constraint set (i.e. one that



Chapter 3. Reduction constraints for sparse bilinear programs 69

satisfies criterion (3.23)) will correspond to a dilation in graph � � , i.e. a subset � of, say,  
nodes

� � that are connected to fewer than  distinct nodes
� �
� . This provides a practical

basis for the identification of valid reduction constraint sets using efficient existing algorithms

for the determination of dilations in bipartite graphs.

3.3.3 Efficient identification of dilations

Dilations in bipartite graphs are closely related to the existence of output set assignments (OSA)

in such graphs [87]. A subset � � of the edges
� � in graph � � is an OSA if no node is incident to

more than one edge in � � . A complete OSA is one in which each and every node � � � � is

incident to exactly one edge in it; in this case, � ��� � � � � ��� �"� .

Given a non-complete OSA � � of cardinality  � � , it may be possible to obtain one of

cardinality  
 �
by identifying an unassigned node � � � � (i.e. one that is not incident to

any edge in � � ) and tracing an augmenting path emanating from this node [29]. An augmenting

path is a sequence of � �
� �

edges of the form:

� � � � 
 � � �
� � � � 
 � � �

� � � � 
 � � � ����� �
� � � � 
 �

�
� � �
� � � � 
 � �

such that
� ��� � 
�� � �� � � � � � � �

��� � � � and
� ��� � 
��

�
� � � � � � � � � � ��� � � � . If such a path can be

found, then an OSA of cardinality  
 �
can be obtained from ��� simply by replacing the �

� �
edges

� ��� � 
��
�
� � �

� � � ��� � � � in it by the � edges
� ��� � 
�� � � � � �

��� � � � .

Since the empty set is a valid (albeit trivial) OSA, the repeated tracing of augmenting paths

can be used for the construction of OSAs of maximal cardinality.

A complete output set assignment for the graph ��� exists if and only if the graph does not

contain any dilations. Consequently, dilations can be identified by the application of efficient

algorithms designed for the identification of output set assignments such as that proposed by

[29]. A basic algorithm [29] for constructing an augmenting path emanating from a node �
of graph � � is shown in pseudo-code notation in Figure 3.2. The procedure AugmentPath

returns a boolean flag � �
� � ��
 ��	 � indicating whether or not an augmenting path has been

found. � �
� � ��
 ��	 � is initially set to false.

The variable
� � � � � 	 � � � 
 � contains the index of the constraint node to which variable node 


is currently assigned; a value of 0 indicates a variable node that has not yet been assigned. The

boolean variable

 
 	 � � � � � 	 � % � � � � � � � � � takes a value of true if constraint � has been visited as

part of the attempted construction of the augmenting tree. Similarly, % � � � � � � � % ��� � � � � � 
 � marks



Chapter 3. Reduction constraints for sparse bilinear programs 70

whether variable 
 has been visited. Initially, all elements of the array
� � � � � 	 � � are set to 0,

and all elements of

 
 	 � � � � � 	 � % ��� � � � � and % � � � � � � � % ��� � � � � to false.

Line 2 of the algorithm simply marks the current constraint node � as “visited”. Then lines

3-7 aim to determine whether node � is adjacent to any node 
 that is not yet assigned. If so,

an augmenting path has been found (line 4); 
 is immediately assigned to � (line 5), and the

algorithm terminates.

If no immediate assignment can be found for constraint node � in lines 3-7, then this means

that all variable nodes 
 adjacent to � are already assigned to other constraint nodes. Lines

8-14 consider all such nodes 
 provided they have not already been visited as part of the cur-

rent search (i.e. % � � � � � � � % ��� � � � � � 
 � is still false, cf. line 8). If such a variable node 
 exists,

then it is immediately marked as “visited” (line 9). Node 
 must be already assigned to a

node
� � � � � 	 � � � 
 � which is different to � . At line 10, the algorithm attempts to determine an

augmenting path starting from this other node via a recursive invocation to procedure Aug-

mentPath. If such a path is found (line 11), then node 
 is re-assigned to � (line 12), and no

further search is necessary (line 13).

If neither of the searches in lines 3-7 and 8-15 manage to find an augmenting path, then the

procedure AugmentPath terminates at line 16, having left the flag � �
� � ��
 ��	 � at its original

value of false.

On termination of the algorithm, if � �
� � ��
 ��	 � is true, then the above recursive algorithm

must have first executed an assignment of a yet-unassigned variable node 
 at line 5 at the

deepest level of the recursion; this will have been followed by exactly one re-assignment (line

12) of an already assigned variable node 
 at each higher level of the recursion. This will have

increased the total number of assignments by one, which is, of course, the intention of tracing

an augmenting path.

On the other hand, if, on termination of the algorithm, � �
� � � 
 ��	 � is false, then it can be

verified that (a) the number of constraint nodes marked as “visited” will exceed the number of

variable nodes by exactly one, and (b) the algorithm will have visited each and every variable

node adjacent to each visited constraint node. Consequently, the sets of constraint and variable

nodes that have been visited form a dilation.

We are now in a position to formulate an algorithm that identifies the set of linear constraints

� � that lead to valid reduction constraints when multiplied by a given variable � � . The algo-

rithm is shown, again in pseudo-code notation, in Figure 3.3. The initialization part (lines 2-6)

sets the set � � to empty, constructs the bipartite graph ��� , and declares all variable nodes in it



Chapter 3. Reduction constraints for sparse bilinear programs 71

1 PROCEDURE AugmentPath( � , � �
�������
	���


)

2 Set � �
������� �
� ����� � � � ����


[ � ] := TRUE

3 IF � a node ��� � � � � ����� � AND  �
� �"! ����
$# �&% �! THEN

4 Set � �
�'�����
	���


:= TRUE

5 Set  �
� �(! ����
 [ � ] := �
6 RETURN

7 END IF

8 FOR every ��� � � � � ����� � AND NOT
�
�
� �
�
�*) �
� � � � �'�+
,# �&% DO

9 Set
�
�
� �
�
�-) �
� � � � ����
$# �&% := TRUE

10 AugmentPath(  �
� �(! ����
 [ � ], � �
�������
	,��


)

11 IF � �
�'�����
	���


THEN

12 Set  �
� �(! ����
$# �&% := �
13 RETURN

14 END IF

15 END FOR

16 END AugmentPath

Figure 3.2: Algorithm for the construction of an augmenting path emanating from a linear

constraint node � in graph � � .



Chapter 3. Reduction constraints for sparse bilinear programs 72

1 PROCEDURE ValidReductionConstraints( ) , � � )

2 Set � � := �
3 Construct bipartite graph � � as described in 3.3.2

4 FOR each variable node � DO

5 Set  �
� �(! ����
 [ � ] :=  
6 END FOR

7 FOR each constraint node � DO

8 FOR each constraint node � � DO
9 Set � � ���+��� �

� ��� � � � � ����
,# � � % := FALSE

10 END FOR

11 FOR each variable node � DO

12 Set
�
�
� �
�
�*) �
� � � � ����
$# �&% := FALSE

13 END FOR

14 Set � �
����� � 	,��


:= FALSE

15 AugmentPath( � , � �
�������
	���


)

16 IF NOT � �
�'�����
	���


THEN

17 Set � � := � ��� � � � 
 � � ���+��� �
� ��� � � � � ����
,# � � % � TRUE "

18 END IF

19 END FOR

20 END ValidReductionConstraints

Figure 3.3: Algorithm for identification of set of valid reduction constraint set � for variable � � .



Chapter 3. Reduction constraints for sparse bilinear programs 73

as unassigned. The algorithm then considers each constraint node � in sequence (lines 7-19),

attempting to construct an augmenting path emanating from it. Lines 8-14 perform the initial-

izations necessary for the correct operation of procedure AugmentPath invoked on line 15

(cf. Figure 3.2). If an augmenting path is not found, then all constraints visited during the

search for one are added to the set of constraints � � (lines 16-18).

Procedure AugmentPath considers each edge in the bipartite graph at most once. Since

procedure ValidReductionConstraints invokes AugmentPath once for each con-

straint node, the theoretical complexity of the algorithm is at most of the order (number of

constraint nodes # number of edges). However, as observed by Duff (1981) , in practice, the

computational complexity of such OSA algorithms is usually nearer to (number of constraint

nodes + number of edges). This results in an efficient algorithm that is practically applicable to

large problems.

3.4 A detailed example

In order to illustrate the operation of the algorithm proposed in Section 3.3, we consider the

following bilinear optimization problem in standard form:

����� � � � �
� � � � � � �
�
� � � �

�
�
� � � � � � � � � � � 
 � � �

� � ��� � �
�

����������������
(3.24)

where:

� � � � �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� � � � � � � � � � � ��� � � � � � � � � � ��� ��� � � � �

� � �
� � ���������	� � � � � , � � � �

� � ����� � �	��
 � � , � � � �
� � � ��� � � � � ,

� �

����
�
� � � �
� � � � �

� � � � �
� � �

�	���



and:
� � � � � � � � � � � ��� � � � ��� � � � � � � � � � � ��� � � � � � � � � � ��� ��� � � � � � � � � � � �
� � �

�
�
�
� � � � � � � � ��� � � � � � � � � � � � � � � � � � � � � � � � � � ��� � � � � � � � � � � �
� � � � � � � � � � � � � � ��� � � � � � � � � � � � � � � � � �
� � � � � � � � �
� � � (3.25)



Chapter 3. Reduction constraints for sparse bilinear programs 74

c 1

c 3

c 2

3z

2z

c 1

c 3

c 2

3z

2z

c 1

c 3

c 2

3z

2z

c 4
c 4 c 4

(a) (c)(b)

Figure 3.4: Generation of valid reduction constraints for multiplier variable � � .

The above is, effectively, a bilinear programming problem involving 6 variables � � ��� ��� �	��

which are, in turn, related via 4 linear constraints. The problem involves all bilinear combi-

nations (including simple squares) of these 6 variables apart from � � � � , � � ��� , � � ��� , �
�
� . New

variables ��������� � �	� � � have been introduced to represent these bilinear terms, and these are lin-

early combined to form the objective function represented by variable � � � .

In this problem, it is quite easy to see that only variables � � � ����� � ��
 can possibly give rise

to reduction constraints when multiplied by the linear constraints
�
� � � � . We consider each

of these 6 variables in turn, applying to it procedure ValidReductionConstraints of

Figure 3.3.

3.4.1 Valid reduction constraints by multiplication with variable ���

The bipartite graph � � constructed as described in Section 3.3.2 for variable � � is shown in

Figure 3.4a. Nodes � � ��������� � � correspond to the four linear constraints. Edges correspond to

the creation of new bilinear terms if a particular constraint were to be multiplied by � � . For

example, edges
� � � � � � � and

� � � �	��� � exist because, if constraint � � were to be multiplied by � � ,
then this would give rise to new terms � �� and � � ��� respectively.

As there are initially no assignments of variable nodes to constraint nodes, all edges are

shown as dotted lines in Figure 3.4a. We now consider each constraint node in turn (lines 7-19

of Figure 3.3), attempting to construct an augmenting path emanating from it (line 15).

Starting from constraint node � � , an augmenting path is found immediately to its adjacent

variable node � � . This is assigned to � � (cf. line 5 of Figure 3.2); this assignment is indicated as

a solid line in Figure 3.4b.



Chapter 3. Reduction constraints for sparse bilinear programs 75

Considering constraint � � also results in an augmenting path being found immediately, this

time assigning � � to � � . The resulting output set assignment is also shown as a solid line in

Figure 3.4b.

So far, we have not identified any dilations. However, if we now attempt to construct an

augmenting path emanating from constraint node � � , we note that � � is adjacent to only one

variable node, namely � � which is already assigned to node � � . Consequently, the first search

loop (lines 3-7) of the AugmentPath procedure fails to detect an augmenting path, and we

therefore have to enter the second loop (lines 8-15). We mark � � as visited (line 9), and then re-

cursively invoke AugmentPath (line 10) asking it to search for an augmenting path emanating

from the constraint node currently assigned to � � , namely � � . However, � � is not adjacent to any

variables other than � � which has already been visited; consequently, the recursive invocation

of AugmentPath returns � �
� � � 
 � 	 � false. As there are no more variable nodes adjacent to

� � , the first invocation of AugmentPath also returns � �
� � � 
 ��	 � false. Consequently, line

17 of Figure 3.3 adds the two constraint nodes visited during this unsuccessful search for an

augmenting path, i.e. � � and � � to the set of linear constraints � � to be multiplied by � � .

Finally, constraint node � � is completely isolated in � � , i.e. there are no edges incident to

it. Thus, the corresponding invocation of procedure AugmentPath at line 15 of Figure 3.3

returns immediately with � �
� � � 
 � 	 � false. Consequently, ��� is also added to set � � .

As there are no more constraint nodes to be considered, we conclude that � � � � � � � � ��� � � � .
Essentially, the algorithm has identified automatically that multiplying constraints � � :

� � � � � � 
 � � 
 �
��
 � �

and � � :
� � 
 � � � 
 � � � � �

��
 � � �
by � � creates only one new bilinear term, namely � � � � , beyond those that already exist in the

problem. Consequently, if we define a new variable � ���
�

� � � � , we end up with two linear

constraints: � � � � � ��� 
 � � � 
 �
� � � � � � �

and

� ��� 
 � � � � 
 � � � � � �
� � � � � � �

respectively that can be used to eliminate two bilinear terms from the problem.

Moreover, the algorithm has also detected that multiplying constraint � � :
� � � 
 � � 
 �

� � � �



Chapter 3. Reduction constraints for sparse bilinear programs 76

c 1 1z

c 2

c 4

3z

c 1 1z

c 2

c 4

3z

c 1 1z

c 2

c 4

3z

c 1 1z

c 2

c 4

3z

c 1 1z

c 2

c 4

3zc 3

z 2

c 3 c 3 c 3 c 3

z 2 z 2 z 2 z 2

(a) (d)(b) (c) (e)

Figure 3.5: Generation of valid reduction constraints for multiplier variable � � .

by � � does not generate any new bilinear terms. The new linear constraint:

� � � 
 � � � 
 �
� � � � � �

obtained by this multiplication can be used to eliminate one more of the problem’s bilinear

terms. Overall, the number of bilinear terms in the problem can be reduced by two via the use

of valid reduction constraints.

3.4.2 Valid reduction constraints by multiplication with variable � �

The bipartite graph � � is shown in Figure 3.5a. An augmenting path emanating from constraint

node � � can be found immediately, resulting in the assignment of � � to it (see solid line in Figure

3.5b.

We now proceed to consider constraint node � � . The only variable adjacent to it is � � but

this is already assigned. Thus, no augmenting path is found in lines 3-7 of Figure 3.2 and we

are forced to enter the second search loop (lines 8-15). This considers variable � � again and

recursively invokes procedure AugmentPath (line 10) asking it to search for an augmenting

path emanating from the constraint node currently assigned to � � , namely � � . This recursive

invocation immediately identifies an unassigned variable � � as shown in Figure 3.5c. Variable

��� is assigned to � � while � � is re-assigned to � � , resulting in the output set assignment shown in

Figure 3.5d.

Constraint node � � is completely isolated. Thus, the corresponding invocation of procedure

AugmentPath at line 15 of Figure 3.3 returns immediately with � �
� � � 
 ��	 � false. Conse-

quently, � � is added to the set of linear constraints � � (line 17).

Finally, attempting to construct an augmenting path emanating from constraint node ��� visits

first variable node � � and from there, the constraint node � � to which � � is currently assigned.



Chapter 3. Reduction constraints for sparse bilinear programs 77

c 1 1z

c 3

c 2

c 4

3z

2z

c 1 1z

c 3

c 2

c 4

3z

2z

c 1 1z

c 3

c 2

c 4

3z

2z

c 1 1z

c 3

c 2

c 4

3z

2z

c 1 1z

c 3

c 2

c 4

3z

2z

(a) (b) (c) (d) (e)

Figure 3.6: Generation of valid reduction constraints for multiplier variable � � .

No further progress is possible, and therefore AugmentPath returns with � �
� � � 
 � 	 � false,

having visited both � � and � � . Consequently, these are also added to the set � .

We conclude that � � � � � � � � ��� � � � . In this case, the algorithm has detected that � � can be

multiplied by � � without generating any new bilinear terms. Also, the multiplication of � � and

�	� by � � leads to the creation of only one new bilinear term, � � � � and two linear constraints.

3.4.3 Valid reduction constraints by multiplication with variable ���

The bipartite graph � � is shown in Figure 3.6a. In this case, augmenting paths emanating from

both nodes � � and � � can be found immediately, resulting in the assignment of � � to � � , and � �
to � � respectively (see solid lines in Figure 3.6b).

The application of procedure AugmentPath to constraint node ��� results in tracing an

augmenting path � � � � � � � � � � � � � � � ��� , as shown in Figure 3.6c. We therefore assign

��� to � � , and re-assign � � to � � and � � to � � . The output set assignment up to this point is shown

in Figure 3.6d.

Finally, attempting to locate an augmenting path emanating from � � visits nodes � � , � � , � � ,
� � . However, no further progress is possible in this case. Procedure AugmentPath returns

� �
� � ��
 ��	 � false. Consequently, all three constraint nodes visited are added to set � � .

We conclude that � � � � � � � � ��� �	� � . Here the algorithm has detected that multiplying these

three constraints by � � results in the creation of only two new bilinear terms, namely � � ��� and

� � ��� .



Chapter 3. Reduction constraints for sparse bilinear programs 78

3.4.4 Valid reduction constraints by multiplication with variables ������������� ���

The bipartite graphs � � for � � � � � ��� are very simple as they contain no variable nodes (i.e.� �� � � ). Consequently, the invocation of procedure AugmentPath for each and every

constraint node � � , � � �
� ����� � � immediately returns with � �

� � ��
 ��	 � false. This results in

the constraint sets:

� � �!� � � � � � � � ��� �	� � � ��� � � � ���
This, of course, is a simple consequence of the fact that this problem already contains all pos-

sible bilinear terms involving ��� or � � or ��
 . Consequently, multiplying any linear constraint by

one of these variables does not result in any new bilinear terms and can, therefore, be used to

generate a valid reduction constraint.

3.4.5 The reformulated NLP

In summary, the operations described in sections 3.4.1-3.4.4 above result in the following set of

21 reduction constraints:



Chapter 3. Reduction constraints for sparse bilinear programs 79

From multiplication by � � �
� � # � � � � � � � � ��� 
 � � � 
 �

� � � � � � � � �

� � # � � � � ��� 
 � � � � 
 � � � � � �
� � � 
 � � � �

� � # � � � � � � 
 � � � 
 �
� � � � � � � �

From multiplication by � � �
� � # � � � � � ��� � ��� 
 � ��� 
 �

� � � � � � � � �

� � # � � � ��� 
 � � ��� 
 � � � 
 � �
� � � 
 � � � �

� � # � � � � � ��� 
 � ��� 
 �
� � 
 � � � � �

From multiplication by � � �
��� # � � � � � � 
 � � � � 
 � � � 
 �

� � � � � ��� � �

��� # � � � � � � 
 � � � � 
 � � ��� � �
� � � 
 ��� � �

��� # � � � � � � 
 
 � � � 
 �
� ��� � ��� � �

From multiplication by ��� �
� ��# � � � � � � 
 � � � � 
 � � � 
 � � � � � � � �

� ��# � � � � � � � � � ��� 
 � �

 �

� � � � � � � � �

� ��# � � � � ��� 
 � � � 
 � � � � � �
� � � 
 � � � �

� ��# � � � � � � � 
 � �

 �

� � � � � � � �

From multiplication by � � �
� � # � � � � � � 
 � � ��� 
 � � � 
 � � � � � � � �

� � # � � � � � � � � � � 
 
 � � � 
 �
� � � � � � � � �

� � # � � � � � 
 
 � � � � 
 � � � � � �
� � � 
 � � � �

� � # � � � � � � � 
 � � � 
 �
� � � � � � � �

From multiplication by � 
 �
��
 # � � � � � � 
 � � � � 
 � � � 
 � � � � ��
 � �

��
 # � � � � � � � � � � � 
 � � � 
 �
� � � � � ��
 � �

��
 # � � � � � � 
 � � � � 
 � � � � � �
� � � 
 ��
 � �

��
 # � � � � � � � 
 � � � 
 �
� � � � ��
 � �



Chapter 3. Reduction constraints for sparse bilinear programs 80

Three new bilinear terms were introduced:

� ��� � � � � �
� � 
 � � � ���
� � � � � � ���

augmenting the original set
�

(cf. equation (3.3)) with the triplets
� � � � � � ��� , � � � � � � � � and

� � � � � � � � .
In order to determine which bilinear terms may be replaced by these linear constraints, we

write the latter in matrix form:

�
�
� � 
 
 �

� � �
� (3.26)

where � � � �
� � ����� � �	��
 � � � 	 
 and � � � � �

� ��� ����� � � � ���	� ��� ����� � �	� � � � � � 	 � � , � � 	 � � � 	 � � and
 � 	 
 � 	 � � . By performing Gaussian elimination with row pivoting on
�

(and replicating

the same row operations on



) we obtain a system of the form:

� ! ��
� � � � �

� � � � �

� � �

�

where
� � �

� ������� ���	� � � � � ��� ��� � 	 � � ,
� � �

� � 
 � � � � ��� � 	 � , ! � 	 � � � 	 � � is a nonsingular,

upper-triangular matrix,
�� � 	 � � 	 � � and

�
 � 	 
 � 	 � � . Thus, the reduction constraints de-

termine the variables
�

in terms of
�

and � � via the solution of ! � �
�

� � � �� �

, and consequently,

the corresponding triplets
� � ��� � 
 � can be deleted from the set

�
in equation (3.25). Overall, the

reformulation of the original problem (3.24) involves the introduction of the reduction con-

straints (3.26) and a much smaller set of just two triplets, namely
� �!� � � � � � � � � � � � � � � � � � � .

3.5 Computational results

We have chosen a selection of bilinear test problems relative to pooling and blending problems

to test the efficiency of our algorithm. Pooling and blending involves the determination of

optimal amounts of different raw materials that need to be mixed to produce required amounts

of end-products with desired properties. Such problems occur frequently in the petrochemical

industry and are well known to exhibit multiple local minima.



Chapter 3. Reduction constraints for sparse bilinear programs 81

Here, we use the general blending problem formulation found in [1]:

� � �� 	 � 	 �
��
� � �

�
�

� ���
�
�
� � � � � �

��
� � �

� � ��
� � �

� � � (3.27)

�
�

� �"�
�
� � � �

��
� � �

� � � � �
� �
� � � (3.28)

� � �
��
� � �

� � � �
�
�

� �"�
�
�
� � � � � � � �

� �
� � � � � � � (3.29)

��
� � �

� � � � � � � � 
 � �
(3.30)

��
� � � �

� � � � � ��� � �
��
� � �

� � � � �
� � 
 � � � � � � (3.31)

� � � � � � � � � � � � � � � � � � � � � � � � (3.32)

where � � � is the flow of input stream � into pool � , � � � is the total flow from pool � to product 

and � � � is the

�
-th quality of pool � ; � is the number of pools,

�
the number of products, � the

number of qualities, 	 � the number of streams; �
� � � � � � � � � � � � � � � � � are given parameters.

When the blending problem (3.27)-(3.32) is reformulated to the standard form [ � ], new

variables � � are created to replace the term
� �
� � � � � � in constraint set (3.29). Thus, we introduce

the linear constraints: ��
� � �

� � � � � � � �
� �
� � � (3.33)

and re-write (3.29) as
� � � �

�
�

� �"�
�
�
� � � � � � � �

� �
� � � � � � �
where we have introduced new variables

� � � derived via the bilinear constraints:

� � � � � � � � � � �
� � � � � � �
More new variables � � � � are created in the standard form to replace the bilinear terms � � � � � � in

constraint set (3.31):

� � � � � � � � � � � � �
� � � � � ��� � 
 � �
which allows (3.31) to be re-written in linear form as:

��
� � � �

� � � ��� � �
��
� � �

� � � � �
� � 
 � � � � � � �



Chapter 3. Reduction constraints for sparse bilinear programs 82

The standard form reformulation of (3.27)-(3.32) is shown below:

� � �� 	 � 	 �
��
� � �

�
�

� �"�
�
�
� � � � � �

��
� � �

� � ��
� � �

� � �

subject to linear constraints:

�
�

� �"�
�
� � � �

��
� � �

� � � � � �
� � �

� � � �
�
�

� ���
�
�
� � � � � � � � �
� � � � � � �

��
� � �

� � � � � � � � �
� � �

��
� � �

� � � � � � � 
 � �
��
� � � �

� � � � � � �
��
� � �

� � � � � � 
 � � � � � �

with bilinear terms:

� �!� � � � � � � � � � � � � � � � � � � � � � � � � � � ��� � � � �
� � � � 
 � � �

and bounds:

� � � � ��� � � � � � � � � � � � � � � � � � �

We now apply the algorithm of this chapter to the above standard form. This results in a set of

reduction constraints derived by multiplying constraints (3.33) by the quality variables � � � :

�
� � � � � ��� � � � � � �
� � � � � � � � � � �� �

� � � � � � � � � � � � � � � �� �� � � � � � � � � � � � �
�

These constraints can be used to eliminate the bilinear constraints
� � � � � � � � � .

Another way to interpret what is happening in this particular case is that the constraint sets

(3.29) and (3.31) (the bilinear constraints in the general blending problem formulation above)

define more bilinear products than is really necessary: if we were to re-write the first term on

the left hand side of (3.29) as
� �
� � � � � � � � � , we would not need to create all the variables

� � � .



Chapter 3. Reduction constraints for sparse bilinear programs 83

	 � ���  � ��� 	 � � �  � � � � � � � � � � 
 � � � � �
Haverly 1 9 8 18 11 6 2 0

Haverly 2 9 8 18 11 6 2 0

Haverly 3 9 8 18 11 6 2 0

Foulds 2 26 16 51 21 20 4 0

Foulds 3 168 48 313 57 136 8 0

Foulds 4 168 48 313 57 136 8 0

Foulds 5 100 40 173 45 68 4 0

Ben-Tal 4 10 8 19 11 6 2 0

Ben-Tal 5 41 27 94 32 48 8 0

example 1 21 30 64 33 40 8 0

example 2 25 42 88 45 60 12 0

example 3 38 49 132 53 90 18 0

example 4 26 35 77 38 48 8 0

Table 3.1: Test problem statistics.

Yet another way of saying this is that distributing products over sums is advantageous. This is

in accordance with the considerations found in [130], p. 73. However, it is important to note

that, here, this reformulation is determined automatically by a generic algorithm.

Table 3.1 summarizes the main characteristics of the test problems. Here, 	 � ��� ,  � ��� are

respectively the number of variables and constraints in the original problem formulation, 	 � � �
is the number of variables in the standard form [ � ],  � � � � is the number of linear constraints in

the standard form, � � 
 � is the number of reduction constraints created, � � � � is the number of

bilinear constraints in the standard form before reduction constraint creation and � � � � is the

number of new bilinear terms created during the reduction constraint creation procedure. We

note that � � � � � �
in all test problems considered.

We now proceed to consider how the addition of reduction constraints affects the tightness

of the convex relaxation of the NLP in the context of its solution using deterministic global

optimization algorithms. Table 3.2 compares the number of nodes needed to solve the problems

of Table 3.1 using eight different codes. The first six are codes described in the literature:



Chapter 3. Reduction constraints for sparse bilinear programs 84

1 = [40] (Foulds, 1992)

2 = [138] (Visweswaran, 1993)

3 = [17] (Ben-Tal, 1994)

4 = [139] (Visweswaran, 1996)

5 = [1] (Adhya, 1999)

6 = [126] (Tawarmalani, 1999)

and their performance is shown in Table 3.2, taken from the corresponding papers. Codes 7 and

8 both correspond to a rather basic implementation of sBB based on the algorithm proposed

in [116]. The only difference between them is that code 7 does not incorporate the reduction

constraints while code 8 does.

1 2 3 4 5 6 7 8

Haverly 1 5 7 3 12 3 3 31 1

Haverly 2 19 3 12 9 9 43 7

Haverly 3 3 14 5 3 39 7

Foulds 2 9 1 1 131 7

Foulds 3 1 1 1 � 20,000 1

Foulds 4 25 1 1 � 20,000 1

Foulds 5 125 1 1 � 20,000 1

Ben-Tal 4 47 25 7 3 3 101 1

Ben-Tal 5 42 283 41 1 1 � 200,000 1

example 1 6174 1869 11245 5445

example 2 10743 2087 83051 11049

example 3 79944 7369 � 200,000 7565

example 4 1980 157 2887 1467

Table 3.2: Numerical results.

As can be seen from the results in column 7 of Table 3.2, the lack of sophisticated algorithmic

features regarding, for example, the choice of branching strategy, makes the performance of

our basic implementation of the sBB algorithm significantly worse than that of earlier codes

presented in the literature. However, the mere addition of the reduction constraints to this basic



Chapter 3. Reduction constraints for sparse bilinear programs 85

code improves its performance dramatically, to the extent that it outperforms all but one of the

other codes (cf. column 8 of Table 3.2).

It is worth noting that the BARON software (columns 5 and 6 of Table 3.2) implements a

Branch-and-Bound method that employs various methods to generate valid cuts; however, none

of these is currently equivalent to our method. Our results are in the same order of magnitude

as those of BARON (the version published in 1999, fifth column of Table 3.2). However, at

the end of 1999 a new version of BARON was described [126] that used an improved branch-

ing scheme that cut the number of iterations by an order of magnitude (sixth column). With

the notable exception of Example 3, our code cannot generally attain these levels. Neverthe-

less, our reformulation is complementary to the techniques implemented in BARON and their

combination could lead to a further improvement in performance.

3.6 Generalization of the graph-theoretical algorithm

The graph-theoretical algorithm described in Section 3.3 for the identification of useful reduc-

tion constraints has some limitations. These arise from the fact that potential multiplications are

considered separately for each variable, which may result in some useful multiplications being

missed. To understand this point, consider the following very simple example:

� � � ��� � 
 ����
� � 
 � � � �

� � � � � � � � � �
�

� ���� (3.34)

On multiplying the linear constraint � � 
 � � � �
by � � we obtain ��� � 
 � � � � � � � , which

introduces one new bilinear term � � � � ; thus, this multiplication would not appear to bring any

benefit. Similarly, on multiplying the same linear constraint by � � , we would get � � � � 
 ���� � � �
and thus, again, one new bilinear term � � � � ; hence this multiplication would not be considered

to be beneficial either. Consequently, the algorithm of Section 3.3 applied to this system will

not create any reduction constraint.

However, considering the combined effect of the two multiplications, we note that they pro-

duce two new linearly independent reduction constraints while introducing only one new bilin-

ear term (namely, � � � � ). These two reduction constraints can be used to eliminate two bilinear



Chapter 3. Reduction constraints for sparse bilinear programs 86

terms from the problem, e.g. ��� � and ���� , leading to the problem reformulation:

� � � �
� 
 �

�

� � 
 � � � �
�
� 
 �

� � � ��
� 
 �

� � � ��
� � � � � �

� � � � � � � � � �
� � � � � � � �

� � � �
� � � � �

Essentially, the algorithm of Section 3.3 correctly identifies that multiplying the linear constraint

by either � � or � � results in a bilinear term � � � � that did not occur in the original problem. What

it misses is the fact that it is the same bilinear term in both cases. This is unfortunate as such

reformulation may be very beneficial. For instance, we have found that the numerical solution

of the example above in its original form with a simple sBB algorithm requires the examination

of 255 nodes, while the reformulated one can be solved in a single node.

This motivates an extension to the algorithm of Section 3.3 to consider simultaneously mul-

tiplication of linear constraints by all system variables. Instead of creating one bipartite graph

for each multiplier variable, we consider one unified bipartite graph comprising two disjoint

sets of nodes:

 The � -nodes which comprise  # 	 nodes �
� � representing the potential multiplication of

constraint � by variable � � .
 The � -nodes which comprise 	 � nodes � � � representing the bilinear term �

�
� � .

An edge connecting node �
� � and � � � exists if the multiplication of constraint � by variable � �

would give rise to a new bilinear term �
�
� � ; obviously either � � � or 
 � � holds.

Having created the bipartite graph, we attempt to trace an augmenting path algorithm similar

to that described in Figure 3.2 emanating from each node �
� � . If no such path is found, then

we must have identified a dilation involving � nodes of type � and �
� �

nodes of type � . This

implies that the variable-constraint multiplications corresponding to these � nodes will result in

� new constraints but only �
� �

new bilinear terms – which is exactly what we are trying to

establish.

We apply this generalized algorithm to the simple example problem (3.34). Assuming that

the constraint � � 
 � � � �
is labelled with index � � �

, the unified bipartite graph is shown in



Chapter 3. Reduction constraints for sparse bilinear programs 87

Fig. 3.7. Tracing an augmenting path from node � � � is , resulting in node � � � being assigned to

it. However, no augmenting path emanating from node � � � can be found. Instead, we identify a

dilation comprising nodes � � � , � � � and � � � , i.e. in this case, ��� � . This simply implies that the

reformulated problem should involve multiples of the linear constraint by both variables, which

introduces a single bilinear term.

σ

σ

σ

11

12

11

12

22

ρ

ρ

Figure 3.7: Unified bipartite graph for problem (3.34) in the generalized algorithm.

As has been mentioned, the worst-case computational complexity of the dilation-finding al-

gorithm of Section 3.3.3 is proportional to the product of the number of nodes from which the

augmenting paths emanate and the number of edges; on the other hand, the average-case com-

plexity is nearer to the sum of these two numbers. The original procedure described in Section

3.3 was applied to a bipartite graph with  linear constraint nodes; in principle, each of these

nodes could be connected with each and every one of the 	 variable nodes; consequently, the

number of edges is bounded from above by  	 . Therefore, the worst-case and average com-

plexities of this procedure are
� �  � 	 � and

� �  
  	 � respectively. Of course, the procedure

has to be applied separately for each candidate multiplier variable; therefore, the corresponding

total complexities are
� �  � 	 � � and

� �  	 
  	 � � respectively. On the other hand, the proce-

dure described in this section is applied to a bipartite graph with  	 � -nodes and 	 � � -nodes.

Each � -node is potentially connected with up to 	 � -nodes, and therefore the number of edges

is bounded from above by  	 � edges. Consequently, the worst-case and average complexities

are
� �  � 	 � � and

� �  	 
  	 � � respectively. In conclusion, the procedure of this section has

worse worst-case complexity than that of Section 3.3, but similar average complexity.

On the other hand, the memory requirements of the two procedures are very different. With

the original algorithm, a graph consisting of  
 	 nodes and up to  	 vertices needs to be

stored in memory at any one time, whereas the unified bipartite graph of this section will have



Chapter 3. Reduction constraints for sparse bilinear programs 88

 	 
 	 � nodes and up to  	 � edges. For extremely large problems, these requirements may be

excessive and special attention may have to be paid to the implementation of the algorithm (one

could create the graph “on-the-fly” as the algorithm progresses, deriving the nodes and edges

from the problem data at each step).

3.7 Concluding remarks

The work presented in this chapter is based on the fact that geometrical intersections of hyper-

planes and nonlinear hypersurfaces corresponding to bilinearities may embed a higher degree of

linearity than what is apparent by mere inspection of the defining equations. We have shown that

it is possible to exploit this fact so as to reformulate an NLP involving such equality constraints

to a form with fewer bilinearities and more linear constraints.

The basic idea of the reformulation is to multiply subsets of the NLP’s linear constraints

by one of the system variables � . This creates new linear “reduction” constraints expressed in

terms of variables
�

, each one of which corresponds to a bilinear product, viz.
� � � � � � � � . In

general, some of these
�

variables will already exist in the original NLP while others are new

variables introduced by the multiplication.

In principle, any of the original linear constraints in the NLP can be multiplied by any vari-

able; this is the basis of the RLT procedure proposed in [111, 108]. However, here we have

focussed on identifying multiplications which result in “valid” sets of reduction constraints, i.e.

sets in which the number of constraints exceeds the number of new variables
�

introduced by

the multiplication.

Valid reduction constraints do not affect the feasible region of the original NLP, but they

do reduce the feasible region of its convex relaxation, thereby rendering it tighter. To see this,

consider the multiplication of a subset of � of the original linear constraints
� � � � by a single

variable � � . This subset can be written in the form:

� � � � 
 � � � � � � � � � (3.35)

where the partitioning is such that the bilinear terms
� � � � � �	� already occur in the NLP, while� � � � � � �	� � do not. Now, if the above is to form a valid reduction constraint set, we must have

�	� � � ��� � where � � � � . We multiply the above constraint by � � to obtain:

� � � � 
 � � � � � � � � � � � (3.36)



Chapter 3. Reduction constraints for sparse bilinear programs 89

If we now apply Gaussian elimination with row pivoting on
� � � , we can bring the above system

to the form: � �� �
�� � � � � 
 � �� � �

� � � � � � � � � �
� �
�� � � (3.37)

We now note that the bottom block row of the above equation, �� � � � � � � � constrains the ad-

missible values of the variables
� � which already existed in the original NLP. Although these

constraints are redundant with respect to the NLP itself, they are non-redundant with respect to

any relaxation which does not enforce the equality
� � � � � � � exactly.

The above argument helps explain the beneficial effects of the proposed reformulation. On

one hand, the (linear) valid reduction constraints always tighten the convex relaxation of the

NLP. On the other hand, the elimination of some of the bilinear terms reduces the size of the

convex relaxation (e.g. by obviating the need for McCormick relaxations for these terms).

Overall, we have a relaxation that is both tighter and smaller, something that is not always the

case with earlier reformulation methods such as RLT.

Finally, it is worth noting that our reformulation relies on the use of graph theoretical al-

gorithms for the identification of valid reduction constraint sets. These algorithms have the

advantage of being quite fast even when applied to relatively large systems. On the other hand,

they may fail to identify some valid reduction constraint sets. This may occur in cases in which

the matrix
� � � in equation (3.35) is numerically singular but structurally non-singular.



Chapter 4

A convex relaxation for monomials of odd

degree

One of the most effective techniques for the solution of nonlinear programming problems

(NLPs) to global optimality is the spatial Branch-and-Bound (sBB) method. This requires the

computation of a lower bound to the solution, usually obtained by solving a convex relaxation

of the original NLP. The formation and tightness of such a convex relaxation are critical issues

in any sBB implementation.

As will be shown in sections 5.2.2.1 and 5.2.2.2, it is possible to form a convex relaxation

of any NLP by isolating the nonconvex terms and replacing them with their convex relaxation.

Tight convex underestimators are already available for many types of nonconvex term, includ-

ing bilinear and trilinear products, linear fractional terms, and concave and convex univariate

functions. However, terms which are piecewise concave and convex are not explicitly catered

for. A frequently occurring example of such a term is � � � ��� , where 
 ��� and the range of
� includes zero. A detailed analysis of the conditions required for concavity and convexity of

polynomial functions has been given in [75]; however, the results obtained therein only apply

to the convex underestimation of multivariate polynomials with positive variable values. For

monomials of odd degree, where the variable ranges over both negative and positive values, no

special convex envelopes have been proposed in the literature, and one therefore has to rely ei-

ther on generic convex relaxations such as those given by Floudas and co-workers (see [13, 7])

or on reformulation in terms of other types of terms for which convex relaxations are available.



Chapter 4. A convex relaxation for monomials of odd degree 91

In this chapter, we propose convex/concave nonlinear envelopes for odd power terms of the

form ��� � ��� ( 
 ��� ), where � � � � � � � and � �
�
� � . These envelopes are continuous and

differentiable everywhere in � � � � � . We also derive tight linear relaxations. We compare both of

these relaxations with relaxations for the same terms derived using other methods. We shall,

with a slight abuse of notation, speak about “envelope” to mean the region enclosed between

the convex and the concave envelopes.

4.1 Statement of the problem

In [75], the generation of convex envelopes for general univariate functions was discussed. Here

we consider the monomial ��� � ��� in the range � � � � � � � where � �
�
� � . Let ��� � be the � -

coordinates of the points


��� where the tangents from points

�
and

�
respectively meet the

curve (see Figure 4.1 below). The shape of the convex underestimator of � � � ��� depends on

the relative magnitude of � and � . In particular, if � � � (as is the case in Figure 4.1), a convex

underestimator can be formed from the tangent from � � � to � � � followed by the curve � � � ���

from � � � to � � � . On the other hand, if � � � (cf. Figure 4.2), a convex underestimator is

simply the straight line passing through
�

and
�

.

The situation is similar for the concave overestimator of � � � ��� in the range � � � � � � � . If� � � , the overestimator is given by the upper tangent from B to D followed by the curve � � � ���

from � to
�

, as shown in Figure 4.1. On the other hand, if � � � , the overestimator is just the

straight line from
�

and
�

. It should be noted that the conditions � � � and � � � cannot both

hold simultaneously.

a

bc

d

A

D

B

C

Figure 4.1: Convex envelope of ��� � ��� .



Chapter 4. A convex relaxation for monomials of odd degree 92

c

a

C

A

B

b

d

D

Figure 4.2: The case when ���	� .

4.2 The tangent equations

The discussion in Section 4.1 indicates that forming the envelope of � � � ��� requires the deter-

mination of the tangents that pass through points
�
�



and
�
��� . Considering the first of these

two tangents and equating the slope of the line
� 


to the gradient of � � � ��� at � � � , we derive

the tangency condition:
� � � ��� � � � � ���

� � �
� � � 
 
 � � � � � (4.1)

Hence � is a root of the polynomial:

�
� � � � � � � � � 
 � � � � ��� � �

� � 
 
 � � � � � 
 � �
� ��� (4.2)



Chapter 4. A convex relaxation for monomials of odd degree 93

It can be shown by induction on 
 that:

�
� � � � � � � � �

� � � � � � � � � �
� � �

�
� (4.3)

where the polynomial
� � � ��� is defined as:

� � � ��� � � 
 � �� �"�
�
� �
� �
�
� (4.4)

Thus, the roots of �
� � � � � � can be obtained from the roots1 of

� � � ��� . Unfortunately, polyno-

mials of degree greater than 4 cannot generally be solved by radicals (what is usually called an

“analytic solution”). This is the case for
� � � ��� for 
 � � . For example, the Galois group of

� � � ��� � � � � 
 � � � 
 � � � 
 � ��� 
 ��� 
 �
is isomorphic to � � (i.e. the symmetric group of order

5) which is not soluble since its biggest proper normal subgroup is
� � , the smallest non-soluble

group. For details on Galois theory and the solvability of polynomials, see [118].

4.3 The roots of
� 
������ and their uniqueness

Unlike �
� � � � � � , the polynomial

� � � ��� does not depend on the range of � being considered.

Moreover, as shown formally in Section 4.3.1 below,
� � � ��� has exactly one real root,

� � , for

any 
 
 �
, and this lies in � ��� 
 ��� � 
 � � � � � � . Hence, the roots of

� � � ��� for different 
 can

be computed a priori to arbitrary precision using simple numerical schemes (e.g. bisection). A

table of these roots is presented in Table 4.1 for 
 � � �
.


 � � 
 � �
1 -0.5000000000 6 -0.7721416355

2 -0.6058295862 7 -0.7921778546

3 -0.6703320476 8 -0.8086048979

4 -0.7145377272 9 -0.8223534102

5 -0.7470540749 10 -0.8340533676

Table 4.1: Numerical values of the roots of
� � � ��� for 
 � �

��� � �
� �

(to 10 significant digits).

1Although 	�
���
�� ��� has the additional root 
 � � , this is not of practical interest.



Chapter 4. A convex relaxation for monomials of odd degree 94

4.3.1 Bounding the roots of ���������
In this section, we show that

� � � ��� has exactly one real root, which lies in the interval � ��� 

�
� � �
� �
� � .

4.3.1 Proposition

For all 
 ��� , the following properties hold:

� � � � � � �
� � � � � � � � 


� �
� (4.5)

� � � �
	 � � � � ���� � � ���
(4.6)

� � � � ��
 � � � ��� � ���
(4.7)

Proof. (4.5):
����� � � � �

by direct substitution in (4.4). Also
��� � ��� � � � 
 � � ��"�

� � � � � �
� �
� �� ����

�
� � � � � � � � ��"�

� � � � � 
 .

(4.6):
��� � � � �
� � � � � �

�
����
� � � � 
 � � �

� �
� , hence it is greater than zero whenever � � �

.

(4.7): For � �� �
, we can rewrite

� � � ��� as
� ��"�

� ���
� �
� � � � � � 
 � � � � � . For � � � �

, we have
���
���
� � �

and � � � � ��
 � � � � � � �
, thus each term of the sum is negative. �

From the above proposition and the continuity of � � � ��� , we can conclude that:

1. there is at least one root between -1 and 0 (property (4.5));

2. there are no roots for � 
 �
(property (4.6) and the fact that

� � � � � � �
);

3. there are no roots for � � � � (property (4.7)).

4.3.2 Lemma

For all 
 ��� , the real roots of
��� � ��� lie in the interval � � � 
 �

� � �
� �
� � .

Proof. This is proved by induction on 
 . For 
 � �
,
� � � ��� � � 
 ��� has one real root at

� � � �
� which lies in the set � � � 
 �

� �
� �
� � . In particular,

� � � ��� � �
for all � �

��� 
 �
� and

� � � ��� � �
for all � � � �� .

We now make the inductive hypothesis that, for all � � 
 ,
� � � ��� � �

for all � � � �
� and

� � � ��� � �
for all � �

� � 
 �
� � and prove that the same holds for � � 
 . Using (4.4), we can



Chapter 4. A convex relaxation for monomials of odd degree 95

write
� � � ��� � � � � � � ��� 
 ��� �

�
� � � 
 � 
 � 
 � � � for all 
 � �

. Since � � �
�
� is always positive,

we have that:

� � � ��� � � �
�
� � ��� if � � ��� 


�
� 


� � � ��� � � � � � � ��� if � �
��� 
 �

� 

for all 
 � �

. Now, since
� �
� �

� � 
 �
� � for all 
 � �

,
� � � ��� � � � � � � ��� � �

for all � � � ��
by inductive hypothesis.

Furthermore, by the inductive hypothesis,
� � � � � ��� �

�
for all � �

��� 
 �
� � � � � � ; since

�
� � �

�
� � � � � � , it is also true that

� � � � � ��� � �
for all � �

��� 
 �
� � . But since, as shown above,

� � � ��� � � � � � � ��� for all � �
� � 
 �

� � , we can deduce that
� � � ��� � �

for all � �
��� 
 �

� � .

We have thus proved that, for all 
 � �
,

� � � ��� � �
if � � �

�
� (4.8)

� � � ��� � �
if � �

��� 
 �
� 
 � (4.9)

The proof of the lemma follows from (4.8), (4.9) and the continuity of
� � � ��� . �

4.3.3 Theorem

For all 
 ��� ,
� � � ��� has exactly one real root, which lies in the interval � ��� 
 �

� � �
� �
� � .

Proof. Consider the polynomial �
��� � � � � � � 
 � � � ��� � � � 
 
 � � � � � 
 �

defined by (4.2). By

virtue of (4.3), we have the relation �
� � � � � � � � � � � � � � � � ��� . Consequently, �

� � � � � � and
� � � ��� have exactly the same roots for � �

�
. Therefore (Lemma 4.3.2), all negative real roots

of �
� � � � � � lie in the interval � ��� 
 ��� � 
 � � ��� � � , and there is at least one such root.

Now, �
� � � � � � can be written as �

��� � � � � � � ��
� ��� 
 � ��

� ��� 
 �
, where � ��

� ��� � � 
 � � � ���
and � ��

� ��� � � � � 
 
 � � ��� � . Since � � is a monomial of odd degree, it is monotonically in-

creasing in � � � � � � . Since � � is a monomial of even degree with a negative coefficient, it is also

monotonically increasing in � � � � � � .
Overall, then, �

� � � � � � is monotonically increasing in � � � � � � , and consequently in the inter-

val � � � 
 ��� � 
 � ����� � � where all its negative real roots lie. Therefore, there can be only one

such root, which proves that
� � � ��� also has a unique root in this interval. �



Chapter 4. A convex relaxation for monomials of odd degree 96

4.4 Nonlinear convex envelopes

If the roots shown in the second column of Table 4.1 are denoted by
� � , then the tangent points

� and � in Figure 4.1 are simply � � � � � and � � � � � . The lower and upper tangent lines are

given respectively by:

� �
� ��� 
 � � � ��� � � � � ���

� � �

� � � � � (4.10)

� � � ��� 
 � � � ��� � � � � ���� � � � � � � � (4.11)

Hence, the envelope for � � � � � ��� when ��� � � � � � and ���
�
� � :

� �
� ��� � � ��� � � ��� (4.12)

is as follows:

 If � � � , then:

� �
� ��� �

�
� � � ��� 
 � 
 � � 
 � � � � � �

if � � �
��� � ��� if � 
 � (4.13)

otherwise:

� �
� ��� � � �

� ��� 
 � � � ��� � � � � ���

� � �

� � � � � (4.14)

 If � � � , then:

� �
� ��� �

� � � � ��� if � � �
� � � ��� 
 � 
 � � 
 � � � � � �

if � � � (4.15)

otherwise:

� �
� ��� � � �

� ��� 
 � � � ��� � � � � ���

� � �

� � � � � (4.16)

where we have used the constant
� � �

� 
 � � 
�
�
�� � � � . If the range of � is unbounded either below or

above we take the limits of � � � ��� and � � � ��� as �$� 
 or �'� 
 .

By construction, the above convex underestimators and concave overestimators are continu-

ous and differentiable everywhere. Moreover, they form the convex envelope of of � � � ��� , as the

following theorem shows.

4.4.1 Theorem

The convex underestimator and concave overestimator of � � � ��� for � � � � � � � where � �
�
� �

and 
 � � , given in equations (4.12)-(4.16), are as tight as possible.



Chapter 4. A convex relaxation for monomials of odd degree 97

Proof. First, consider the case where � � � �
�
� � � � . As the convex underestimator

between � and � is the curve itself, no tighter one can be found in that range. Furthermore, the

convex underestimator between � and � is a straight line connecting two points on the original

curve, so again it is the tightest possible.

It only remains to show that � �
� ��� is convex for any small neighbourhood of � . Consider the

open interval
� � � � � � 
 � � , and the straight line segment

� � ��� � 
 � � with endpoints
� ��� � � � � � � ,

� � 
 � � � � � � 
 � � � . Because for all � 
 � , � � � ��� � ��� � ��� is convex, all points in
� � ��� � 
 � � lie

above the underestimator. If we now consider
� � � � � � � 
 � � , its slope is smaller than the slope

of
� � ��� � 
 � � (because the point with coordinate � � � moves on the tangent of the curve at � ),

yet the right endpoint � 
 � of the segments is common. Thus all points in
� � � � � � � 
 � � also lie

above the underestimator � �
� ��� . Since � is arbitrary, the claim holds. A similar argument holds

for the overestimator between � and � .

The cases where � � � �
�
� � � � and � � � �

�
� � � � are simpler as the

underestimator is a straight line in the whole range of � . �

4.5 Tight linear relaxation

The convex envelope presented in Section 4.4 is nonlinear. As convex relaxations are used

to solve a local optimization problem at each node of the search tree examined by the sBB

algorithm, using a linear relaxation instead of a nonlinear one may have a significant impact on

computational cost. We can relax the nonlinear envelope to a linear relaxation by dropping the

“follow the curve” requirements on either side of the tangency points, and using the lower and

upper tangent as convex underestimator and concave overestimator respectively, as follows:

� �
� ��� 
 � 
 � � 
 �

�
� � � � � ��� � � � ��� 
 � 
 � � 
 �

�
� � � � (4.17)

We can tighten this relaxation further by drawing the tangents to the curve at the endpoints
�
�
�

, as shown in Figure 4.3. This is equivalent to employing the following constraints:

� � 
 
 � � � � � � � � 
 � � � ��� � � � � � 
 
 � � � �
� � � � 
 � � � ��� (4.18)

in addition to those in (4.17).

As has been noted in Section 4.1, when � � � , the underestimators on the left hand sides of

(4.17) and (4.18) should be replaced by the line � � � ��� 
 � 
 � � 
 � � 
 � � 
� � � � � � � � through points
�

and



Chapter 4. A convex relaxation for monomials of odd degree 98

a

bc

d

A

D

C

B

Figure 4.3: Tight linear relaxation of ��� � ��� .

�
(see Figure 4.2). On the other hand, if � � � , this line should be used to replace the concave

overestimators on the right hand sides of (4.17) and (4.18). The linear relaxation constraints are

summarized in Table 4.2.

��� � and �
� � � � � and �

� � ��� � and � � �
� � � 
 � � 
 � � � � � ���� � � � � � � � 
 � � 
 � �����
	���
 � ���
	��

��
 � � � � � � � � � 
 � � 
 � � � � � ��� � � � � �
� � � 
 � � 
 � � � � � � � � � � � � � � � 
 � � 
 � � � � � � � � � � � � � � � 
 � � 
 � ������	���
 � ���
	��

��
 � � � � � �
� � � � � � � � � 
 � � � � � � 
 � � 
 � � � � � � � � � 
 � � � � � � 
 � � 
 –
� � � � � � � � � 
 � � � � � � 
 � � 
 – � � � � � � � � � 
 � � � � � � 
 � � 


Table 4.2: Summary of linear relaxations for � � � � � ��� , ��� � � � � � , � � �
� � .

4.6 Comparison to other relaxations

This section considers two alternative convex/concave relaxations of the monomial � � � ��� where

the range of � includes 0, and compares them with both the nonlinear envelope and linear

relaxation proposed in this paper.



Chapter 4. A convex relaxation for monomials of odd degree 99

4.6.1 Reformulation in terms of bilinear products

One possible way of determining a convex/concave relaxation for � � � � � ��� , where � � � � �
and � �

�
� � , is via its exact reformulation in terms of a bilinear product of � and the convex

monomial ��� � :

� � � �
� � � � �

� � � � �
� � � � � � � �����%� � � � � � � � �

By replacing the bilinear term
� � with the standard linear convex envelope proposed by [80]

(see equations (5.10)-(5.13)), and the convex univariate term � � � with the envelope given by the

function itself as the underestimator and the secant as the overestimator, we obtain the following

constraints:

�
� � � � � �� � ��
 � � � � � ��� � � � � � 
 �

� � � � �
� � � � � � � �

� 
 � � � � � � �

� � �
� � � � �

� � � � �
� � � � � �

After some algebraic manipulation, we can eliminate
�

to obtain the following nonlinear

convex relaxation for � :
� � �
�
� �

� � � � � � ���
� � �
� � �

� � � � � (4.19)

� � � � 
 � � � � � � � � ��� � � �
� 
 � � � � � � � (4.20)

�
	
� �
� 
 � � � � � � �

� � �
� � � � � � � ��� � 	 � � � 
 � � � � � � �

� � �
� � � � � � (4.21)

Figure 4.4 shows the convex/concave relaxation for � � for ��� � ��� � � � obtained using (4.19)-

(4.21). It also compares it with the nonlinear envelope of Section 4.4 (dashed lines in Figure

4.4a) and the linear relaxation of Section 4.5 (dashed lines in Figure 4.4b).



Chapter 4. A convex relaxation for monomials of odd degree 100

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

eq. (20) 

eq. (21) 

eq. (20) 

eq. (21) 

x3

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

eq. (20) 

eq. (21) 

eq. (20) 

eq. (21) 

x3

a. Comparison with nonlinear envelope b. Comparison with tight linear relaxation

Figure 4.4: Convex relaxation of � � by reformulation to bilinear product.

As can be seen from Figure 4.4a, the convex relaxation (4.19)-(4.21) is generally similar to

that of Section 4.4 (in that both the underestimator and the overestimator consist of a straight

line joined to a curve), but not as tight. This is to be expected in view of theorem 4.4.1.

On the other hand, the convex relaxation (4.19)-(4.21) is slightly tighter than the linear re-

laxation of Section 4.5 in the sub-interval � � � � � where
�

is the point at which the curve on the

right hand side of (4.20) intersects the tangent line on the right hand side of (4.18); and also

in the sub-interval � � � � � where � is the point at which the curve on the left hand side of (4.20)

intersects the tangent line on the left hand side of (4.18). However, the linear relaxation of

Section 4.5 is tighter everywhere else.

4.6.2 Underestimation through � parameter

An alternative approach to deriving convex relaxations of general non-convex functions is the

� BB algorithm (see [13], [7]). In this case, the convex underestimator � � � ��� is given by � � � ��� 

� �
� � � � �

� � � � � , where � � is a positive constant that is sufficiently large to render the second

derivative � � � � � ��� � ��� � positive for all � � ��� � � � . Similarly, the concave overestimator
� � � ��� is

given by � � � ��� � � � � � � � � � � � � � where
� � is sufficiently large to render � � � � � ��� � � � � negative



Chapter 4. A convex relaxation for monomials of odd degree 101

for all � � � � � � � . It can easily be shown that the above conditions are satisfied by the values:

� � � 
 � � 
 
 � � � � � � �
�
� (4.22)� � � 
 � � 
 
 � � � � �

�
�
� (4.23)

The convex relaxation for the case of 
 � �
(i.e. the function � � ) obtained using the above

approach in the domain � � � � � � 
 � � is shown in Figure 4.5. It is evident that it is looser than

those shown in figs. 4.1 and 4.3.

x
10.80.60.40.2-0.2-0.4-0.6-0.8-1

3

2

1

-1

-2

-3

Figure 4.5: Convex relaxation of � � by the � method.

4.7 Computational results

In order to illustrate the difference between two of the relaxations described above for � � � ���

(those of Section 4.5 and 4.6.1), we solved the problem:

� � � � 	 � � � �
� � � � � ���
��� � � ��� � �

������ (4.24)

to global optimality using the spatial Branch-and-Bound algorithm described in [116] within

the 
 
 � � � implementation [73], both with the tight linear relaxation (equation (4.17)-(4.18))



Chapter 4. A convex relaxation for monomials of odd degree 102

direction of decreasing o.f.

bilin. rel. min

tight rel. min
min

reform. bilin. prod. tight lin. cvx. env.

y=x^3

–1

–0.5

0.5

1

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
x

Figure 4.6: Graphical description of simple test problem for 
�� �
(in 2D).

and with the alternative convex relaxation (equation (4.19)-(4.21)). Table 4.3 lists the number

of iterations taken by the algorithm when 
 varies. The first column lists the results relative

to the novel convex relaxation (Section 4.5), the second those relative to the alternative convex

relaxation (Section 4.6.1).

The results clearly substantiate the theory: the novel convex relaxation gives better perfor-

mance in comparison to the alternative relaxation based on reformulation to bilinear product. In

the case of � � , we can see why this happens in figures 4.6 and 4.7. The direction of minimiza-

tion of the objective function � � � is such that the minimum over the original feasible region

is very near the minimum over the novel convex relaxation. However, the minimum over the

alternative convex relaxation is further away. Hence the performance gain.

4.8 Conclusion

We have proposed a convex envelope for monomials of odd degree when the range of the defin-

ing variable includes zero, i.e. when they are piecewise convex and concave. We have then

compared it with other possible relaxations (based on reformulation to bilinear product and on



Chapter 4. A convex relaxation for monomials of odd degree 103

bilinear pr. min

tight rel. min
min

reformulation to bilinear product

tight linear convex envelope

y=x^3

x-y

–1–0.8–0.6–0.4–0.200.20.40.60.81 x

–1

0

1
y

–2

–1

0

1

2

Figure 4.7: Graphical description of simple test problem for 
�� �
(in 3D).

� parameter under- and overestimators) and shown that the former performs better than the

latter when tested in a Branch-and-Bound algorithm.



Chapter 4. A convex relaxation for monomials of odd degree 104


 Iterations Iterations 
 Iterations Iterations

(novel rel.) (alternative rel.) (novel rel.) (alternative rel.)

1 17 21 8 19 27

2 17 31 9 21 27

3 17 27 10 7 25

4 17 29 11 7 25

5 19 31 12 7 25

6 19 27 13 7 25

7 19 27 14 7 23

Table 4.3: Numerical results from the simple test problem.



Chapter 5

Spatial Branch-and-Bound algorithm with

symbolic reformulation

The previous two chapters considered issues relating to the (re-)formulation and tight convexifi-

cation of NLP problems in the context of spatial branch-and-bound (sBB) algorithms for global

optimization. We now turn our attention to the sBB algorithm itself and its computer imple-

mentation in a form that can be used as a component within larger software systems such as

process modelling tools. An important consideration in this context is the large amount of both

numerical and symbolic information required by sBB algorithms.

We start with an overview of the common structure of most sBB algorithms reported in the

literature. We then provide a more detailed description of Smith’s sBB algorithm [114, 116]

which forms the basis for our work and propose some algorithmic improvements to improve

its performance. Lastly, we describe 
 
 � � � (object-oriented OPtimization System), a general

software framework for defining and solving optimization problems, and the implementation of

our algorithm within this framework.



Chapter 5. Spatial Branch-and-Bound algorithm with symbolic reformulation 106

5.1 Overview of spatial Branch-and-Bound algorithms

The spatial Branch-and-Bound algorithm described in this chapter solves NLPs in the following

form:

� � ��� � � ���
� � � � ��� � �
� � � � �

� ���� (5.1)

where � � 	 � are the (continuous) problem variables, � �&	 � � 	 is the objective function

(which may be nonconvex), � � 	 � � 	 � are a vector of generally nonconvex functions, � �
�

are the lower and upper bounds of the constraints1, and � � � are the lower and upper bounds of

the variables.

The general mathematical structure and properties of sBB algorithms aimed at solving non-

convex NLPs were studied in Section 1.4, and their convergence proofs are similar to that of

theorem 1.4.1. The Branch-and-Reduce method [99] is an sBB algorithm with strong em-

phasis on variable range reduction. The � BB algorithm [13, 2, 6, 5] is an sBB whose main

feature is that the convex underestimators for general twice-differentiable nonconvex terms can

be constructed automatically. The reduced-space Branch-and-Bound algorithm [32] identifies

a priori a reduced set of branching variables so that less branching is required. The general-

ized Branch-and-Cut framework proposed in [61] derived cuts from violated constraints in three

sub-problems related to the original problem.

Most sBB algorithms for the global optimization of nonconvex NLPs conform to a general

framework of the following form:

1. (Initialization) Initialize a list of regions to a single region comprising the entire set of

variable ranges. Set the convergence tolerance � and the best objective function value

! � � 
 . Optionally, perform optimization-based bounds tightening.

2. (Choice of Region) If the list of regions is empty, terminate the algorithm with solution

! . Otherwise, choose a region (the “current region”) from the list. Delete this region

from the list. Optionally, perform feasibility-based bounds tightening on this region.

3. (Lower Bound) Generate a convex relaxation of the original problem in the selected

region and solve it to obtain an underestimation � of the objective function. If � � ! or

the relaxed problem is infeasible, go back to step 2.

1Equality constraints can be specified by setting � � �
.



Chapter 5. Spatial Branch-and-Bound algorithm with symbolic reformulation 107

4. (Upper Bound) Attempt to solve the original (generally nonconvex) problem in the se-

lected region to obtain a (locally optimal) objective function value � . If this fails, set

� � � 
 
 .

5. (Pruning) If ! � � , set ! � � � . Delete all regions in the list that have lower bounds

bigger than ! as they cannot possibly contain the global minimum.

6. (Check Region) If � � � � � , accept � as the global minimum for this region and return

to step 2. Otherwise, we may not yet have located the region global minimum, so we

proceed to the next step.

7. (Branching) Apply a branching rule to the current region to split it into sub-regions. Add

these to the list of regions, assigning to them an (initial) lower bound of � . Go back to

step 2.

5.2 Smith’s sBB algorithm

The most outstanding feature of Smith’s sBB algorithm is the automatic construction of the

convex relaxation via symbolic reformulation [114, 116]. This involves identifying all the non-

convex terms in the problem and replacing them with the respective convex relaxations. The

algorithm that carries out this task is symbolic in nature as it has to recognize the nonconvex

operators in any given function.

Smith assumes that the NLP solved by his algorithm is of the form:

����� � � � ���
��
� ��� � �

� � � � �

� ���� (5.2)

introducing slack variables to convert any inequalities to the equality constraints ��
� ��� � �

above.

Below, we consider some of the key steps of the algorithm in more detail.

5.2.1 Choice of region (step 2)

The region selection at step 2 follows the simple policy of choosing the region in the list with

the lowest lower objective function bound as the one which is most promising for further con-



Chapter 5. Spatial Branch-and-Bound algorithm with symbolic reformulation 108

sideration.

5.2.2 Convex relaxation (step 3)

The convex relaxation solved at step 3 of the algorithm aims to find a guaranteed lower bound

to the objective function value. In most global optimization algorithms, convex relaxations are

obtained for problems in special (e.g. factorable) forms. In Smith’s sBB, the convex relaxation

is calculated automatically for a problem in the most generic form (1.1) provided this is available

in closed analytic form, which allows symbolic manipulation to be applied to it.

The convex relaxation is built in two stages: first the problem is reduced to a standard form

where nonlinear terms of the same type are collected in lists; then each nonlinear term is re-

placed by the corresponding convex under- and overestimators. The standard form also provides

ways to simplify branch point calculation, branch variable choice and feasibility based bounds

tightening.

5.2.2.1 Reformulation to standard form

This is the first stage toward the construction of the convex relaxation of the original problem via

symbolic manipulation of the variables and constraints. In this form, the problem nonlinearities

are isolated from the rest of the problem and thus are easy to tackle by symbolic and numerical

procedures.

Smith defined the following standard form:

����� � � � � (5.3)

� � � � ��� (5.4)
� � � � � � � � � � � � � 
 � � � (5.5)
� � �

� �
� � � � � ��� � 
 � ��� (5.6)

� � � � �� � � � � 
 � � � � � (5.7)
� � � � � � � � � � � � � 
 � � � � �

(5.8)
� � � � � � � (5.9)

where � � � � � ��������� � � � are the problem variables,
�

is a constant, usually sparse, matrix,

� � � are the linear constraint bounds, and � � � � � are the variable bounds. Constraints (5.5)–



Chapter 5. Spatial Branch-and-Bound algorithm with symbolic reformulation 109

(5.8), called the defining constraints, include all the problem nonlinearities: � � � are sets of

triplets of variable indices which define bilinear and linear fractional terms respectively. �
is a set of triplets defining power terms; each triplet comprises two variable indices � � 
 and

the corresponding power exponent � � 	 .
�

is a set of triplets which define terms involving

univariate functions � � ; each triplet comprises two variable indices � � 
 and a third index � that

identifies the type of the univariate function being applied (e.g. � � � � � � , � � � � � ).

Each of the constraints (5.5)-(5.8) has one of the forms:

� � � � � � � � � � � � � � 
 � � � ��	 � � � � 	 � � ��
 � � � � � 
 � � 
 � � � ��	 �
� � � � � � � � � � � � � � �

��	 � � � 
 � � � � � 
 � � 
 � � � � 	 �
where operand is an original or an “added” variable i.e. one added to the original set of variables

by the standardization procedure.

In the interests of simplicity, the objective function is replaced by the added variable � � � � ,
and a constraint of the form:

�
� � � � 
 � � � � � � � � � � 	 � � � 
�	

is added to the linear constraints.

An efficient algorithm for reducing an NLP to standard form has been described in detail in

[114, 116]. It works by recursively tackling nonlinear terms in the problem and forming linear

and defining constraints as it goes along, always aiming at introducing the minimal number of

new variables.

5.2.2.2 Convexification

This is the second stage of the process where the actual convex relaxation of the original prob-

lem within the current region � ��� � ����� is built. The algorithm for convexification is entirely

symbolic (as opposed to numeric) and hence performs very efficiently even in the presence of

very complicated mathematical expressions.

Having reduced a problem to standard form, we replace every nonconvex term with a convex

envelope consisting of convex over- and underestimating inequality constraints. The rules we

follow to construct over- and underestimators are as follows:



Chapter 5. Spatial Branch-and-Bound algorithm with symbolic reformulation 110

1. �
�
� � � � � is replaced by four linear inequalities (McCormick’s envelopes, [80]):

� � 
 � �� � � 
 � �� � � � � �� � �� (5.10)
� � 
 � �� � � 
 � �� � � � � �� � �� (5.11)
� � � � �� � � 
 � �� � � � � �� � �� (5.12)
� � � � �� � � 
 � �� � � � � �� � �� (5.13)

2. �
�
� � � � � � is reformulated to �

� � � � � � and the convexification rules for bilinear terms

(5.10)-(5.13) are applied.

3. �
�
� � � � � � � where � � is concave univariate is replaced by two inequalities: the function

itself and the secant:

� � � � � � � � � (5.14)

� � 
 � � � � �� � 
 � �
� ���� � � � � � ���� �
� �� � � ��

� � � � � �� � (5.15)

4. �
�
��� � � � � � where � � is convex univariate is replaced by:

� � � � � � � �� � 
 � �
� ���� � � � � � ���� �
� �� � � ��

� � � � � �� � (5.16)

� � 
 � � � � � � (5.17)

5. �
�
� � �� where

�
� � �

�
is treated as a concave univariate function in the manner

described in point 3 above.

6. �
�
� ��� �� for any  � � is treated as a convex univariate function in the manner described

in point 4 above.

7. �
�
� � � � ���� for any  ��� can be convex, concave, or piecewise convex and concave

with a turning point at
�
. If the range of � � does not include 0, the function is convex

or concave and falls into a category described above. Smith does not specify a convex

envelope for the case where the range includes 0; however, it is desirable to use the linear

convex and concave relaxations described in Chapter 4.

5.2.3 Branching (step 7)

There are many branching strategies [31] available for use in spatial Branch-and-Bound al-

gorithms. Generally, branching involves two steps, namely determining the point (i.e. set of



Chapter 5. Spatial Branch-and-Bound algorithm with symbolic reformulation 111

variable values) on which to branch, and finding the variable whose domain is to be sub-divided

by the branching operation. Smith uses the solution of the upper bounding problem (step 4) as

the branching point, if such a solution is found; otherwise the solution of the lower bounding

problem (step 3) is used. He then identifies the nonlinear (nonconvex) term with the largest

error with respect to its convex relaxation. The branch variable is chosen as the variable whose

value at the branching point is nearest to the midpoint of its range.

5.2.4 Bounds tightening

These procedures arrear in steps 1 and 2 of the algorithm structure outlined in Section 5.1. They

are optional in the sense that the algorithm will, in principle, converge even without them. De-

pending on how computationally expensive and how effective these procedures are, in some

cases convergence might actually be faster if these optional steps are not performed. In the

great majority of cases, however, the bounds tightening steps are essential to achieve fast con-

vergence.

Two major bounds tightening schemes have been proposed in the literature: optimization-

based and feasibility-based.

5.2.4.1 Optimization-based bounds tightening (step 1)

This is a computationally expensive procedure which involves solving at least � 	 convex NLPs

(or LPs if a linear relaxation is employed) where 	 is the number of problem variables. Let � �
��
� ��� � �

be the set of constraints in the relaxed (convex) problem. The following procedure

will construct sequences � � � � � �
�
� � � � � � �

�
of lower and upper bounds which converge to bounds

that are at least as tight as, and probably tighter than � � � ��� .

1. Set � ��� � � �
�
� ��� , � ��� � � �

�
� ��� , 
 � �

.

2. Repeat

� � �� � � �
�
� ����� � � � � � � �� � ��� � � � � � � � � �

�
�
�
� � � � � � � � �

�
�
�
� � � � � 	��

� � �� � � �
�
� � ���%� � � � � � �� � ��� � � � � � � � � � � � � � � ��� � � � � �

�
�
�
� � � � � 	��


 � 
 
 �
�

until � � � � � �
�
�!� � � � � �

�
�
�
and � � � � � �

�
�!� � � � � �

�
�
�
:



Chapter 5. Spatial Branch-and-Bound algorithm with symbolic reformulation 112

Because of the associated cost, this type of tightening is normally performed only once, at the

first step of the algorithm.

5.2.4.2 Feasibility-based bounds tightening (step 2)

This procedure is computationally cheaper than the one described above, and as such it can be

applied at each and every region considered by the algorithm. Variable bounds are tightened by

using the problem constraints to calculate extremal values attainable by the variables. This is

done by isolating a variable on the left hand side of a constraint and evaluating the right hand

side extremal values by means of interval arithmetic.

Feasibility-based bounds tightening is trivially easy for the case of linear constraints. Given

linear constraints in the form � � � � � � where
� � �

�
� � � , it can be shown that, for all

� � � � 	 :

� � � � ����� 
 � �� � � � � � 
 �� � � 
 � � � � ���� � ����� � � � � � �� � � � � � �� � � � � �

� � � 
 ���� � � � �
� 
 �� � � 
 � � � � ���� � ����� � � � � ���� � � � � ���� � � � ��� if �

� � � �

� � � � ����� 
 � �� � ����� � 
 �� � � 
 � � � � ���� � � � � � � � � � �� � � � � � �� � � � � �

� � � 
����� � � ���
� 
 �� � � 
 � � � � ���� � ����� � � � � ���� � � � � ���� � � � ��� if �

� � � �
�

As pointed out by Smith ([114], p.202), feasibility-based bounds tightening can also be car-

ried out for certain types of nonlinear constraints.

5.3 Improvements to Smith’s sBB algorithm

In this section we present some simple improvements to Smith’s work based on observations

about the theory of sBB. All of these leave the convergence properties of the algorithm intact

but reduce its cost.

5.3.1 Avoiding the introduction of slack variables

The computational efficiency of optimization codes is adversely affected by the size of the

problem in terms of the number of variables. It therefore makes sense to try to reduce this



Chapter 5. Spatial Branch-and-Bound algorithm with symbolic reformulation 113

number, either by dimensionality arguments (see Section 2.2.2) or by reducing the number of

intermediate variables generated by the symbolic manipulation procedures. Here, we use the

latter approach.

One of the prerequisites of the standardization procedure stated by Smith is that the original

problem consists only of equality constraints of the form � � ��� � �
(see [114], p.190). All the

inequality constraints should therefore be transformed into equality constraints via the introduc-

tion of slack variables as described in Section 5.2.2.1 (also see section 2.2.1). This produces a

number of new problem variables equal to the number of inequality constraints. For cases where

all or most of the constraints are inequalities, the additional computational overhead resulting

from this step is substantial. If one takes into account the fact that the most generic problem

form 5.1 has two inequalities for each constraint expression (i.e. each constraint has a lower

and an upper bound, as in
� � � � 
 � � �

, for example), the actual number of slack variables

is doubled.

Fortunately, it turns out that slack variables are not needed for the standardization process.

More precisely, the standardization process only acts on the expression � � ��� within a constraint

of the form � � � � ��� � � ; at no point is the fact that � � ��� � �
used. Thus, the standardization

can be applied directly to inequality constraints, so that slack variables are not needed.

5.3.2 Avoiding unnecessary local optimizations

The most computationally expensive steps in the sBB algorithms are typically the calls to the

local optimization procedures to find lower and upper bounds to the problem at hand. This

normally involves the numerical solution of a general non-convex NLP, which can be relatively

expensive. If a good lower or upper bound can be found for a region without resorting to the

local optimization procedure, then it should be used without question.

The two methods described below should at least halve the number of upper bounding prob-

lems that are solved during the sBB algorithm. Note that a distinction is made between the

variables that were present in the original NLP (“original variables”) and those that were added

by the standardization procedure (“added variables”, cf. section 5.2.2.1).



Chapter 5. Spatial Branch-and-Bound algorithm with symbolic reformulation 114

5.3.2.1 Branching on added variables

Suppose that in the sBB algorithm an added variable
�

is chosen as the branch variable. The

current region is then partitioned into two sub-regions along the
�

axis, the convex relaxations

are modified to take the new variable ranges into account, and lower bounds are found for each

sub-region. The upper bounds, however, are found by solving the original problem which is not

dependent on the added variables. Thus the same exact original problem is solved at least three

times in the course of the algorithm (i.e. once for the original region and once for each of its

two sub-regions).

The obvious solution is for the algorithm to record the objective function upper bounds in

each region. Whenever the branch variable is an added variable, avoid solving the original

(upper bounding) problem and use the stored values instead.

5.3.2.2 Branching on original variables

Even when the branching occurs on an original problem variable, there are some considerations

that help avoid solving local optimization problems unnecessarily. Suppose that the original

variable � is selected for branching in a certain region. Then its range � � � � � � � is partitioned

into � ��� � �	� � and � �	� � ����� . If the solution of the upper bounding problem in � � � � ����� is ��� , and
� � � � � � � � � � , then it is unnecessary to solve the upper bounding problem again in the sub-region

� � � � � � � as an upper bound is already available at � � . Of course, the upper bounding problem

still needs to be solved for the other subregion � ��� � ����� (see Fig. 5.1).

5.4 The ���
�����

software framework for optimization

Any computer implementation of general-purpose spatial Branch-and-Bound algorithms for

global optimization requires a large amount of information on the problem being solved. This

includes:

 numerical information of the type required by local optimization solvers, e.g. values of

the objective function and the residuals of the constraints for given values of the problem

variables;



Chapter 5. Spatial Branch-and-Bound algorithm with symbolic reformulation 115

x xL Ux* x’

Figure 5.1: If the locally optimal solution in � � � � ����� has already been determined to be at � � ,
solving in � ��� � �	� � is unnecessary.

 structural information, e.g. regarding the sparsity pattern of the constraints; this is es-

sential not only for improving the code efficiency (a feature that is also shared with local

optimization codes), but also in implementing advanced techniques such as the model

reformulation algorithm of chapter 3;

 symbolic information on the objective function and constraints, needed for implementing

general reformulation and/or convexification techniques.

Most implementations of sBB-type algorithms in existence today have been either stand-

alone software codes (e.g. the � BB system [4, 5]) with their own language for defining op-

timization problems, or have been embedded within existing modelling tools which provide

them with the necessary information; for example, Smith’s [114] code was embedded in the

gPROMS modelling tool [30] while the BARON code [102] has recently been made avail-

able within GAMS [22]. Whilst these developments are undeniably useful from the immediate

practical point of view, the wider dissemination of global optimization technology requires a

different approach which allows the software to be directly embedded within larger software

systems such as mathematical modelling tools, domain-specific optimization codes (e.g. for

pooling and blending) and so on.

The above considerations provided the motivation for the development of the 
 
 ����� (object-

oriented OPtimization System) system in the context of the work described in this thesis.


�
 � � � is a comprehensive library of callable procedures for the definition, manipulation and



Chapter 5. Spatial Branch-and-Bound algorithm with symbolic reformulation 116

solution of large, sparse nonlinear programming problems2.


 
 ����� is completely coded in C++ [125], [103]. The C++ language is object-oriented but

low-level enough to leave memory management to the programmer; C++ compilers are very

efficient at optimizing the code and very portable across different architectures.


 
 ����� is described in detail in Appendix A of this thesis. The rest of this chapter provides

an overview of its design and usage.

5.4.1 Main features of ���
�����

Rather than being a stand-alone code, 
�
������ is designed to provide a number of high-level

services to a client software code (e.g. written in C++, C or FORTRAN) via an Application

Programming Interface (API).

A complete description of 
 
 ����� is provided in Appendix A of this thesis. Its main features

include the following:

1. 
 
 ����� allows its client codes to construct and, if necessary, subsequently modify large-

scale NLPs involving large sets of variables and linear and nonlinear constraints.

2. The construction of complex problems is facilitated by recognizing that, in most practical

applications, variables and constraints can be categorised into relatively small numbers of

sets which can be defined generically. Thus, 
�
 � � � allows variables and constraints to

be defined in a “structured” fashion as multi-dimensional arrays with an arbitrary number

of dimensions.

3. The construction of an NLP in 
�
���� � is done in a symbolic manner. Thus, each non-

linear expression occurring in the objective function and/or the constraints is built by the

client issuing a sequence of calls (i.e. on a term-by-term, factor-by-factor basis etc.).

Consequently, 
 
 ����� is fully aware at all times of the symbolic form of any NLP within

it and can supply this information to its clients.

4. In order to facilitate the operation of numerical optimization solvers within the 
�
���� �
framework, 
 
 ����� automatically derives and makes available to its clients a “flat” form

2In fact, ���
	���
 has been designed and implemented to deal with mixed integer linear and nonlinear optimiza-

tion problems. However, for the purposes of this chapter, we will refer only to its NLP capabilities.



Chapter 5. Spatial Branch-and-Bound algorithm with symbolic reformulation 117

of any NLP constructed in terms of structured variables and constraints. In this flat form,

all variables and constraints are collected in two one-dimensional vectors (arrays).

5. The standard form (5.3) of an NLP is required by some sBB algorithms, such as the one

by Smith which forms the basis of our work. It may also be useful in other contexts as

it allows any NLP involving arbitrarily complex objective functions and/or constraints to

be represented in terms of simple data structures, namely (cf. Section 5.2.2.1):

 the index 
 � � of the objective function in the vector of the problem variables;

 the linear constraint matrix
�

, and the lower and upper bounds of the linear con-

straints, � and � respectively;

 the triplets � , � , � and
�

;

 the values of the problem variables � and their lower and upper bounds � � and � � .

For these reasons, and as has already been mentioned (cf. Section 5.4.1), 
 
 � � � au-

tomatically derives the standard form for any NLP represented within it and makes it

available to its clients.

6. 
 
 ����� allows a client to manipulate any number of NLPs simultaneously; this is impor-

tant for supporting applications which require iterating between two or more optimization

problems, with information derived from the solution of one of these NLPS being used to

define or modify one or more of the others.

7. 
 
 ����� allows its clients to evaluate the objective function and constraints of any NLP

held within it. Moreover, it automatically derives, and makes available to its clients,

structural (e.g. sparsity pattern) and symbolic (e.g. exact partial derivatives3) information

on these NLPs. An algorithm for fast evaluation of symbolic expressions has been devised

and implemented [71].

8. 
 
 ����� provides its clients a uniform interface to diverse LP/NLP/MILP/MINLP solvers

from a variety of sources and coded in a variety of programming languages. These solvers

operate on NLPs defined within 
 
 ����� .

3 ���
	 ��
 derives partial derivatives in closed analytic form using symbolic differentiation.



Chapter 5. Spatial Branch-and-Bound algorithm with symbolic reformulation 118

5.4.2 Object classes in ���
� � �

In order to deliver the above functionality, 
�
������ recognizes four major classes of objects,

each with its own client interface.

1. The ops object.

An ops object is a software representation of an NLP problem. The corresponding inter-

face:

 allows NLP objects to be constructed and modified in a structured manner (cf. Sec-

tion 5.4.1;

 provides access to all numerical and symbolic information pertaining to the NLP in

structured, flat (unstructured) and standard forms.

2. The opssystem object.

This represents the combination of an NLP ops object with a specific solver code (e.g.

SNOPT [43]). The corresponding client interface:

 allows the behaviour of the solver to be configured via the specification of any algo-

rithmic parameters that the solver may support.

 permits the solution of the NLP.

3. The opssolvermanager object.

This corresponds to a particular NLP solver (e.g. SNOPT [43]). The primary function

of the corresponding client interface is to receive an ops object representing a particular

NLP and to return an opssystem (see above) that represents the combination of this

NLP with the solver code.

4. The convexifiermanager object.

This embeds a code which produces a convex relaxation of a given non-convex NLP.

More specifically, given an ops object representing a particular NLP, it creates another

ops object describing a convex relaxation of the NLP. The corresponding client interface

also allows the “on-the-fly” updating of the convex relaxation whenever the ranges of the

variables change.



Chapter 5. Spatial Branch-and-Bound algorithm with symbolic reformulation 119

5.4.3 Typical usage scenario for ���
� � �

A typical client application of 
�
���� � makes use of the object classes described above to for-

mulate and solve an optimization problem. This involves a number of steps:

1. Construct an ops object describing the NLP to be solved. This is done by creating one

or more structured variables and then introducing an objective function and constraints

defined in terms of these variables.

2. Create an opssolvermanager for the particular NLP solver code that is to be used.

3. Configure the solver’s behaviour by setting appropriate values for its algorithmic param-

eters (e.g. convergence tolerances, maximum number of iterations etc.); this is done by

calling appropriate methods provided by the opssolvermanager’s interface.

4. Create an opssystem by passing the ops object created at step 1 to the opssolver-

manager created at step 2.

5. Solve the problem by invoking the opssystem’s Solve() method. This will involve

the solver code interacting directly with the ops object in a (usually large) number of

steps. For example, a local NLP solver may typically issue the following requests to an

ops object:

(a) Obtain the numbers of variables and constraints in the NLP to be solved, as well as

other structural information such as the nature of each constraint (e.g. linear/non-

linear, constraint bounds etc.), the sparsity pattern and so on.

(b) Obtain the initial values of all the NLP problem variables.

(c) In an iterative loop,

i. evaluate the objective function and the constraints at the current values of the

problem variables;

ii. (possibly) evaluate the partial derivatives of the objective function and the con-

straints at the current values of the problem variables;

iii. modify the values of the problem variables;

until convergence is obtained or some other termination criterion is satisfied (e.g.

the maximum number of allowable iterations is reached).

6. Obtain the NLP’s solution by invoking the ops’s method for querying variable values.



Chapter 5. Spatial Branch-and-Bound algorithm with symbolic reformulation 120

5.4.4 Solver components for use within ���
� � �

The interactions at steps 2-5 of the typical usage scenario presented in Section 5.4.3 above im-

pose certain requirements on every numerical solver designed for use in the context of 
 
 � � � .

More specifically:

 each such solver must be implemented as a software component that exposes an ops-

solvermanager interface (cf. step 2 of the interaction);

 the solver’s opssolvermanager interface must provide a set of methods for accessing

and modifying the algorithmic parameters associated with this solver (cf. step 3 of the

interaction);

 the solver must obtain all information regarding the NLP to be solved by calling appro-

priate methods in the NLP’s ops object (cf. step 5 of the interaction);

 at the end of the numerical solution, the solver must place the final (converged) values

of the solution variables back in the ops object describing the original NLP, from where

they can be recovered at any later stage by the client (cf. step 6 of the interaction).

Albeit apparently burdensome, the above requirements are, in fact, relatively easy to satisfy.

Some solver software components can be designed and implemented specifically for 
 
 �����
while others may be pre-existing pieces of software which are “wrapped” in an 
�
���� � -compliant

interface. In either case, all solver modules consist of the actual solver code, an opssystem

interface and an opssolvermanager interface. Template files are provided with 
 
 ����� in

order to facilitate the construction of these interfaces.

In practice, solver components are implemented as dynamic link libraries which expose a

single function called NewMINLPSolverManager. Application clients typically apply dy-

namic linking to these solver components, and then invoke NewMINLPSolverManager to

create a new solver manager object and obtain an interface to it.

As an illustration of the implementation of solver components within the 
�
���� � framework,

we have wrapped the SNOPT code [43] for local NLP optimization. However, of more interest

to this thesis is the implementation of a global optimization code based on a variation of Smith’s

sBB algorithm; this is described in Section 5.5.



Chapter 5. Spatial Branch-and-Bound algorithm with symbolic reformulation 121

5.5 An sBB solver for the ���
�����

framework

The sBB algorithm of Smith [114, 116] for global optimization (cf. Section 5.2), with the

minor improvements described in Section 5.3, has been implemented for use within the 
 
 �����
framework.

5.5.1 Overview of the sBB code

The sBB implementation makes use of two sub-solvers: a local NLP solver for obtaining up-

per bounds by solving the original NLP in each region; and an optimization solver for obtaining

lower bounds by solving the convex relaxation of the original NLP in each region. Each of these

sub-solvers is itself implemented as an 
 
 � � � -compliant optimization solver. In addition, the

sBB code makes use of a convexifier, a software component which, given an ops object, con-

structs another ops object that represents a convex relaxation of the former. This is described

in more detail in Section 5.5.2.

More specifically, given an ops object describing a non-convex NLP, our sBB solver ex-

ecutes the following sequence of operations in the context of step 5 of the generic algorithm

outlined in Section 5.4.3:

1. Create an opssolvermanager for the local solver which will be used to solve the

upper bounding problem.

2. Pass the original ops object to the above local opssolvermanager to create an upper

bounding opssystem.

3. Create a convexifiermanager.

4. Create a new ops object representing a convex relaxation of the original ops object by

passing the latter to the above convexifiermanager.

5. Create an opssolvermanager for the optimization solver to be used for the solution

of the lower bounding problem.

6. Create a lower bounding opssystem by passing the ops object constructed at step 4 to

the opssolvermanager constructed at step 5.

7. During the branch-and-bound search:



Chapter 5. Spatial Branch-and-Bound algorithm with symbolic reformulation 122

(a) repeatedly call the Solve methods of the opssystems constructed at steps 2 and

6 to solve the upper and lower bounding problems respectively.

(b) On changing the variable ranges during branching, update the lower bounding prob-

lem by invoking the UpdateConvexVarBounds() method in the convex-

ifiermanager.

8. De-allocate all objects created by the global solver code.

As can be seen, the above procedure takes advantage of 
 
 ����� ’s capabilities to simulta-

neously manipulate two ops objects respectively describing the original NLP problem and its

convex relaxation.

Our current sBB implementation uses SNOPT [43] for solving the upper bounding problem,

and the CPLEX [60] linear programming code as the solver for the convex relaxation4. It is

worth noting, however, that, in principle, any 
�
���� � -compliant local NLP solver can be used

as a sub-solver within our sBB code.

5.5.2 The convexifier

In addition to generic numerical optimization solvers, the 
 
 ����� framework recognizes an-

other generic type of software component, that of convexifiers. These simply take one ops

object representing a non-convex NLP, and return another ops object representing a convex

relaxation of the original NLP. 
�
���� � does not prescribe how this relaxation is to be formed

or indeed how tight it should be; all it does is to define a standard software interface for convex-

ifiers or, more precisely, for convexifiermanager objects (cf. Section 5.4.2). This allows

convexifiers based on different approaches and/or originating from different sources to be used

within 
 
 ����� .

For our purposes, we have implemented a convexifier based on the approach described in

Section 5.2.2. This makes use of the standard form of the NLP which is automatically con-

structed and made available by the ops object (cf. Section 5.4.1). In our current implemen-

tation, we use only linear relaxations (cf. Section 5.2.2.2), and consequently, the ops object

constructed by the convexifiermanager is actually a cut-down version of the full ops

4The use of CPLEX in this context is possible because the convexifier implemented and used in the current

code constructs a linear convex relaxation of the non-convex NLP (see Section 5.5.2).



Chapter 5. Spatial Branch-and-Bound algorithm with symbolic reformulation 123

class which only offers methods for manipulating the linear problem in flat (unstructured) form.

As has been seen in Section 5.2.2.2, the convex relaxation of an NLP involves the bounds � �
and � � of the problem variables � within the current region. For the efficient operation of the

sBB algorithm, it is important to be able to efficiently update the convex relaxation by taking

account of changes in these bounds and not to have to regenerate it from the beginning. To

achieve this, our convexifier implementation creates dependency links between the constraints

in the relaxed problems and the variable ranges. This facilitates the “on-the-fly” updating of

the convex relaxation whenever the ranges of any variable(s) change (i.e. as the sBB algorithm

moves from considering one region to another).

5.5.3 Storing the list of regions

In abstract terms, a region to be considered by the sBB algorithm is a hypercube in the Euclidean

space characterized by a list of 	 variable ranges where 	 is the total number of variables

in the NLP. Thus, the memory requirements for storing each region would appear to be � 	 .

Furthermore, during branching, we have to copy � 	 memory units from the original region to

each of the two new ones. However, this is wasteful since branching always reduces the range

of just one variable while the ranges of all other variables remain unchanged.

In view of the above, we prefer to store regions in a tree structure, each node of which

contains:

 the branch variable which led to the region’s creation and its range;

 a pointer to the parent region;

 the objective function lower and upper bounds for this region;

 a flag that signals whether an upper bound is already available for the region prior to

calculation (cf. Section 5.3.2).

The top region of the tree does not have any of the above information.

Starting from any node in the tree, we can derive the complete set of variable bounds for the

corresponding region by ascending the tree via the node’s parent. More specifically, given a

particular node in the tree,



Chapter 5. Spatial Branch-and-Bound algorithm with symbolic reformulation 124

0<x<2

1<y<1.5

Top node
a

b c

d e

f g
0<x<1 1<x<2

x 0

y 1

−2

−1

Figure 5.2: The region tree.

1. We label all problem variables as “unmarked” and initialize their ranges to be those in the

original NLP.

2. If the branch variable in the current node is still unmarked, we:

(a) modify its range to that indicated by the current node;

(b) label this variable as “marked”.

3. If the current node is not the top node, we apply the above procedure to the parent of the

current node; otherwise we terminate.

As an example, consider the region tree shown in Fig. 5.2 constructed at some stage during

the solution of an NLP involving three variables, namely � � � � � � � � , � � � ��� � � � � � and � �

� � � � � � . For ease of reference, the nodes of the tree are labeled as � � ��� � ; the branch variable

which led to the node’s creation, and its range within this node, are also shown. Now suppose

we wish to establish the ranges of all variables for node � . This can be achieved as follows:

1. We label all three variables � ��� �	� as unmarked and set their ranges to those in the original

NLP, i.e. � � � � � � � � , � � � � � � � � � � and � � � � � � � � .
2. Starting from node � , since the branch variable � is unmarked, we modify its range to

� � � � � and label it as marked. The variable ranges are now � � � � � � � , � � � ��� � � � � � and

� � � ��� � � � .



Chapter 5. Spatial Branch-and-Bound algorithm with symbolic reformulation 125

3. We now move to � which is the parent node of � . Since the branch variable � is unmarked,

we modify its range to � ��� � � � and label it as marked. The variable ranges are now � �

� � � � � , � � � ��� � � � and � � � � � � � � .
4. We now move to � which is the parent node of � . Since the branch variable � is already

marked, we do not make any modifications to the variable ranges at this node.

5. We now move to � which is the parent node of � . Since this is the top node, we terminate.

Overall, the above sequence of steps has determined that the variable ranges for the region

corresponding to node � are � � � � � � � , � � � � � � � � and � � � ��� � � � .

5.6 Concluding remarks

In this chapter, we presented an outline of the symbolic reformulation spatial Branch-and-

Bound (sBB) algorithm by Smith [114, 116] and proposed some minor improvements to it.

We also considered the software implementation of general sBB algorithms, and the require-

ments that this imposes in terms of numeric, structural and symbolic information on the NLP

being solved. Our analysis led us to the development of 
 
 � � � , a general software framework

for optimization that can support both local and global optimization solvers.

A key concept in the design of 
�
���� � is the separation of the NLP problem being solved

from the optimization solver itself; the former is described by a software object ops while

the latter is implemented as a software component exposing an opssolvermanager object

interface. The combination of a solver manager with ops object leads to the creation of an

opssystem object which can be solved by the invocation of an appropriate method. We bor-

rowed all of these ideas from the design of standardized software components for the solution

of sets of nonlinear algebraic and mixed differential-algebraic equations in the CAPE-OPEN

project, an international initiative for the standardization of process engineering software5. Hav-

ing extended these concepts to the solution of nonlinear optimization problems, we have con-

tributed some of them back to the CAPE-OPEN initiative to form the basis of a new standard6

for optimization solvers [88].

In order to test the generality and applicability of the 
 
 � � � framework, we successfully

5See http://www.colan.org.
6Note, however, that this standard does not yet support global optimization solvers of the type considered here.



Chapter 5. Spatial Branch-and-Bound algorithm with symbolic reformulation 126

implemented an sBB algorithm as an 
 
 ����� -compliant solver code, together with all its asso-

ciated sub-solvers as well as a convexifier. It is worth pointing out, however, that our current

sBB implementation is rather basic without many of the sophisticated implementation details

that accelerate the performance of such algorithms (e.g. good range-reduction techniques, im-

proved branching procedures etc.). Nevertheless, 
�
������ provides an open architecture within

which more sophisticated implementations may be embedded in the future.



Chapter 6

Concluding remarks

This thesis has considered several topics related to the global solution of nonconvex nonlinear

programming (NLP) problems. A major theme throughout our research has been the impor-

tance of the mathematical formulation of a given engineering optimization problem. The work

presented in Chapter 3 was initially motivated by an observation by Smith [114], page 270 that

the addition of a relatively small number of constraints to the material balances of a distilla-

tion column model could result in hugely improved computational performance of his spatial

branch-and-bound algorithm. Smith derived these constraints by multiplying linear mole frac-

tion normalization constraints by total flowrates; albeit redundant with respect to the original

column equations, they were not redundant with respect to the convex relaxation of these equa-

tions, and in fact produced a tightening of the latter.

Based on the above observation, we sought to generalize the approach to produce such con-

straints for general NLPs involving bilinear terms. In the event, we discovered that these con-

straints were not only a means of tightening the convex relaxation, but in fact allowed the exact

reformulation of the original NLP to replace a number of bilinear terms by linear constraints.

Thus, the resulting formulation is less nonlinear than the original, as well as having a tighter

convex relaxation.

Another important aspect of the work presented in Chapter 3 is the use of graph theoretical al-

gorithms for limiting the number of redundant constraints generated to those that are guaranteed

to produce an improved mathematical formulation. Smith’s empirical observation (mentioned

above) was that it was beneficial to multiply a linear constraint by a problem variable if this

did not introduce any new bilinear term. In this thesis, we showed that even multiplications



Chapter 6. Concluding remarks 128

which do introduce some new bilinear terms may be beneficial provided the number of such

terms is smaller than the number of constraints involved in these multiplications; and that graph

theoretical algorithms for the identification of dilations in bipartite graphs are ideally suited

for locating such situations even for very large problems. Overall, the proposed reformulation

techniques are much more selective in generating new constraints and variables than earlier

techniques such as RLT [111], which makes them more applicable to NLPs of non-trivial size.

A second major focus of the thesis has been the derivation of convex relaxations for mono-

mial terms of odd degree when the variable range includes zero. Whereas the idea of deriving

the convex/concave envelopes of piecewise convex and concave functions is geometrically quite

obvious and already present in the literature [80, 126], its mention was sporadic and its theoret-

ical analysis superficial. In Chapter 4, we have given an in-depth analysis of these envelopes,

derived tight linear relaxations, and compared these with other existing techniques. The results

of the latter comparison have been quite favourable. Overall, monomial terms of odd degree do

appear in many practical applications (albeit certainly not as frequently as other kinds of terms

such as bilinear products); we believe that the work presented in this thesis fills an important

gap in the handling of these terms by spatial branch-and-bound methods.

Finally, our work has considered the software implications and requirements of implement-

ing spatial branch-and-bound algorithms. Although these are often thought of and referred to

as “numerical” solution codes, in fact they pose many more demands in terms of the type and

amount of information that they need than, say, conventional local optimization codes. In partic-

ular, automatic reformulation techniques of the type discussed in this thesis require substantial

symbolic information, and so does the construction of convex relaxations. Some of these issues

were addressed by earlier workers such as Smith [114] and Adjiman et al. [4] who designed

stand-alone software systems for global optimization based on spatial branch-and-bound algo-

rithms. The 
�
������ system described in Chapter 5 takes a different approach where the aim

is to develop a generic software libraries comprising callable functions that can be embedded

within larger software systems in order to provide a global optimization capability.

The 
�
���� � system developed as part of the work leading to this thesis contains advanced

mechanisms for formulation of complex models (e.g. in terms of multidimensional variables

and constraints), as well as implementations of automatic reformulation and convexification

procedures. However, it includes only a rudimentary implementation of the actual spatial

branch-and-bound algorithm, without many of the sophisticated implementation details that

accelerate the performance of such algorithms. In view of this, it is interesting to note that the

numerical results reported in Section 3.5 indicate that, at least for the class of pooling and blend-



Chapter 6. Concluding remarks 129

ing problems considered there, the algorithm’s performance was better than that of most of the

algorithms reported in the literature; in fact, it was comparable to (albeit not quite as good as)

that of the best code, namely BARON [102] which employs good range-reduction techniques,

improved branching procedures and other advanced features. We believe that this is another

illustration of the importance of good mathematical formulation. Of course, automatic refor-

mulation techniques and advanced implementation features are largely complementary, and it

is to be expected that even better performance could be obtained by combining them in a single

code.



Bibliography

[1] N. Adhya, M. Tawarmalani, and N. Sahinidis. A Lagrangian approach to the pooling

problem. Industrial and Engineering Chemistry Research, 38:1956–1972, 1999.

[2] C. Adjiman. Global Optimization Techniques for Process Systems Engineering. PhD

thesis, Princeton University, June 1998.

[3] C. Adjiman, I. Androulakis, and C. Floudas. Global optimization of MINLP problems

in process synthesis and design. Computers & Chemical Engineering, 21:S445–S450,

1997.

[4] C. Adjiman, S. Dallwig, C. Floudas, and A. Neumaier. A global optimization method,

� BB, for general twice-differentiable constrained NLPs: I. Theoretical advances. Com-

puters & Chemical Engineering, 22:1137–1158, 1998.

[5] C. Adjiman, I. Androulakis, and C. Floudas. A global optimization method, � BB, for

general twice-differentiable constrained NLPs: II. Implementation and computational

results. Computers & Chemical Engineering, 22:1159–1179, 1998.

[6] C. Adjiman, I. Androulakis, C. Maranas, and C. Floudas. A global optimization method,

� BB, for process design. Computers & Chemical Engineering, 20:S419–S424, 1996.

[7] C. Adjiman and C. Floudas. Rigorous convex underestimators for general twice-

differentiable problems. Journal of Global Optimization, 9:23–40, 1996.

[8] C. Adjiman, C. Schweiger, and C. Floudas. Mixed-integer nonlinear optimization in

process synthesis. In D. Du and P. (Eds.) Pardalos, editors, Handbook of Combinatorial

Optimization, vol. I, volume 1, pages 1–76, Dordrecht, 1998. Kluwer Academic Publish-

ers.



Bibliography 131

[9] A. Aho, J. Hopcroft, and J. Ullman. Data Structures and Algorithms. Addison-Wesley,

Reading, MA, 1983.

[10] F. Al-Khayyal and J. Falk. Jointly constrained biconvex programming. Mathematics of

Operations Research, 8:273–286, 1983.

[11] F. Al-Khayyal and H. Sherali. On finitely terminating branch-and-bound algorithms

for some global optimization problems. SIAM Journal of Optimization, 10:1049–1057,

2000.

[12] R. Amarger, L. Biegler, and I. Grossmann. An automated modeling and reformulation

system for design optimization. Computers & Chemical Engineering, 16:623–636, 1992.

[13] I. Androulakis, C. Maranas, and C. Floudas. � BB: A global optimization method for

general constrained nonconvex problems. Journal of Global Optimization, 7:337–363,

1995.

[14] M. Bazaraa, H. Sherali, and C. Shetty. Nonlinear Programming: Theory and Algorithms.

Wiley, Chichester, second edition, 1993.

[15] E. Beale and J. Tomlin. Special facilities in a general mathematical programming system

for nonconvex problems using ordered sets of variables. In J. Laurence, editor, Pro-

ceedings of the Fifth International Conference on Operational Research, pages 447–454,

London, 1970. Tavistock Publications.

[16] J. Beasley. Heuristic algorithms for the unconstrained binary quadratic programming

problem. http://mscmga.ms.ic.ac.uk/jeb/bqp.pdf, 1998.

[17] A. Ben-Tal, G. Eiger, and V. Gershovitz. Global minimization by reducing the duality

gap. Mathematical Programming, 63:193–212, 1994.

[18] H. Benson. Concave minimization: Theory, applications and algorithms. In Horst and

Pardalos [57], pages 43–148.

[19] J. Bjorkqvist and T. Westerlund. Automated reformulation of disjunctive constraints in

MINLP optimization. Computers and Chemical Engineering, 23:S11–S14, 1999.

[20] I. Bomze. On standard quadratic optimization problems. Journal of Global Optimization,

13:369–387, 1998.

[21] I. Bomze, M. Budinich, P. Pardalos, and M. Pelillo. The maximum clique problem. In

Du and Pardalos [28], pages 1–74.



Bibliography 132

[22] A. Brook, D. Kendrick, and A. Meeraus. Gams, a user’s guide. ACM SIGNUM Newslet-

ter, 23:10–11, 1988.

[23] R. Chelouah and P. Siarry. Tabu search applied to global optimization. European Journal

of Operational Research, 123:256–270, 2000.

[24] K. Ciesielski. Set Theory for the Working Mathematician. Cambridge University Press,

Cambridge, 1997.

[25] A. Colorni, M. Dorigo, and V. Maniezzo. Distributed optimization by ant colonies. In

F. Varela and P. Bourgine, editors, Proceedings of the European Conference on Artificial

Life, pages 134–142, Amsterdam, 1991. ECAL, Paris, France, Elsevier.

[26] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties and Algorithms. Springer-Verlag,

Berlin, second edition, 1997.

[27] G. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton,

NJ, 1963.

[28] D. Du and P. Pardalos, editors. Handbook of Combinatorial Optimization, volume supp.

A. Kluwer Academic Publishers, Dordrecht, 1998.

[29] I. Duff. On algorithms for obtaining a maximum transversal. ACM Trans. Math. Soft-

ware, 7:315–330, 1981.

[30] Process Systems Enterprise. gPROMS v2.2 Introductory User Guide. Process Systems

Enterprise, Ltd., London, UK, 2003.

[31] T. Epperly. Global Optimization of Nonconvex Nonlinear Programs using Parallel

Branch and Bound. PhD thesis, University of Winsconsin – Madison, 1995.

[32] T. Epperly and E. Pistikopoulos. A reduced space branch and bound algorithm for global

optimization. Journal of Global Optimization, 11:287:311, 1997.

[33] E. Eskow and R. Schnabel. Mathematical modeling of a parallel global optimization

algorithm. Parallel Computing, 12:315–325, 1989.

[34] J. Falk and R. Soland. An algorithm for separable nonconvex programming problems.

Management Science, 15:550–569, 1969.

[35] A. Fiacco and G. McCormick. Nonlinear Programming: Sequential Unconstrained Min-

imization Techniques. Wiley, New York, 1968.



Bibliography 133

[36] A. Fischer. New constrained optimization reformulation of complementarity problems.

Journal of Optimization Theory and Applications, 99:481–507, 1998.

[37] R. Fischer. A new algorithm for generating space-filling curves. Software Practice and

Experience, 16:5–12, 1986.

[38] R. Fletcher. Practical Methods of Optimization. Wiley, Chichester, second edition, 1991.

[39] C. Floudas. Deterministic Global Optimization. Kluwer Academic Publishers, Dor-

drecht, 2000.

[40] L. Foulds, D. Haughland, and K. Jornsten. A bilinear approach to the pooling problem.

Optimization, 24:165–180, 1992.

[41] A. Frangioni. On a new class of bilevel programming problems and its use for reformu-

lating mixed-integer problems. European Journal of Operations Research, 82:615–646,

1995.

[42] R. Ge. A parallel global optimization algorithm for rational separable-factorable func-

tions. Applied Mathematics and Computation, 32:61–72, 1989.

[43] P. Gill. User’s Guide for SNOPT 5.3. Systems Optimization Laboratory, Department of

EESOR, Stanford University, California, 1999.

[44] B. Goertzel. Global optimisation with space-filling curves. Applied Mathematics Letters,

12:133–135, 1999.

[45] E. Goodaire and M. Parmenter. Discrete Mathematics with Graph Theory. Prentice-Hall,

London, 1998.

[46] I.E. Grossmann, editor. Global Optimization in Engineering Design. Kluwer Academic

Publishers, Dordrecht, 1996.

[47] K. Hägglöf, P. Lindberg, and L. Svensson. Computing global minima to polynomial

optimization problems using gröbner bases. Journal of Global Optimization, 7:115:125,

1995.

[48] E. Hansen. Global constrained optimization using interval analysis. In K. Nickel, editor,

Interval Mathematics 1980, pages 25–47, New York, 1980. Proceedings of the Interna-

tional Symposium, Freiburg, Academic Press.



Bibliography 134

[49] E. Hansen. Global Optimization Using Interval Analysis. Marcel Dekker, Inc., New

York, 1992.

[50] P. Hansen, B. Jaumard, and S. Lu. Analytical approach to global optimization. Comptes

Rendus de L Academie Des Sciences Serie I-mathematique, 306:29–32, 1988.

[51] F. Harary. Graph Theory. Addison-Wesley, Reading, MA, second edition, 1971.

[52] M. Hirafuji and S. Hagan. A global optimization algorithm based on the process of

evolution in complex biological systems. Computers and Electronics in Agriculture,

29:125–134, 2000.

[53] R. Horst. A general-class of branch-and-bound methods in global optimization with

some new approaches for concave minimization. Journal of Optimization Theory and

Applications, 51:271–291, 1986.

[54] R. Horst. Deterministic global optimization with partition sets whose feasibility is not

known: Application to concave minimization, reverse convex constraints, d.c. program-

ming and lipschitzian optimization. Journal of Optimization Theory and Applications,

58:11–37, 1988.

[55] R. Horst. On consistency of bounding operations in deterministic global optimization.

Journal of Optimization Theory and Applications, 61:143–146, 1989.

[56] R. Horst, J. Devries, and N. Thoai. On finding new vertices and redundant constraints in

cutting plane algorithms for global optimization. Operations Research Letters, 7:85–90,

1988.

[57] R. Horst and P. Pardalos, editors. Handbook of Global Optimization, volume 1. Kluwer

Academic Publishers, Dordrecht, 1995.

[58] R. Horst and H. Tuy. Global Optimization: Deterministic Approaches. Springer-Verlag,

Berlin, first edition, 1990.

[59] R. Horst and H. Tuy. Global Optimization: Deterministic Approaches. Springer-Verlag,

Berlin, third edition, 1996.

[60] ILOG. ILOG CPLEX 8.0 User’s Manual. ILOG S.A., Gentilly, France, 2002.

[61] P. Kesavan and P. Barton. Generalized branch-and-cut framework for mixed-integer non-

linear optimization problems. Computers and Chemical Engineering, 24:1361–1366,

2000.



Bibliography 135

[62] M. Kline. Mathematical Thought from Ancient to Modern Times. Oxford University

Press, Oxford, 1972.

[63] G. Kocis and I. Grossmann. Global optimization of nonconvex mixed-integer nonlinear-

programming (MINLP) problems in process synthesis. Industrial & Engineering Chem-

istry Research, 27:1407–1421, 1988.

[64] B. Korte and J. Vygen. Combinatorial Optimization, Theory and Algorithms. Springer-

Verlag, Berlin, 2000.

[65] K. Kunen. Set Theory. North Holland, Amsterdam, 1980.

[66] J. Lagrange. Théorie des fonctions analytiques. Impr. de la République, Paris, 1797.

[67] B. Lamar. A method for converting a class of univariate functions into d.c. functions.

Journal of Global Optimization, 15:55:71, 1999.

[68] Y. Lee and B. Berne. Global optimization: Quantum thermal annealing with path integral

monte carlo. Journal of Physical Chemistry A, 104:86–95, 2000.

[69] D. Li and X. Sun. Local convexification of the lagrangian function in nonconvex opti-

mization. Journal of Optimization Theory and Applications, 104:109–120, 2000.

[70] D. Li and X. Sun. Convexification and existence of a saddle point in a � th-power refor-

mulation for nonconvex constrained optimization. Nonlinear Analysis, 47:5611–5622,

2001.

[71] L. Liberti. Performance comparison of function evaluation methods. Progress in Com-

puter Science Research, accepted.

[72] L. Liberti and C. Pantelides. Convex envelopes of monomials of odd degree. Journal of

Global Optimization, 25:157–168, 2003.

[73] L. Liberti, P. Tsiakis, B. Keeping, and C. Pantelides. 
�
���� � . Centre for Process Systems

Engineering, Chemical Engineering Department, Imperial College, London, UK, 1.24

edition, 2001.

[74] R. Luus and T. Jaakola. Optimization by direct search and systematic reduction of the

size of the search region. AIChE Journal, 19:760–766, 1973.

[75] C. Maranas and C. Floudas. Finding all solutions to nonlinearly constrained systems of

equations. Journal of Global Optimization, 7:143–182, 1995.



Bibliography 136

[76] H. Margenau and G. Murphy. The Mathematics of Physics and Chemistry. Van Nostrand,

Princeton, NJ, second edition, 1956.

[77] S. Masri, G. Bekey, and F. Safford. A global optimization algorithm using adaptive

random search. Applied Mathematics and Computation, 7:353–375, 1980.

[78] M. Mathur, S. Karale, S. Priye, V.K. Jayaraman, and B. Kulkarni. Ant colony approach

to continuous function optimization. Industrial and Engineering Chemistry Research,

39:3814–3822, 2000.

[79] G. McCormick. Converting general nonlinear programming problems to separable non-

linear programming problems. Technical Paper T-267, Program in Logistics, The George

Washington University, Washington D.C., 1972.

[80] G. McCormick. Computability of global solutions to factorable nonconvex programs:

Part I — Convex underestimating problems. Mathematical Programming, 10:146–175,

1976.

[81] C. Meewella and D. Mayne. An algorithm for global optimization of lipschitz continuous

functions. Journal of Optimization Theory and Applications, 57:307–322, 1988.

[82] C. Meewella and D. Mayne. Efficient domain partitioning algorithms for global opti-

mization of rational and lipschitz continuous functions. Journal of Optimization Theory

and Applications, 61:247–270, 1989.

[83] W. Murray and K. Ng. Algorithms for global optimization and discrete problems based

on methods for local optimization. In Pardalos and Romeijn [91], pages 87–113.

[84] A. O’Grady, I. Bogle, and E. Fraga. Interval analysis in automated design for bounded

solutions. Chemicke Zvesti, 55:376–381, 2001.

[85] J.M. Ortega and W.C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several

Variables. Academic Press, New York, 1970.

[86] J. Pang. Complementarity problems. In Horst and Pardalos [57], pages 271–338.

[87] C. Pantelides. The consistent initialization of differential-algebraic systems. SIAM J. Sci.

Stat. Comput., 9:213–231, 1988.

[88] C. Pantelides, L. Liberti, P. Tsiakis, and T. Crombie. Mixed integer linear/nonlinear

programming interface specification. Global Cape-Open Deliverable WP2.3-04, 2002.



Bibliography 137

[89] P. Pardalos. Enumerative techniques for solving some nonconvex global optimization

problems. Or Spektrum, 10:29–35, 1988.

[90] P. Pardalos. Parallel search algorithms in global optimization. Applied Mathematics and

Computation, 29:219–229, 1989.

[91] P. Pardalos and H. Romeijn, editors. Handbook of Global Optimization, volume 2.

Kluwer Academic Publishers, Dordrecht, 2002.

[92] P. Pardalos and J. Rosen. Constrained Global Optimization: Algorithms and Applica-

tions. Springer-Verlag, Berlin, 1987.

[93] P. Pardalos and G. Schnitger. Checking local optimality in constrained quadratic pro-

gramming is np-hard. Operations Research Letters, 7:33–35, 1988.

[94] J. Pinter. Global optimization on convex sets. Or Spektrum, 8:197–202, 1986.

[95] R. Pörn, I. Harjunkoski, and T. Westerlund. Convexification of different classes of non-

convex MINLP problems. Computers and Chemical Engineering, 23:439–448, 1999.

[96] S. Rajasekaran. On simulated annealing and nested annealing. Journal of Global Opti-

mization, 16:43–56, 2000.

[97] H. Ratschek and J. Rokne. Efficiency of a global optimization algorithm. Siam Journal

On Numerical Analysis, 24:1191–1201, 1987.

[98] R. Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ, 1970.

[99] H. Ryoo and N. Sahinidis. Global optimization of nonconvex NLPs and MINLPs with

applications in process design. Computers & Chemical Engineering, 19:551–566, 1995.

[100] H. Ryoo and N. Sahinidis. A branch-and-reduce approach to global optimization. Journal

of Global Optimization, 8:107–138, 1996.

[101] H. Ryoo and N. Sahinidis. Global optimization of multiplicative programs. Journal of

Global Optimization, 26:387–418, 2003.

[102] N. Sahinidis. Baron: Branch and reduce optimization navigator: User’s manual, version

4.0. http://archimedes.scs.uiuc.edu/baron/manuse.pdf, 1999.

[103] P. Salus, editor. Object-Oriented Programming Languages. MacMillan, Indianapolis,

1998.



Bibliography 138

[104] F. Schoen. Two-phase methods for global optimization. In Pardalos and Romeijn [91],

pages 151–177.

[105] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and G. Dueck. Record breaking opti-

mization results using the ruin and recreate principle. Journal of Computational Physics,

159:139–171, 2000.

[106] J. Shectman and N. Sahinidis. A finite algorithm for global minimization of separable

concave programs. Journal of Global Optimization, 12:1–36, 1998.

[107] H. Sherali. Global optimization of nonconvex polynomial programming problems having

rational exponents. Journal of Global Optimization, 12:267–283, 1998.

[108] H. Sherali. Tight relaxations for nonconvex optimization problems using the

reformulation-linearization/convexification technique (RLT). In Pardalos and Romeijn

[91], pages 1–63.

[109] H. Sherali and W. Adams. A tight linearization and an algorithm for 0-1 quadratic pro-

gramming problems. Management Science, 32:1274–1290, 1986.

[110] H. Sherali and W. Adams. A Reformulation-Linearization Technique for Solving Discrete

and Continuous Nonconvex Problems. Kluwer Academic Publishers, Dodrecht, 1999.

[111] H. Sherali and A. Alameddine. A new reformulation-linearization technique for bilinear

programming problems. Journal of Global Optimization, 2:379–410, 1992.

[112] H. Sherali, J. Smith, and W. Adams. Reduced first-level representations via the

reformulation-linearization technique: Results, counterexamples, and computations.

Discrete Applied Mathematics, 101:247–267, 2000.

[113] H. Sherali and H. Wang. Global optimization of nonconvex factorable programming

problems. Mathematical Programming, A89:459–478, 2001.

[114] E. Smith. On the Optimal Design of Continuous Processes. PhD thesis, Imperial College

of Science, Technology and Medicine, University of London, October 1996.

[115] E. Smith and C. Pantelides. Global optimisation of nonconvex MINLPs. Computers and

Chemical Engineering, 21:S791–S796, 1997.

[116] E. Smith and C. Pantelides. A symbolic reformulation/spatial branch-and-bound algo-

rithm for the global optimisation of nonconvex MINLPs. Computers and Chemical En-

gineering, 23:457–478, 1999.



Bibliography 139

[117] R. Soland. An algorithm for separable nonconvex programming problems ii: Nonconvex

constraints. Management Science, 17:759–773, 1971.

[118] I. Stewart. Galois Theory. Chapman & Hall, London, second edition, 1989.

[119] R. Storn and K. Price. Differential evolution – a simple and efficient heuristic for global

optimization over continuous spaces. Journal of Global Optimization, 11:341–359, 1997.

[120] A. Strekalovsky. On global optimality conditions for d.c. programming problems. Tech-

nical Paper, Irkutsk State University, 1997.

[121] A. Strekalovsky. Extremal problems with d.c. constraints. Computational Mathematics

and Mathematical Physics, 41:1742–1751, 2001.

[122] R. Strongin. On the convergence of an algorithm for finding a global extremum. Engi-

neering Cybernetics, 11:549–555, 1973.

[123] R. Strongin. Algorithms for multi-extremal mathematical programming porblems em-

ploying the set of joint space-filling curves. Journal of Global Optimization, 2:357–378,

1992.

[124] R. Strongin. Global Optimization with Non-Convex Constraints. Kluwer Academic

Publishers, Dodrecht, 2000.

[125] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, MA, third

edition, 1999.

[126] M. Tawarmalani and N. Sahinidis. Global optimization of mixed integer nonlinear pro-

grams: A theoretical and computational study. Mathematical Programming (to appear),

http://archimedes.scs.uiuc.edu/papers/comp.pdf, 1999.

[127] M. Tawarmalani and N. Sahinidis. Semidefinite relaxations of fractional programming

via novel techniques for constructing convex envelopes of nonlinear functions. Journal

of Global Optimization, 20:137–158, 2001.

[128] M. Tawarmalani and N. Sahinidis. Convex extensions and envelopes of semi-continuous

functions. Mathematical Programming, 93:247–263, 2002.

[129] M. Tawarmalani and N. Sahinidis. Convexification and global optimization of the pooling

problem. Mathematical Programming (submitted), 2002.



Bibliography 140

[130] M. Tawarmalani and N. Sahinidis. Exact algorithms for global optimization of mixed-

integer nonlinear programs. In Pardalos and Romeijn [91], pages 1–63.

[131] A. Törn and A. Z̆ilinskas. Global Optimization. Springer-Verlag, Berlin, 1989.

[132] H. Tuy. D.c. optimization: Theory, methods and algorithms. In Horst and Pardalos [57],

pages 149–216.

[133] H. Tuy. Convex Analysis and Global Optimization. Kluwer Academic Publishers, Do-

drecht, 1998.

[134] H. Tuy and R. Horst. Convergence and restart in branch-and-bound algorithms for

global optimization: Application to concave minimization and d.c. optimization prob-

lems. Mathematical Programming, 41:161–183, 1988.

[135] A. Z̆ilinskas. Axiomatic characterization of a global optimization algorithm and investi-

gation of its search strategy. Operations Research Letters, 4:35–39, 1985.

[136] J. Z̆ilinskas and I. Bogle. Evaluation ranges of functions using balanced random interval

arithmetic. Informatica, 14:403–416, 2003.

[137] R. Vaidyanathan and M. El-Halwagi. Global optimization of nonconvex MINLPs by

interval analysis. In Grossmann [46], pages 175–193.

[138] V. Visweswaran and C. Floudas. New properties and computational improvement of the

gop algorithm for problems with quadratic objective functions and constraints. Journal

of Global Optimization, 3:439–462, 1993.

[139] V. Visweswaran and C. Floudas. New formulations and branching strategies for the gop

algorithm. In Grossmann [46].

[140] B. Wah and T. Wang. Efficient and adaptive lagrange-multiplier methods for nonlinear

continuous global optimization. Journal of Global Optimization, 14:1:25, 1999.

[141] X. Wang and T. Change. A multivariate global optimization using linear bounding func-

tions. Journal of Global Optimization, 12:383–404, 1998.

[142] T. Westerlund and R. Pörn. Solving pseudo-convex mixed integer optimization problems

by cutting plane techniques. Optimization and Engineering, 3:235–280, 2002.



Bibliography 141

[143] T. Westerlund, H. Skrifvars, I. Harjunkoski, and R. Pörn. An extended cutting plane

method for a class of non-convex MINLP problems. Computers & Chemical Engineer-

ing, 22:357–365, 1998.

[144] L. Wolsey. Integer Programming. Wiley, New York, 1998.

[145] Y. Yao. Dynamic tunnelling algorithm for global optimization. IEEE Transactions On

Systems Man and Cybernetics, 19:1222–1230, 1989.

[146] J. Zamora and I. Grossmann. A branch and contract algorithm for problems with con-

cave univariate, bilinear and linear fractional terms. Journal of Global Optimization,

14:217:249, 1999.



Appendix A

����� � � Reference Manual

A.1 Introduction

���
	 ��
 is a library of C++ callable procedures for the definition, manipulation and solution of large, sparse mixed
integer linear and nonlinear programming (MINLP) problems. In particular, ���
	 ��
 :� facilitates the definition of complex sets of constraints, reducing the required programming effort to a

minimum;� allows its client programs to create and manipulate simultaneously more than one MINLP;� provides a common interface to diverse MINLP solvers to be used without any changes to client programs.

MINLPs are optimization problems whose objective function and constraints can, in general, contain nonlinear
terms. The variables appearing in the objective function and constraints are generally restricted to lie between
specified lower and upper bounds. Furthermore, some of these variables may be restricted to integer values only.
The aim of the optimization is to determine values of the variables that minimize or maximize the objective function
while satisfying the constraints and all other restrictions imposed on them.

A simple mathematical description of an MINLP can be written as:

[Flat MINLP]: �	��

���
��
 ��������
 (A.1)� ��� � 
 ����� 
 � 	 (A.2)



� � 
 ��

� (A.3)

 ��� � !#"$�&%('*) � �,+�+ �.-0/ (A.4)

where 
�� 
 � � 
 � ��� �21 � , 	 �3104 , �65 1 ��7 104 ,

� 5 1 �87 1 and ��5 1 ��7 104 . Thus, the variables 
 are
characterised by an index " � � �9+:+ �.- ; all constraints are expressed as inequalities of the form �8; and are indexed
over the discrete domain � �,+�+ �.< .

The above general formulation also embeds three special cases:� Mixed Integer Linear Programming (MILP) Problems.
In this case,

�
��
 � �8; and � ��
 � �8; .� Nonlinear Programming (NLP) Problems.

In this case, % �>= .� Linear Programming (LP) Problems.
In this case,

�
��
 � �8; , � ��
 � �?; and % �*= .



Appendix A.
�
�������

Reference Manual 143

The ���
	���
 software design aims to support the definition and solution of all these special cases, with minimal
overhead being incurred because of the generality of the overall software.

Albeit quite general, the above MINLP form is not necessarily easy to construct and/or manipulate. A major
reason for this is that the variables and constraints are maintained as unstructured “flat” lists or sets which may
contain thousands of elements. On the other hand, most mathematical formulations of practical problems in terms
of MINLPs are expressed in terms of a relatively small number of distinct sets of variables and constraints.

For example, in a typical network flow problem, a commonly occurring set of variables would be the flow of
material from one node in the network to another, while a typical set of constraints would be the conservation of
material arriving at, and leaving any node " in the network.

Of course, each such set of variables (or constraints) may have multiple elements, each corresponding to an
individual variable (or constraint). An indexed set representation is usually employed for notational purposes. For
instance, � ��� could represent the flow from node " to node 	 , while 
 
 could represent the set of conservation
constraints: �

�
�� 
 � � 
 �
�
���� 


� 
 � � !

������

�
In view of the above discussion, ���
	 ��
 allows types of variables and constraints to be defined in a structured

fashion as sets of an arbitrary number of dimensions.

A.2 Fundamental concepts

A.2.1 Object classes

���
	 ��
 is designed as object-orientated software recognising two major classes of objects, each with its own
interface:

1. The ops object
An ops object is a software representation of a MINLP problem. The corresponding interface, discussed
in detail in section A.4, provides the following functionality:� It allows MINLP objects to be constructed and modified in a structured manner.� It allows access to all information pertaining to the MINLP.� It provides the equivalent simple [Flat MINLP] form of the structured MINLP (see section A.1).

2. The opssystem object
This is formed by the combination of an MINLP object (see above) with a code (“solver”) for the numerical
solution of MINLP problems. The corresponding interface, discussed in detail in section A.5, provides the
following functionality:� It allows the behaviour of the solver to be configured via the specification of any algorithmic param-

eters that the solver may support.� It permits the solution of the MINLP.

A.2.2 Multidimensional sets in ���
� ���

As detailed later in the document, an MINLP is characterised by a number of distinct multidimensional sets of
variables and constraints. We note that:� A multidimensional set is an ordered set whose elements can be accessed through a list of indices.� The dimensionality of a multidimensional set is given by the length of the index lists (i.e. the number of

dimensions) and the range of each index in the list.



Appendix A.
�
�������

Reference Manual 144

� The dimensionality size of a multidimensional set is the list of its dimension sizes. More precisely, a
multidimensional set having - dimensions, with index " � ranging from "��� to " �� for each 	 between 1 and- , has dimensionality size: � " �� � " � � � � �,+9+,+ � " �� � " �� � � � +� A scalar has dimensionality size � � � .

For instance, consider a 3-dimensional variable set
� � " � 	 � � � , with the first dimension varying from " � ; to" � � ; , the second dimension from 	 � � to 	 ��� , and the third dimension from � � � � to � � � � . We can

view this as a multidimensional set, the dimensionality of which is characterised by the number of dimensions (3,
in this case) and the ranges of each dimension � ; 5 � ;�� � 5���� � � 5 � � . The dimensionality size is the list � � � �	��� � �� � � ; � ; � � �	� � � � � � � � � � � � � � � . The total number of elements of this set is 165 � � � ��
 � 
 � � .
���
	���
 makes extensive use of the concept of slices as a convenient way of referring to subsets of multidi-

mensional sets. In general:� A slice � 
 � 5�
 ��� of an � -dimensional set is defined by a pair of � -dimensional integer vectors 
 �� � " �
� �9+:+ �	� and 
 �� � " � � �9+:+ �	� where 
 �� ��
 �� .� The element at position � � � � � � �9+:+ � ��� � of the set belongs to the slice � 
�� 5�
 � � if and only if:


 �� � � � ��
 �� � !(" � � �,+�+ ��� (A.5)

Here are some examples:� The slice � � � � 5 ����� � of a 1-dimensional set
�

denotes the elements
� � � " � � � � � � �	� .� The slice � � � � � � 5 ����� � � � of a 2-dimensional set

�
denotes the elements

� � � � " � � � � � � �	���
	 � � � � .� The slice � � � � � � � ��5 ����� � � � � � of a 3-dimensional set
�

denotes the elements
� ��� 
 � " � � � � � � �	��� � � � � � .� The slice � � � � � � � � � ��5 � � � � � � � � � � of a 4-dimensional set

�
denotes the single element

� � �	��� .

A.2.3 Constants, variables, constraints and objective function

Most optimization problems involve arithmetic constants. In ���
	���
 , these can be organized in one or more
multidimensional sets. A constant set is characterised by the following information:� its name;� the dimensionality of the set;� the current value of each element of the set;

The variables to be determined by the optimization are also organized in one or more multidimensional sets. A
variable set is characterised by the following information:� its name;� the type of all variables in this set (continuous or integer);� the dimensionality of the set ;� the current value of each element of the set;� the upper and lower bounds of the value of each element of the set.



Appendix A.
�
�������

Reference Manual 145

Similarly, the constraints in the optimization problem are also organized in one or more multidimensional sets.

A constraint set is characterised by the following information:� its name;� the lower and upper bound of the constraint;� the dimensionality of the set;� the variables occurring in the linear parts of these constraints and the corresponding coefficients (see note
1 in section A.2.5 below);� the expression (see below) defining the nonlinear part of these constraints.

Most of the information characterising a set of constants, variables or constraints is common to all elements of the
set. The only exceptions to this rule are:� the values of elements of constant sets may differ from element to element;� the values and bounds of elements of variable sets may differ from element to element;� the constraint bounds of the constraint sets may differ from element to element.

Each MINLP object has a unique objective function. This is characterised by:� the name of the objective function� the type of the problem (minimization or maximization)� the variables occurring in the linear part of the objective function and the corresponding coefficients (see
note 1 in section A.2.5 below);� the expression defining the nonlinear part of the objective function.

A.2.4 Nonlinear expressions and constants

A nonlinear expression is, in general, built hierarchically from the algebraic combination of variables, constants
(see below) and other expressions by using operators and functions. Expressions are characterised by the following
information:� their name;� their dimensionality size;� whether they represent variables, constants or operators.

An expression represents a valid algebraic expression. The operators and functions that can be used to combine
variables, constants and other expressions are given in the following table:



Appendix A.
�
�������

Reference Manual 146

Name Meaning
Binary Arithmetic Operators

sum addition
difference subtraction
product multiplication
ratio division
power exponentiation

Unary Arithmetic Operators
minus unary minus

Unary Transcendental Functions
log natural logarithm
exp exponential
sin sine
cos cosine
tan tangent
cot cotangent
sinh hyperbolic sine
cosh hyperbolic cosine
tanh hyperbolic tangent
coth hyperbolic cotangent
sqrt square root

In general, expressions are multidimensional sets with the special property that the range of each dimension starts
from 1. The dimensionality size of an expression can be determined from the dimensionality sizes of its variables,
constants and subexpressions and the type of its constituent operators, according to the rules given in the following
tables:

Binary Arithmetic Operators
dimensionality dimensionality dimensionality
size of 1st operand size of 2nd operand size of result��
 � �,+9+9+ �	
 � � ��
 � �,+9+9+ �	
 � � ��
 � �9+9+,+ �	
 � �� � � ��
 � �,+9+9+ �	
 � � ��
 � �9+9+,+ �	
 � ���
 � �,+9+9+ �	
 � � � � � ��
 � �9+9+,+ �	
 � �otherwise illegal

Unary Operators and Functions
dimensionality dimensionality
size of operand size of result��
 � �,+9+9+ �	
 � � ��
 � �9+9+,+ � 
 � �

A.2.5 Notes

1. Variable occurrences in linear parts of constraints
An important part of the characterisation of the linear part of a constraint is the information on which

variables actually occur in it, and the coefficients that multiply each such variable.
In ���
	���
 , such occurrences are specified as a variable slice occurring in a constraint slice with a given
coefficient. This simply means that:

Every element of the variable slice occurs in each element of the
constraint slice, always with the same coefficient.

Of course, the client constructing an MINLP object using the facilities provided by ���
	 ��
 can add any
number of such occurrences. Moreover, if any such specification involves an element of a variable vector
that already appears1 in one or more of the specified constraints, the later specification overrides the earlier
one.

1as a result of earlier specifications



Appendix A.
�
�������

Reference Manual 147

2. Variable occurrences in linear part of objective function
An important part of the characterisation of the linear part of the objective function is the information on

which variables actually occur in it, and the coefficients that multiply each such variable.
In ���
	���
 , such occurrences are specified as a variable slice occurring in the objective function with a
given coefficient. This simply means that:

Every element of the variable slice occurs in the objective function always with the same coefficient.

Of course, the client constructing an MINLP object using the facilities provided by ���
	 ��
 can add any
number of such occurrences. Moreover, if any such specification involves an element of a variable vector
that already appears2 in the objective function, the later specification overrides all earlier ones.

3. Nonlinear expression occurrences in constraints
An important part of the characterisation of a constraint is its nonlinear part. In ���
	���
 , this can be

specified by assigning one or more expressions to different slices of the constraint. Each expression must
either be a scalar or its dimensionality size must match that of the constraint slice to which it is assigned, in
which case each element of the slice is set the corresponding the corresponding element of the expression.
Note that, unlike linear variable occurrences, expression elements do not accumulate. If a new expression
is assigned to a constraint element which has already been assigned an expression, the later assignment
overrides the earlier one.

4. Nonlinear expression occurrences in objective function
An important part of the characterisation of the objective function is its nonlinear part. In ���
	���
 , this is

specified as a (scalar) expression occurring in the objective function.
Note that, unlike linear variable occurrences, expression elements do not accumulate. if a new expression
is assigned to an objective function which has already been assigned an expression, the later assignment
overrides the earlier one.

A.3 General software issues

A.3.1 Software constants

���
	 ��
 defines two constants which should primarily be used for the specification of lower and upper bounds of
variables, as well as constraint right hand side constants. These are:� ooOPSPlusInfinity

Setting the upper bound of a variable to PlusInfinity implies that this variable is effectively unbounded
from above.

Setting the upper bound of an inequality constraint to PlusInfinity is the standard way to represent an
inequality of the form � ��
 � ����� .� ooOPSMinusInfinity
Setting the lower bound of a variable to MinusInfinity implies that this variable is effectively un-
bounded from below.

Setting the lower bound of an inequality constraint to MinusInfinity is the standard way to represent
an inequality of the form ����
 � ��� � .

A.3.2 The si, sd and li Argument Types and the IntSeq Auxiliary
Function

In order to describe the arguments to the various methods of its object classes, ���
	���
 introduces the following
C++ type definition:

2as a result of earlier specifications



Appendix A.
�
�������

Reference Manual 148

� si: a sequence of integers� sd: a sequence of doubles� li: a list of integers

The precise implementation of this type is irrelevant as ���
	���
 also provides an auxiliary function for its con-
struction. In particular, the IntSeq function takes a list of any number of integers and returns a vector of type
si.

For example, the C++ code segment:

si* SetSize = IntSeq (3,7,4) ;

creates a sequence called SetSize of three integers (3, 7 and 4). This may then, for instance, be passed as an
input argument to a method to create a new 3-dimensional variable set, with the lengths of the three dimensions
being specified in SetSize.

A.4 The MINLP object class

A.4.1 MINLP instantiation: the NewMINLP function

Declaration: ops* NewMINLP()

Function: Creates a new empty MINLP.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Specified On Entry
return value ops* the MINLP object

Notes: None

Example of usage:

The following creates a new MINLP called NetOpt :

ops* NetOpt = NewMINLP() ;

A.4.2 MINLP construction methods

A.4.2.1 Method NewContinuousVariable

Declaration: void NewContinuousVariable(string vname, si* dimLB, si* dimUB, double
LB, double UB, double value)

Function: Creates a new set of continuous variables with given name, domain, bounds and value.

Arguments to be specified by the client:



Appendix A.
�
�������

Reference Manual 149

Argument Type Specified On Entry
vname string name of variable set to be created
dimLB si* lower bounds of the variable set dimensions
dimUB si* upper bounds of the variable set dimensions
LB double lower bound
UB double upper bound

value double value

Arguments returned to client: None

Notes:� The specified name must be unique among all variables (continuous or integer) in the MINLP as it will be
used to identify the variable in all future communications with the MINLP object.� In general, a variable is represented by a multidimensional set (cf. section A.2.2). The arguments dimLB
and dimUB are sequences of integers, representing respectively the lower and upper bounds of the domains
of the individual dimensions. In the case of the example of set

�
mentioned in section A.2.2, these two

sequences would be (0, 1, -1) and (10, 5, 1) respectively.� The length of the above integer sequences must be equal to each other and implicitly determine the number
of dimensions of the variable.� Scalar variables should be specified as 1-dimensional sets of size 1.� The index of the individual elements for each dimension ranges from the corresponding element of dimLB
to the corresponding element of dimUB.� The specified lower bound, upper bound and value must satisfy:

� � � � � ����� ��� �� All elements of the variable set being created are given the same lower and upper bounds as well as the
same value. However, these quantities may subsequently be changed for individual elements or slices of
the set (see sections A.4.3.1 and A.4.3.2).

Example of usage:

The following creates a 2-dimensional continuous variable called MaterialFlow, with individual elements
MaterialFlow � " �
	 � � " �?;��,+�+ � � � 	 � � �,+�+ � � within an existing ops object called NetOpt. All elements of the
new variable are initialised with a lower bound of 0.0, an upper bound of 100.0 and a current value of 1.0.

NetOpt->NewContinuousVariable("MaterialFlow", IntSeq(0,1),
IntSeq(4,6), 0.0, 100.0, 1.0);

A.4.2.2 Method NewIntegerVariable

Declaration: void NewIntegerVariable(string vname, si* dimLB,
si* dimUB, int LB, int UB, int value)

Function: Creates a new set of integer variables with given name, size, bounds and value.

Arguments to be specified by the client:

Argument Type Specified On Entry
vname string name of variable set to be created
dimLB si* lower bounds of the variable set dimensions
dimUB si* upper bounds of the variable set dimensions
LB int lower bound
UB int upper bound

value int value



Appendix A.
�
�������

Reference Manual 150

Arguments returned to client: None

Notes:� The specified name must be unique among all variables (continuous or integer) in the MINLP as it will be
used to identify the variable in all future communications with the MINLP object.� In general, a variable is represented by a multidimensional set (cf. section A.2.2). The arguments dimLB
and dimUB are sequences of integers, representing respectively the lower and upper bounds of the domains
of the individual dimensions. In the case of the example of set

�
mentioned in section A.2.2, these two

sequences would be (0, 1, -1) and (10, 5, 1) respectively.� The length of the above integer sequences must be equal to each other and implicitly determine the number
of dimensions of the variable.� Scalar variables should be specified as 1-dimensional sets of size 1.� The index of the individual elements for each dimension ranges from the corresponding element of dimLB
to the corresponding element of dimUB.� The specified lower and upper bounds ,and value must satisfy:

� � � � � ����� ��� �� All elements of the variable set being created are given the same lower and upper bounds as well as the
same value. However, these quantities may subsequently be changed for individual elements or slices of
the set (see sections A.4.3.1 and A.4.3.2).

Example of usage:

The following creates a 1-dimensional integer (binary) variable called PlantExists of length 3 with individual
elements PlantExists � " � � " � � �9+:+ � � within an existing ops object called NetOpt. All elements of the new
variable are initialised with a lower bound of 0, an upper bound of 1 and a current value of 0.

NetOpt->NewIntegerVariable("PlantExists", IntSeq(1), IntSeq(3),
0, 1, 0);

A.4.2.3 Method NewConstraint

Declaration: void NewConstraint(string cname, si* dimLB,
si* dimUB, double LB, double UB)

Function: Creates a new set of constraints with given name, size, type and bounds.

Arguments to be specified by the client:

Argument Type Specified On Entry
cname string name of constraint set to be created
dimLB si* lower bounds of the constraint set dimensions
dimUB si* upper bounds of the constraint set dimensions
LB double lower bound
UB double upper bound

Arguments returned to client: None

Notes:� The specified name must be unique among all constraints in the MINLP as it will be used to identify the
constraint in all future communications with the MINLP object.



Appendix A.
�
�������

Reference Manual 151

� In general, a constraint is represented by a multidimensional set (cf. note A.2.2 in section A.2.5). The
arguments dimLB and dimUB are sequences of integers, representing respectively the lower and upper
bounds of the domains of the individual dimensions. Their length must be equal and determine the number
of dimensions of the constraint set.� Scalar constraints should be specified as 1-dimensional sets of size 1.� The index of the individual elements for each dimension ranges from the corresponding element of dimLB
to the corresponding element of dimUB.� All elements of the constraint set being created are assigned lower and upper bounds. However, these may
subsequently be changed (see section A.4.3.3).� Initially, the constraint does not contain any variables occurring linearly in it. It is also assigned a null
nonlinear part.

Example of usage:

Creates a new constraint UniqueAllocationwith bounds fixed at 1.

NetOpt->NewConstraint("UniqueAllocation", IntSeq(1), IntSeq(1),
1.0, 1.0);

A.4.2.4 AddLinearVariableSliceToConstraintSlice

Declaration: void AddLinearVariableSliceToConstraintSlice(string vname, si* vdimLB.
si* vdimUB, string cname, si* cdimLB,
si* cdimUB, double coefficient)

Function: Adds a linear occurrence of every element of a specified variable slice to each element of a specified
constraint slice, always with the specified coefficient.

Arguments to be specified by the client:

Argument Type Specified On Entry
vname string variable set, elements of which

are to be added
vdimLB si* lower bounds of the variable set slice

to be added to constraints
vdimUB si* upper bounds of the variable set slice

to be added to constraints
cname string name of constraint set, elements of which

are to receive the new variable occurrences
cdimLB si* lower bounds of the constraint set slice

to receive variable occurrences
cdimUB si* upper bounds of the constraint set slice

to receive variable occurrences
coefficient double coefficient of variables in the constraints

Arguments returned to client: None

Notes:� The specified variable set must have already been created using the NewContinuousVariable or
NewIntegerVariablemethods (see sections A.4.2.1 and A.4.2.2 respectively).� The specified constraint set must have already been created using the NewConstraint method (see
section A.4.2.3).� If an element of the variable slice has already been declared to occur in an element of constraint slice via
an earlier invocation of this method, then the current specification supersedes the earlier one.



Appendix A.
�
�������

Reference Manual 152

� A value of 0.0 for the specified coefficient has the effect of removing an existing occurrence of a
variable in a constraint.

Examples of usage:

The following creates a new inequality constraint called SourceFlowLimit within an existing ops object
called NetOpt for each of the 5 source nodes in a network with a right hand side of 450. It then adds to the
constraint for each node all the elements of the corresponding row of the variable MaterialFlow (cf. example
in section A.4.2.1) with a coefficient of 1.

NetOpt->NewConstraint ("SourceFlowLimit",
IntSeq(0), IntSeq(4), ’<’, 450.0);

for (int i=0; i<=4; i++)
NetOpt->AddLinearVariableSliceToConstraintSlice(
"MaterialFlow", IntSeq(i,1), IntSeq(i,6),
"SourceFlowLimit", IntSeq(i), IntSeq(i), 1.0);

The following adds an occurrence of all elements of the variable PlantExists (cf. example in section
A.4.2.2) to the scalar constraint UniqueAllocation (cf. example in section A.4.2.3) within an existing ops
object called NetOpt.

NetOpt->AddLinearVariableSliceToConstraintSlice
("PlantExists", IntSeq(1), IntSeq(3),
"UniqueAllocation", IntSeq(1), IntSeq(3), 1.0);

A.4.2.5 Method NewConstant

Declaration: void NewConstant(string kname, si* kdimLB,
si* kdimUB, double value)

Function: Creates a new constant set of specified dimensionality, each element of which is initialized to the speci-
fied value.

Arguments to be specified by the client:

Argument Type Specified On Entry
kname string name of the constant set/slice being created
kdimLB si* lower bounds of constant set/slice
kdimUB si* upper bounds of constant set/slice
value value initial value

Arguments returned to client: None

Notes:� None

Examples of usage:

The following code creates a constant called Const1 within an existing ops object called NetOpt, consisting
of a three-dimensional vector whose components are all 1.

NetOpt->NewConstant("Const1", IntSeq(1), IntSeq(3), 1);



Appendix A.
�
�������

Reference Manual 153

A.4.2.6 Method NewConstantExpression

Declaration: void NewConstantExpression(string ename, string
kname, si* kdimLB, si* kdimUB)

Function: Creates a new expression consisting of a constant set or constant slice.

Arguments to be specified by the client:

Argument Type Specified On Entry
ename string name of the expression being created
kname string name of the constant set/slice
kdimLB si* lower bounds of constant set/slice
kdimUB si* upper bounds of constant set/slice

Arguments returned to client: None

Notes:� If an expression called ename already exists within the ops object, the new expression will overwrite it.

Examples of usage:

The following code creates an expression called Expr1 (within an existing ops object called NetOpt) from the
constant set Const1.

NetOpt->NewConstant("Const1", IntSeq(1), IntSeq(3), 1);
NetOpt->NewConstantExpression("Expr1", "Const1",

IntSeq(1), IntSeq(3));

A.4.2.7 Method NewVariableExpression

Declaration: void NewVariableExpression(string ename, string
vname, si* vdimLB, si* vdimUB*)

Function: Creates a new expression consisting of a variable set or a variable slice.

Arguments to be specified by the client:

Argument Type Specified On Entry
ename string name of the expression
vname string name of the variable set/slice
vdimLB si* lower bounds of the variable set/slice
vdimUB si* upper bounds of the variable set/slice

Arguments returned to client: None

Notes:� If an expression called ename already exists within the ops object, the new expression will overwrite it.

Examples of usage:

The following code creates a variable expression called Expr2 (within an existing ops object called NetOpt)
consisting of the vector ��
 � � 
 � � 
 � � .



Appendix A.
�
�������

Reference Manual 154

NetOpt->NewContinuousVariable("x", IntSeq(1), IntSeq(3), -1, 1, 0);
NetOpt->NewVariableExpression("Expr2", "x", IntSeq(1), IntSeq(3));

A.4.2.8 Method BinaryExpression

Declaration: void BinaryExpression(string ename, string ename1,
si* edimLB1, si* edimUB1, string ename2, si* edimLB2, si*
edimUB2, string binaryoperator)

Function: Creates a new expression representing a binary operation between the expressions specified in the argu-
ment.

Arguments to be specified by the client:

Argument Type Specified On Entry
ename string name of the new expression
ename1 string name of expression representing

the first operand
edimLB1 si* lower bound of slice to be

used from first expression
edimUB1 si* upper bound of slice to be

used from first expression
ename2 string name of expression representing

the second operand
edimLB2 si* lower bound of slice to be

used from second expression
edimUB2 si* upper bound of slice to be

used from second expression
binaryoperator string label of the binary operator

to be used.

Arguments returned to client: None

Notes:� The dimensionality size of the new expression depends on those of its operands (see table in section A.2.4).� The argument binaryoperator describes the type of binary operator in the expression. It can be one of
the following strings: "sum", "difference", "product", "ratio", "power" (cf. section
A.2.4).� If an expression called ename already exists within the ops object, the new expression will overwrite it.

Examples of usage: The following code creates a nonlinear term 
 � 
 � within an existing ops object called
NetOpt.

NetOpt->NewContinuousVariable("x", IntSeq(1), IntSeq(2), -1, 1, 0);
NetOpt->BinaryExpression("NLT", "x", IntSeq(1), IntSeq(1),

"x", IntSeq(2), IntSeq(2), "product");

A.4.2.9 Method UnaryExpression

Declaration: void UnaryExpression(string ename, string ename1,
si* edimLB1, si* edimUB1, string unaryoperator)

Function: Creates a new expression representing a unary operation on the expression specified in the argument.



Appendix A.
�
�������

Reference Manual 155

Arguments to be specified by the client:

Argument Type Specified On Entry
ename string name of the new expression
ename1 string name of expression

representing the operand
edimLB1 si* lower bound of slice to be

used from the operand expression
edimUB1 si* upper bound of slice to be

used from the operand expression
unaryoperator string label of the unary arithmetic

operator or unary transcendental
function to be used

Arguments returned to client: None

Notes:� The dimensionality and dimension sizes of the new expression is the same as that of its operands.� The argumentunaryoperator describes the type of unary operator in the expression. It can be one of the
following strings (the meaning is self-explanatory): "minus", "log", "exp", "sin", "cos",
"tan", "cot", "sinh", "cosh", "tanh", "coth" (cf. section A.2.4).� If an expression called ename already exists within the ops object, the new expression will overwrite it.

Examples of usage: The following code creates a nonlinear term �

�
� ��
 � within an existing ops object called

NetOpt.

NetOpt->NewContinuousVariable("x", IntSeq(1), IntSeq(3), -1, 1, 0);
NetOpt->UnaryExpression("NLT", "x", IntSeq(1), IntSeq(3), "log");

A.4.2.10 AssignExpressionSliceToConstraintSlice

Declaration: void AssignExpressionSliceToConstraintSlice
(string ename, si* edimLB, si* edimUB, string cname,
si* cdimLB, si* cdimUB)

Function: Assigns the specified expression slice to the specified constraint slice.

Arguments to be specified by the client:

Argument Type Specified On Entry
ename string the name of the expression to be set
edimLB si* lower bound of expression slice
edimUB si* upper bound of expression slice
cname string name of constraint set to which the

expression must be set
cdimLB si* lower bounds of the constraint set slice

to be set with the expression elements
cdimUB si* upper bounds of the constraint set slice

to be set with the expression elements

Arguments returned to client: None

Notes:� The specified constraint set must have already been created using the NewConstraint method (see
section A.4.2.3).



Appendix A.
�
�������

Reference Manual 156

� The specified expression either must be a scalar or its dimensionality size must match exactly that of the
constraint slice. In the former case, the same scalar expression will be assigned to each of the constraints
in the slice; in the latter, each element in the expression slice will be assigned to the corresponding element
in the constraint slice.

Examples of usage:

The following code creates the term

�
� ��� 	
�
� within an existing ops object called NetOpt and assigns it to the

constraint UniqueAllocation.

NetOpt->NewContinuousVariable("x", IntSeq(1), IntSeq(3), -1, 1, 0);
NetOpt->UnaryExpression("NLT", "x", IntSeq(1), IntSeq(3), "log");
NetOpt->BinaryExpression("NLT", "x",

IntSeq(1), IntSeq(3), "NLT",
IntSeq(1), IntSeq(3), "ratio");

NetOpt->AssignExpressionSliceToConstraintSlice
("NLT", IntSeq(1), IntSeq(3),
"UniqueAllocation", IntSeq(1), IntSeq(3));

A.4.2.11 Method NewObjectiveFunction

Declaration: void NewObjectiveFunction(string oname, string
otype)

Function: Specifies the name and the type for the objective function for the MINLP.

Arguments to be specified by the client:

Argument Type Specified On Entry
oname string objective function name
otype string objective function type

Arguments returned to client: None

Notes:� The objective function created by this method does not contain any variables either linearly or nonlinearly.� The type of the objective function must be a string of at least 3 characters; any characters beyond the third
one are ignored. Valid type specifications are "min" and "max" denoting minimization and maximization
respectively. The case of the characters in the type specification is irrelevant.� If the method is invoked more than once for a given MINLP, then each invocation supersedes all earlier
ones and any information associated with the previous objective function (e.g. on the variables occurring
in it) is lost.

Examples of usage:

The following creates an objective function called TotalProfit within an existing ops object called NetOpt,
that is to be maximized by the solution of the MINLP:

NetOpt->NewObjectiveFunction{"TotalProfit", "max") ;



Appendix A.
�
�������

Reference Manual 157

A.4.2.12 Method AddLinearVariableSliceToObjectiveFunction

Declaration: void AddLinearVariableSliceToObjectiveFunction
(string vname, si* dimLB, si* dimUB, double coefficient,
string oname)

Function: Adds a linear occurrence of every element of a specified variable slice to the specified objective function
using the specified coefficient.

Arguments to be specified by the client:

Argument Type Specified On Entry
vname string name of variable set, elements of which

are to be added
dimLB si* lower bounds of the variable set slice

to be added to objective function
dimUB si* upper bounds of the variable set slice

to be added to objective function
coefficient double coefficient of variables

in the objective function
oname string name of current objective function

Arguments returned to client: None

Notes:� The specified variable set must have already been created using the NewContinuousVariable or
NewIntegerVariablemethods (see sections A.4.2.1 and A.4.2.2 respectively).� If an element of the variable slice has already been declared to occur in the objective function via an earlier
invocation of this method, then the current specification supersedes the earlier one.� A value of 0.0 for the specified coefficient has the effect of removing an existing occurrence of a
variable in a constraint.� The specified objective function must be the current objective function which must have already been
created using the NewObjectiveFunctionmethod (see section A.4.2.11).

Examples of usage:

The following adds the elements of variables MaterialFlow (cf. example in section A.4.2.1) relating to desti-
nation node 1 to the objective function TotalProfit (cf. example in section A.4.2.11) within the existing ops
object called NetOpt. A coefficient of 100 is used. It then subtracts from the same objective function the sum of
the integer variables PlantExists (cf. example in section A.4.2.2) multiplied by a coefficient of -0.1:

NetOpt->AddLinearVariableSliceToObjectiveFunction
("MaterialFlow", IntSeq(0, 1), IntSeq(4,1),
100.0, "TotalProfit");

NetOpt->AddLinearVariableSliceToObjectiveFunction
("PlantExists", IntSeq(1), IntSeq(3),
-0.1, "TotalProfit");

A.4.2.13 Method AssignExpressionToObjectiveFunction

Declaration: void AssignExpressionToObjectiveFunction
(string ename, string oname)

Function: Sets the specified expression to the specified objective function.



Appendix A.
�
�������

Reference Manual 158

Arguments to be specified by the client:

Argument Type Specified On Entry
ename string expression to be set
oname string name of current objective function

Arguments returned to client: None

Notes:� The specified objective function must be the current objective function which must have already been
created using the NewObjectiveFunctionmethod (see section A.4.2.11).� The expression must be scalar.

Examples of usage:

The following code creates the scalar nonlinear term 
 � 
 � and assigns it to the objective function TotalProfit
within an existing ops object called NetOpt.

NewContinuousVariable("x", IntSeq(1), IntSeq(2), -1, 1, 0);
BinaryExpression("NLT", "x", IntSeq(1), IntSeq(1),

"x", IntSeq(2), IntSeq(2), "product");
AssignExpressionToObjectiveFunction("NLT", "TotalProfit");

A.4.3 MINLP modification methods

A.4.3.1 Method SetVariableValue

Declaration: void SetVariableValue(string vname, si* dimLB,
si* dimUB, double value)

Function: Sets the current value of the elements of a specified slice of a specified variable set, overriding their
previous values.

Arguments to be specified by the client:

Argument Type Specified On Entry
vname string name of variable set, elements of which

are to be modified
dimLB si* lower bounds of the variable set slice

to be modified
dimUB si* upper bounds of the variable set slice

to be modified
value double new value for elements to be modified

Arguments returned to client: None

Notes:� The specified variable set must have already been created using the NewContinuousVariable or
NewIntegerVariablemethods (see sections A.4.2.1 and A.4.2.2 respectively).� The specified value must lie between the lower and upper bounds for every element of the specified variable
slice.



Appendix A.
�
�������

Reference Manual 159

Examples of usage:

The following modifies all elements of the variable set MaterialFlow (cf. example in section A.4.2.1) pertain-
ing to source 3 to a new value of 150:

SetVariableValue ("MaterialFlow", IntSeq(3, 1), IntSeq(3,6),
150.0) ;

A.4.3.2 Method SetVariableBounds

Declaration: void SetVariableBounds(string vame, si* dimLB,
si* dimUB, double LB, double UB)

Function: Sets the current lower and upper bounds of the elements of a specified slice of a specified variable set,
overriding their previous values.

Arguments to be specified by the client:

Argument Type Specified On Entry
vname string name of variable set, elements of which

are to be modified
dimLB si* lower bounds of the variable set slice

to be modified
dimUB si* upper bounds of the variable set slice

to be modified
LB double new value of lower bound for elements

to be modified
UB double new value of upper bound for elements

to be modified

Arguments returned to client: None

Notes:� The specified variable set must have already been created using the NewContinuousVariable or
NewIntegerVariablemethods (see sections A.4.2.1 and A.4.2.2 respectively).� The specified bounds must satisfy

��� ��� � .

Examples of usage:

The following modifies the bounds of all elements of the variable set MaterialFlow (cf. example in section
A.4.2.1) pertaining to source 3 to new values of 10 and 20 respectively:

SetVariableBounds("MaterialFlow", IntSeq(3, 1), IntSeq(3,6),
10.0, 20.0) ;

The following sets both bounds of an element of the variable set PlantExists (cf. example in section
A.4.2.2) to 1, thereby effectively fixing the value of this variable in any MINLP solution also to 1:

SetVariableBounds("PlantExists", IntSeq(2), IntSeq(2),
1.0, 1.0) ;



Appendix A.
�
�������

Reference Manual 160

A.4.3.3 Method SetConstraintBounds

Declaration: void SetConstraintBounds(string cname, si* dimLB,
si* dimUB, double LB, double UB)

Function: Sets the lower and upper bounds of a specified slice of a specified constraint set, overriding any previous
bounds.

Arguments to be specified by the client:

Argument Type Specified On Entry
cname string name of constraint set, elements of which

are to be modified
dimLB si* lower bounds of the constraint set slice

to be modified
dimUB si* upper bounds of the constraint set slice

to be modified
LB double new lower bound for elements

to be modified
UB double new upper bound for elements

to be modified

Arguments returned to client: None

Notes:� The specified constraint set must have already been created using the NewConstraint method (see
section A.4.2.3).� The specified bounds must satisfy

��� ��� � .

Examples of usage:

The following modifies the lower and upper bounds of constraint UniqueAllocation (cf. example in section
A.4.2.3) to infinity:

SetConstraintBounds("UniqueAllocation", IntSeq(0), IntSeq(0),
MinusInfinity, PlusInfinity);

This modification effectively de-activates the UniqueAllocation constraint.

A.4.3.4 Method SetConstantValue

Declaration: void SetConstantValue(string kname, si* indexlist,
double value)

Function: Sets the value of the constant element pointed to by the specified index list to the specified value.

Arguments to be specified by the client:

Argument Type Specified On Entry
kname string name of constant set containing the

element to be modified
indexlist si* list of indices which point to the

element to be modified
value double new value to be assigned to element

Arguments returned to client: None

Notes:



Appendix A.
�
�������

Reference Manual 161

� The indices in the index list must lie between the respective index bounds defining the dimensionality of
the constant set.

A.4.3.5 Method SetConstantSliceValue

Declaration: void SetConstantSliceValue(string kname, si* kdimLB, si* kdimUB, double
value)

Function: Sets the values of the constant elements in the specified slice to the specified value.

Arguments to be specified by the client:

Argument Type Specified On Entry
kname string name of constant set containing the

elements to be modified
kdimLB si* lower bounds of the constant set slice

to be modified
kdimUB si* upper bounds of the constant set slice

to be modified
value double new value to be assigned to elements

Arguments returned to client: None

Notes:� None.

A.4.3.6 Method SetKeyVariable

Declaration: void SetKeyVariable(string vame, si* dimLB,
si* dimUB)

Function: Sets the elements of a specified slice of a specified variable set to be used as key variables for the
decomposition algorithm.

Arguments to be specified by the client:

Argument Type Specified On Entry
vname string name of variable set, elements of

which are to be modified
dimLB si* lower bounds of the variable set slice

to be modified
dimUB si* upper bounds of the variable set slice

to be modified

Arguments returned to client: None

Notes:� The specified variable set must have already been created using the NewContinuousVariable or
NewIntegerVariablemethods (see sections A.4.2.1 and A.4.2.2 respectively).

Examples of usage:

The following sets all elements of the variable set MaterialFlow (cf. example in section A.4.2.1) to be key
variables:



Appendix A.
�
�������

Reference Manual 162

SetKeyVariable ("MaterialFlow", IntSeq(3, 1), IntSeq(3,6)) ;

The following sets an element of the variable set PlantExists (cf. example in section A.4.2.2) to be a key
variable:

SetKeyVariable ("PlantExists", IntSeq(2), IntSeq(2)) ;

A.4.4 Structured MINLP Information Access Methods

A.4.4.1 Method GetVariableInfo

Declaration: void GetVariableInfo(string vname, si* dimLB,
si* dimUB, double* value, double* LB, double* UB)

Function: Returns the current values and lower and upper bounds of all elements of a specified slice of a specified
set of variables.

Arguments to be specified by the client:

Argument Type Specified On Entry
vname string name of variable set on which information

is required
dimLB si* lower bounds of the variable set slice

on which information is required
dimUB si* upper bounds of the variable set slice

on which information is required

Arguments returned to client:

Argument Type Value on Exit
value double* pointer to set of real numbers

containing current values of elements
in specified slice

LB double* pointer to set of real numbers
containing lower bounds of elements

in specified slice
UB double* pointer to set of real numbers

containing upper bounds of elements
in specified slice

Notes:� The specified variable set must have already been created using the NewContinuousVariable or
NewIntegerVariablemethods (see sections A.4.2.1 and A.4.2.2 respectively).� In the case of multidimensional variable sets, the information in the sets value, LB and UB is ordered so
that the last index varies fastest, followed by the penultimate index, and so on until the first index which
varies the most slowly. For example, a 2-dimensional set is ordered by rows.

Examples of usage:

The following returns the information on a slice of the variable MaterialFlow (cf. example in section A.4.2.1):

double* CurrentFlows ;
double* MinimumFlows ;



Appendix A.
�
�������

Reference Manual 163

double* MaximumFlows ;

GetVariableInfo ("MaterialFlow", IntSeq(1,1), IntSeq(4,4),
CurrentFlows, MinimumFlows, MaximumFlows) ;

A.4.4.2 Method GetConstraintInfo

Declaration: bool GetConstraintInfo(string cname, si* dimLB, si* dimUB, double* LB,
double* UB, double* LagMult)

Function: Returns the current values, lower and upper bounds and Lagrange multipliers of all elements of a speci-
fied slice of a specified constraint set; the return value is true if every element of the constraint slice is linear, or
false otherwise.

Arguments to be specified by the client:

Argument Type Specified On Entry
cname string name of constraint set on which information

is required
dimLB si* lower bounds of the constraint set slice

on which information is required
dimUB si* upper bounds of the constraint set slice

on which information is required

Arguments returned to client:

Argument Type Value on Exit
LB double* pointer to set of real numbers

containing the upper bounds
of elements in specified slice

UB double* pointer to set of real numbers
containing the upper bounds
of elements in specified slice

LagMult double* pointer to set of real numbers
containing the Lagrange multipliers of

elements in specified slice
return value bool true if constraint is linear

Notes:� The return value is true if every element of the constraint is linear and false otherwise.� The specified constraint set must have already been created using the NewConstraint method (see
section A.4.2.3).� In the case of multidimensional constraint sets, the information in the sets LB, UB and LagMult is ordered
so that the last index varies fastest, followed by the penultimate index, and so on until the first index which
varies the most slowly. For example, a 2-dimensional set is ordered by rows.� If the Lagrange multiplier for a element of the specified slice is not available (e.g. because the MINLP has
not yet been solved or because the MINLP solver does not make this information available), the a value of
PlusInfinity (cf. section A.3.1) will be returned for the corresponding element of LagMult.

Examples of usage:

The following returns information on all elements of the constraint SourceFlowLimit (cf. example in section
A.4.2.3):

char* CurrentType ;



Appendix A.
�
�������

Reference Manual 164

double* CurrentUB ;
double* CurrentLM ;
bool isLinear ;

isLinear = GetConstraintInfo("SourceFlowLimit",
IntSeq(0), IntSeq(4),
CurrentType, CurrentUB, CurrentLM);

A.4.4.3 Method GetObjectiveFunctionInfo

Declaration: bool GetObjectiveFunctionInfo(string oname, char*
otype, double& ovalue)

Function: Returns the current value and type of the objective function specified by name; the “return value” is
true if the constraint slice has an expression set to it, false otherwise.

Arguments to be specified by the client:

Argument Type Specified On Entry
oname string name of objective function on which

information is required

Arguments returned to client:

Argument Type Value on Exit
otype char* pointer to set of characters

containing the type of the
objective function

ovalue double& value of the objective function
return value bool true if objective function is linear

Notes:� The return value is false if the objective function has a nonlinear expression assigned to it and true
otherwise.� The specified objective function must have already been created using the NewObjectiveFunction
method (see section A.4.2.11).� The returned type of the objective function could be either "min" or "max", denoting minimization and
maximization respectively.� The value of the objective function returned is based on the current values of the variables.

Examples of usage:

The following returns information on the objective function named TotalProfit (cf. example in section
A.4.2.11):

char* CurrentObjType ;
double CurrentObjValue ;
bool isLinear;

isLinear = GetObjectiveFunctionInfo ("TotalProfit", CurrentObjType,
CurrentObjValue) ;



Appendix A.
�
�������

Reference Manual 165

A.4.4.4 Method GetProblemInfo

Declaration: GetProblemInfo(string pname, bool& islinear, double& ovalue,
bool& isfeasible)

Function: Returns the problem name, whether the problem is a MILP or a MINLP, the current recorded value of
the objective function (as set by the last solver module that tried to solve the problem), and whether the problem is
feasible or not (with respect to the current values of problem variables).

Arguments to be specified by the client: None.

Arguments returned to client:

Argument Type Value on Exit
pname string name of the problem

islinear bool& true if problem is a MILP,
false if it is a MINLP

ovalue double& value of the objective function
isfeasible bool& true if problem is feasible,

false if it is not

Notes:� The variable ovalue is not the value of the objective function calculated at the current variable values, but
rather the value set by the solver module that last tried to solve this problem.

Examples of usage:

The following returns information on the problem.

string ProblemName;
bool MILP;
double ObjFunValue;
bool Feasible;

NetOpt->GetProblemInfo(ProblemName, MILP, ObjFunValue, Feasible);

A.4.5 Flat MINLP Information Access Methods

Although it is convenient for client programs to construct ops objects in a structured manner using the methods
of section A.4.2, most existing numerical solvers are designed to operate on the much simpler “flat” form [Flat
MINLP] described in section A.1.

In view of the above, the ops interface provides a set of methods that allows access to the information charac-
terising this flat representation. The latter is constructed automatically and efficiently by ���
	���
 in a manner that
is transparent to the client.

A.4.5.1 General Properties of the Flat MINLP

The flat MINLP generated by ���
	���
 has the following characteristics:� The constraints in the flat MINLP comprise those elements of the constraint sets in the ops object that
fulfill both of the following criteria:



Appendix A.
�
�������

Reference Manual 166

– they have at least one variable occurring linearly with a non-zero coefficient, or a nonlinear part
occurrence;

– at least one of the bounds is different from the respective infinity constant.� The variables in the flat MINLP comprise those elements of the variable sets in the ops object that appear
with a non-zero coefficient in at least one of the constraints and/or in the objective function in the flat
MINLP (see above), or in the nonlinear parts of at least one constraint and/or the objective function.

A.4.5.2 Method GetFlatMINLPSize

Declaration: void GetFlatMINLPSize(int& nv, int& niv, int& nlv,
int& nliv, int& nc, int& nlc, int& nlz, int& nnz, int& nlzof,
int& nnzof)

Function: Returns information on the size of the flat MINLP.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value on Exit
nv int total number of variables in flat MINLP
niv int number of integer variables in flat MINLP
nlv int number of variables in flat MINLP

which only appear linearly
nliv int number of integer variables in

flat MINLP which only appear linearly
nc int total number of constraints

in flat MINLP
nlc int number of linear constraints

in flat MINLP
nlz int number of non-zero elements in the

matrix of flat MINLP ( � in eqn. (A.2))
nnz int number of non-zero elements

in the Jacobian matrix of the
nonlinear constraints ( � in eqn. (A.2))

nlzof int number of variables having non-zero
coefficients in the linear part of

the objective function of flat MINLP
nnzof int number of non-zero first order derivatives

in the objective function of flat MINLP

Notes:� The numbers of variables and constraints in the flat MINLP are determined using the rules detailed in
section A.4.5.1.� The number of variables nv includes both continuous and integer variables.

Examples of usage:

The following returns information on the size of a flat MINLP described by an existing ops object called NetOpt:

int NumberOfVariables ;
int NumberOfIntegerVariables ;
int NumberOfLinearVariables ;
int NumberOfLinearIntegerVars ;
int NumberOfConstraints ;
int NumberOfLinearConstraints ;



Appendix A.
�
�������

Reference Manual 167

int NumberOfNZLinVarsInConstraints ;
int NumberOfNZNonLinJacInConstraints ;
int NumberOfNZLinVarsInObjFun ;
int NumberOfNZNonLinJacInObjFun ;

NetOpt->GetFlatMINLPSize(&NumberOfVariables,
&NumberOfIntegerVariables,
&NumberOfLinearVariables,
&NumberOfLinearIntegerVariables,
&NumberOfConstraints,
&NumberOfLinearConstraints,
&NumberOfNZLinVarsInConstraints,
&NumberOfNZNonLinJacInConstraints,
&NumberOfNZLinVarsInObjFun,
&NumberOfNZNonLinJacInObjFun);

A.4.5.3 Method GetFlatMINLPStructure

Declaration: void GetFlatMINLPStructure(int* rowindex,
int* columnindex, int* objindex, string structuretype )

Function: Returns information on the sparsity structure of the objective function and the constraints. This corre-
sponds to one of the following, depending on the request issued by the client:

1. the linear variable occurrences;

2. the jacobian elements occurrences;

3. the union of the preceding structures.

Arguments to be specified by the client:

Argument Type Specified on Entry
structuretype string specifies whether returned

structure should be of type
(1), (2) or (3) (see above)

Arguments returned to client:

Argument Type Value on Exit
rowindex int* pointer to set of integers containing

the numbers of the constraints in the
flat MINLP from which the
nonzero elements originate

columnindex int* pointer to set of integers containing
the numbers of the variables in the

flat MINLP from which the nonzero
elements in constraints originate

objindex int* pointer to set of integers containing
the numbers of the variables in the

flat MINLP from which the nonzero
elements in the objective function originate

Notes:� The input parameterstructuretypemust be one of the following strings: "LINEAR", "NONLINEAR",
"BOTH" depending on whether the client needs the linear structure, the nonlinear structure or a union of
both.



Appendix A.
�
�������

Reference Manual 168

� The integer sets pointed at by rowindex and columnindex are both of length nlz, nnz or nlz +
nnz (see section A.4.5.2) depending on whether structuretype is "LINEAR", "NONLINEAR" or
"BOTH".� The integer set pointed at by objindex is of length nlzof, nnzof or nlzof + nnzof (see section
A.4.5.2) according as to whether structuretype is "LINEAR", "NONLINEAR" or "BOTH".� Constraints and variables in the flat MINLP are numbered starting from 1.� When calling with "BOTH" the linear and nonlinear vectors may be overlapping (i.e. there may be indices"�� 	 such that rowindex[i] � rowindex[j] and columnindex[i] � columnindex[j],
but the actual derivatives refer respectively to linear and nonlinear entries). For example, if the first flat
problem constraint is ; � 
 � � � � 
 � � ; then the linear derivatives matrix entry � � � � � is � , and the

nonlinear derivatives matrix entry � � � � � is
�

�
�
��

�
� evaluated at the current value of 
 � . Thus the union of

linear and nonlinear problem structure contains two entries for position � � � � � , but the first refers to the
linear derivative and the second refers to the nonlinear derivative.� The same is true for the objective function structure.

Examples of usage:

The following returns the linear structure of a flat MINLP described by an existing ops object called NetOpt:

int* Rows ;
int* Columns ;
int* ObjFunColumns ;

NetOpt->GetFlatMINLPStructure(Rows, Columns,
ObjFunColumns, "LINEAR");

A.4.5.4 Method GetFlatMINLPVariableInfo

Declaration: void GetFlatMINLPVariableInfo(int vid,
string& vname, si* &index, bool& isinteger, bool& islinear,
double& value, double& LB, double& UB)

Function: Returns information pertaining to a variable in the flat MINLP.

Arguments to be specified by the client:

Argument Type Specified On Entry
vid int the number of the variable

in the flat MINLP structure

Arguments returned to client:

Argument Type Value on Exit
&vname string the name of the variable set from which

this variable originates
&index si* the index of the variable in the variable set

from which it originates
&isinteger bool true if the variable is of type integer

false otherwise
&islinear bool true if the variable only

appears linearly in the problem
&value double the current value of the variable
&LB double the lower bound of the variable
&UB double the upper bound of the variable

Notes:



Appendix A.
�
�������

Reference Manual 169

� The variable number vid specified must be in the range 1,.., nv (see section A.4.5.2).� Index holds a pointer to a sequence which is part of the MINLP’s internal data and must not be altered in
any way.

Examples of usage:

The following returns information on variable 375 in a flat MINLP described by an existing ops object called
NetOpt:

string vname ;
si* index ;
bool isinteger ;
bool islinear ;
double value ;
double LB ;
double UB ;

NetOpt->GetFlatMINLPVariableInfo(375, vname, index, isinteger,
islinear, value, LB, UB);

On return from GetFlatMINLPVariableInfo, variable vname could have the value MaterialFlow (cf.
example in section A.4.2.1), index could be (2, 4), isinteger could be false, and value, LB and UB could
be 1, 0 and 100 respectively. Thus, we can deduce that variable 375 in the flat MINLP originated from the
continuous variable MaterialFlow(2,4) in the original (structured) MINLP.

A.4.5.5 Method SetFlatMINLPVariableBounds

Declaration: void SetFlatMINLPVariableBounds(double* LB, double* UB)

Function: Changes the lower and upper problem variable bounds.

Arguments to be specified by the client:

Argument Type Specified on Entry
LB double* set of double precision numbers which

will hold the new lower bounds
UB double* set of double precision numbers which

will hold the new upper bounds

Arguments returned to client: None

Notes:� The sets LB and UB have size nv (see section A.4.5.2).

Examples of usage:

The following reads the values of the problem variables described by an existing ops object called NetOpt:

double* vl = new double [nv];
double* vu = new double [nv];
for(int i = 0; i < nv; i++) {
vl[i] = 0;
vl[i] = 1;

}
NetOpt->SetFlatMINLPVariableBounds(vl, vu);



Appendix A.
�
�������

Reference Manual 170

A.4.5.6 Method GetFlatMINLPVariableValues

Declaration: void GetFlatMINLPVariableValues(double* values)

Function: Fills the set of double precision numbers passed to the function with the current values of the flat MINLP
problem variables.

Arguments to be specified by the client:

Argument Type Specified on Entry
values double* set of double precision numbers which

will hold the variable values

Arguments returned to client: None

Notes:� The set values has size nv (see section A.4.5.2).

Examples of usage:

The following sets the bounds of the problem variables described by an existing ops object called NetOpt:

double* v = new double [nv];
NetOpt->GetFlatMINLPVariableValues(v);

A.4.5.7 Method SetFlatMINLPVariableValues

Declaration: void SetFlatMINLPVariableValues(double* values)

Function: Sets the values of the flat MINLP variables.

Arguments to be specified by the client:

Argument Type Specified on Entry
values double* set of double precision numbers

holding the variable values to be set

Arguments returned to client: None

Notes:� The set values has size nv (see section A.4.5.2).

Examples of usage:

The following sets the values of the problem variables described by an existing ops object called NetOpt:

double* vv = new double [nv];
for(int i = 0; i < nv; i++)

vv[i] = i / 2;
NetOpt->SetFlatMINLPVariableValues(vv);



Appendix A.
�
�������

Reference Manual 171

A.4.5.8 Method GetFlatMINLPConstraintInfo

Declaration: void GetFlatMINLPConstraintInfo(int cid,
string& cname, si* &index, double& LB, double& UB, si* &vlist,
sd* &cflist, FlatExpression* &fe)

Function: Returns information pertaining to a constraint in the flat MINLP.

Arguments to be specified by the client:

Argument Type Specified On Entry
cid int the number of the constraint

in the flat MINLP structure

Arguments returned to client:

Argument Type Value on Exit
&cname string the name of the constraint set

from which this constraint originates
&index si* the index of the constraint in the

constraint set from which it originates
&LB double the current constraint lower bound
&UB double the current constraint upper bound

&vlist si* the vector of integers which contains the
variable indices occuring in this constraint

&cflist sd* the vector of doubles which contains
the coefficients of the variables occuring

in this constraint
&fe Flat- an object which contains the symbolic

Expres- information which defines the nonlinear part
sion* of the constraint (see section A.6.2)

Notes:� The variable number cid specified must be in the range 1,..,nc (see section A.4.5.2).� Index holds a pointer to a sequence which is part of the MINLP’s internal data and must not be altered in
any way.� The argument FlatExpression* &fe contains the symbolic information which defines the nonlinear
part of the constraint. For its description and usage see section A.6.2.

Examples of usage: The following returns information on constraint 532 in a flat MINLP described by an existing
ops object called NetOpt:

string cname ;
si* index ;
double LB ;
double UB ;
si* varList ;
sd* coefList;
FlatExpression* fe;

NetOpt->GetFlatMINLPConstraintInfo(532, cname, index, LB, UB,
varList, coefList, fe)

On return from GetFlatMINLPConstraintInfo, variablecname could have the value "SourceFlowLimit"
(cf. example in section A.4.2.4), index could be (3), and UB could be 450. Thus, we can deduce that con-
straint 532 in the flat MINLP originated from the constraint SourceFlowLimit(3) in the original (structured)
MINLP.



Appendix A.
�
�������

Reference Manual 172

A.4.5.9 Method EvalFlatMINLPNonlinearObjectiveFunction

Declaration: double EvalFlatMINLPNonlinearObjectiveFunction(void)

Function: Returns the value of the nonlinear part of the objective function.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Specified On Entry
return value double the value of the objective function

at the current variable values

Notes: None

Examples of usage:

The following sets the variable values and evaluates the objective function of the problem described by an existing
ops object called NetOpt:

double* vv = new double [nv];
for(int i = 0; i < nv; i++)

vv[i] = i / 2;
NetOpt->SetFlagMINLPVariableValues(vv);
double vof = NetOpt->EvalFlatMINLPNonlinearObjectiveFunction();

A.4.5.10 Method EvalFlatMINLPNonlinearConstraint

Declaration: void EvalFlatMINLPNonlinearConstraint(int lowercid, int uppercid,
double* values)

Function: Returns the values of a range of nonlinear parts of constraints, starting with constraint lowercid up to
and including constraint uppercid (also see (A.4.5.8)).

Arguments to be specified by the client:

Argument Type Specified On Entry
lowercid int the number of the first constraint

of the range to be evaluated
uppercid int the number of the last constraint

of the range to be evaluated

Arguments returned to client:

Argument Type Value on Exit
values double* vector containing the constraint values

Notes:� The vectorvalues containing the values of the evaluated constraints, has size uppercid - lowercid
+ 1.

Examples of usage:

The following evaluates constraints 2-5 in the flat MINLP described by an existing ops object called NetOpt:



Appendix A.
�
�������

Reference Manual 173

double* cv = new double[4];
NetOpt->EvalFlatMINLPNonlinearConstraint(cv, 2, 5);

A.4.5.11 Method GetFlatMINLPObjectiveFunctionDerivatives

Declaration: void GetFlatMINLPObjectiveFunctionDerivatives
(double* A, string structuretype)

Function: Returns a vector containing one of the following:

1. the values of the nonzero coefficients in the vector � defining the linear part of the objective function (cf.
equation (A.1));

2. the values of the nonzero first order partial derivatives of the nonlinear part of the objective function evalu-
ated at the current variable values;

3. the union of the preceding vectors.

Arguments to be specified by the client:

Argument Type Specified on Entry
structuretype string specifies whether returned

structure should be of type
(1), (2) or (3) (see above)

Arguments returned to client:

Argument Type Value on Exit
values double* pointer to set of doubles containing

the nonzero elements of � , of the
derivatives of the obj. fun., or both

Notes:� The input parameterstructuretypemust be one of the following strings: "LINEAR", "NONLINEAR",
"BOTH" depending on whether the client needs information about the linear part of the objective function,
or the nonlinear part, or both.� The length of this vector follows the rules given in note 3 to section A.4.5.3.� The indices of the variables to which the elements of this vector correspond can be obtained from method
GetFlatMINLPStructure as the integer vector objindex (see section A.4.5.3).� When calling with "BOTH", see notes on page 168.

Examples of usage:

The following returns the nonzero partial derivatives of the nonlinear part of the objective function of a flat
MINLP described by an existing ops object called NetOpt, evaluated at the current variable values:

int d0, d1, d2, d3, d4, d5, d6, d7, d8;
int nnzof;
NetOpt->GetFlatMINLPSize(&d0, &d1, &2, &d3, &d4,

&d5, &d6, &d7, &8, &d9, &nnzof);
double* A = new double [nnzof];
NetOpt->GetFlatMINLPObjectiveFunctionDerivatives(A, "NONLINEAR");

In this case, � � � � , � � � ,..,nlzof is the coefficient of variable objindex(k) in the objective function.



Appendix A.
�
�������

Reference Manual 174

A.4.5.12 Method GetFlatMINLPConstraintDerivatives

Declaration: void GetFlatMINLPConstraintDerivatives(string
structuretype, int lowercid, int uppercid, sd& values)

Function: Returns a sequence of doubles (see section A.3.2) containing one of the following:

1. the values of the nonzero coefficient in the linear part of the specified constraints;

2. the values of the nonzero partial derivatives, evaluated at the current variable values, of the nonlinear parts
of the specified constraints;

3. the union of the preceding vectors.

Arguments to be specified by the client:

Argument Type Specified on Entry
structuretype string specifies whether returned

structure should be of type
(1), (2) or (3) (see above)

lowercid int specifies the lower end of the
constraint range

uppercid int specifies the upper end of the
constraint range

Arguments returned to client:

Argument Type Value on Exit
values sd& sequence of doubles containing

the nonzero elements of � , of the
Jacobian of � , or both

Notes:� The input parameterstructuretypemust be one of the following strings: "LINEAR", "NONLINEAR",
"BOTH" according as to whether the client needs the linear part of the constraints, the derivatives, or a union
of both.� The length of this vector is given by values.size().� If lowercid and uppercid are both set to zero, then this function returns the nonzero coefficients of the
entire matrix � (see equation (A.2)), or the nonzero coefficients of the entire Jacobian of � (see equation
(A.2)) evaluated at the current variable values, or both, depending on structuretype. In this case this
method effectively acts as though the whole range of problem constraints had been specified.� The row and column indices of the elements of the vector can be obtained from method GetFlatMINLP-
Structure as integer vectors rowindex and columnindex respectively (see section A.4.5.3).� Nonlinear derivatives which are identically zero are not recorded. Thus, for example, if you have a lin-
ear constraint and you request its nonlinear derivatives, the vector values might be empty. Referring
to elements of an empty vector results in runtime segmentation fault errors, so it is advisable to check
values.size() before using the vector.� When calling with "BOTH", see notes on page 168.

Examples of usage:

The following returns the matrix � of a flat MINLP described by an existing ops object called NetOpt:

sd A;
NetOpt->GetFlatMINLPConstraintDerivatives(A, 0, 0, "LINEAR");

In this case, � � � � , � � 1,..,nlz is the coefficient of variable columnindex(k) in constraint rowindex(k) in
the left hand side matrix � (cf. equation (A.2)).



Appendix A.
�
�������

Reference Manual 175

A.4.5.13 Method GetFlatMINLPNoPartitions

Declaration: void GetFlatMINLPNoPartitions(int& np)

Function: Returns the number of partitions of the flat MINLP.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value on Exit
np int total number of partitions of flat MINLP

Notes:� The number of partitions are deternimed based on the properties of key variables.

Examples of usage:

The following returns the number of partitions occuring in a flat MINLP described by an existing ops object called
NetOpt:

int np;

NetOpt->GetFlatMINLPNoPartitions(np) ;

A.4.5.14 Method GetFlatMINLPPartition

Declaration: void GetFlatMINLPPartition(int& np, li* &varlist,
li* &conlist)

Function: Returns information on the partitions of the flat MINLP specified by its number.

Arguments to be specified by the client:

Argument Type Specified On Entry
np int the number of the partition of the flat MINLP

Arguments returned to client:

Argument Type Value on Exit
varlist li list of variable indices occuring

in the partition
conlist li list of constraint indeces occuring

in the partition

Notes:� The number np must be less or equal to the maximum number of partitions.

Examples of usage:

The following returns the variable and constraint lists of the partition 2 occuring in a flat MINLP described by an
existing ops object called NetOpt:

int np;



Appendix A.
�
�������

Reference Manual 176

li* variableList;
li* constraintList;

NetOpt->GetFlatMINLPPartition(np, variableList, constraintList) ;

A.4.6 Standard Form MINLP Information Access Methods

A MINLP is in standard form when its nonlinear parts are reduced to their basic building blocks and all its linear
parts are gathered together in a matrix. This is explained in more details in [116]. Suffice it here to recall the basics
with an example. The constraint

� � � � 
 � � � 
 � � 
 � � 
 � 
 �
�

�
� ��
 � � � � ;

in standard form becomes

� � � � � � � ;
� � � � 
 � � � 
 � � 
 � ��� �
� � � � �

� �
� � � 
 � 
 �� � � �

�
� ��
 � �

The standard form of a MINLP is as follows:�	�:
 �

 �� � � 
 � �

� � �����
 � � 
 � 
 �
(A.6)

where � ������� are subsets of 

	 1 and � is any unary or binary operator.

In view of the above, the ops interface provides a set of methods that allows access to the information charac-
terising this standard form representation. The latter is constructed automatically and efficiently by ���
	 ��
 in a
manner that is transparent to the client.

A.4.6.1 Method GetSFNumberOfVariables

Declaration: void GetSFNumberOfVariables(int& nv, int& nzlv)

Function: It returns the total number of variables of the problem in standard form and the number of linearly
appearing variables with nonzero coefficients in the linear part of the problem.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value On Exit
nv int& the number of total problem variables

nzlv int& number of nonzero coeff. linear variables

Notes:� The total number of problem variables includes the original problem variables and the variables which have
been added by the standard form process.



Appendix A.
�
�������

Reference Manual 177

Examples of usage:

int nv;
int nzlv;
NetOpt->GetSFNumberOfVariables(nv, nzlv) ;

A.4.6.2 Method GetSFVariableInfo

Declaration: void GetSFVariableInfo(int vid, double value,
double& LB, double& UB)

Function: It returns the current variable value and the lower and upper bounds of variable vid in the problem in
standard form.

Arguments to be specified by the client:

Argument Type Specified on Entry
vid int variable id in the standard form problem

Arguments returned to client:

Argument Type Value On Exit
value double& current variable value
LB double& variable lower bound
UB double& variable upper bound

Notes: None

Examples of usage:

double value, LB, UB;
NetOpt->GetSFVariableInfo(1, value, LB, UB) ;

A.4.6.3 Method GetSFObjFunVarIndex

Declaration: void GetSFObjFunVarIndex(int& vid)

Function: It returns the variable index (variable id) corresponding to the objective function.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value on Exit
vid int& variable index corresponding

to the objective function

Notes:� As well as the constraints, the objective function of the MINLP is transformed by the standard form reduc-
tion, so that, for example,

� �:


 � 
 � would become

�	��

� � s.t. � � � 
 � 
 � . In this case, the variable index

of � � would be returned.

Examples of usage:



Appendix A.
�
�������

Reference Manual 178

int vid;
NetOpt->GetSFObjFunVarIndex(vid);

A.4.6.4 Method GetSFNumberOfLinearConstraints

Declaration: void GetSFNumberOfLinearConstraints(int& nlc)

Function: This returns the number of linear constraints in the standard form of the problem.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value on Exit
nlc int& number of linear constraints

Notes: None� The number of linear constraints is equal to the number of rows in the matrix � in the general formulation
of the standard form (see eqn. A.6 above).

Examples of usage:

int nlc;
NetOpt->GetSFNumberOfLinearConstraints(nlc);

A.4.6.5 Method GetSFLinearBounds

Declaration: void GetSFLinearBounds(double* lb, double* ub)

Function: It returns the vector of lower and upper bounds in the linear constraints of the standard form problem (
�

and
�

in the formulation A.6).

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value on Exit
lb double* vector of lower bounds
ub double* vector of upper bounds

Notes:� The arrays lb and ub must be created by the client with the correct length nlc (use method GetSF-
NumberOfLinearConstraints above).

Examples of usage:

int nlc;
NetOpt->GetSFNumberOfLinearConstraints(nlc);
double* lb = new double[nlc];
double* ub = new double[nlc];
NetOpt->GetSFLinearBounds(lb, ub);



Appendix A.
�
�������

Reference Manual 179

A.4.6.6 Method GetSFLinearStructure

Declaration: void GetSFLinearStructure(int* rowindex,
int* columnindex)

Function: Returns the sparsity structure of the linear part of the problem in standard form.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value on Exit
rowindex int* vector of row indices

columnindex int* vector of column indices

Notes:� The arrays rowindex and columnindex must be created by the client with the correct length nzlv
(use method GetSFNumberOfVariables above).

Examples of usage:

int nv;
int nzlv;
NetOpt->GetSFNumberOfVariables(nv, nzlv) ;
int* rowindex = new int [nzlv];
int* columnindex = new int [nzlv];
NetOpt->GetSFLinearStructure(rowindex, columnindex);

A.4.6.7 Method GetSFMatrix

Declaration: void GetSFMatrix(double* A)

Function: Returns the linear part of the standard form problem in sparse format.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value on Exit
A double* matrix � in sparse form

Notes:� The array A must be created by the client with the correct length nlzv (use method GetSFNumberOf-
Variables above).� The sparsity structure can be found with the method GetSFLinearStructure (A.4.6.6).

Examples of usage:

int nv;
int nzlv;
NetOpt->GetSFNumberOfVariables(nv, nzlv) ;
double* A = new double [nzlv];
NetOpt->GetSFMatrix(A);



Appendix A.
�
�������

Reference Manual 180

A.4.6.8 Method GetSFNumberOfNonlinearConstraints

Declaration: void GetSFNumberOfNonlinearConstraints(int& nnlc)

Function: This returns the number of nonlinear constraints in the standard form of the problem.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value on Exit
nnlc int& number of nonlinear constraints

Notes: None� The number of nonlinear constraints is equal to the number of “constraint definitions” of the form � ��� � �
in the general formulation of the standard form (see eqn. A.6 above).

Examples of usage:

int nnlc;
NetOpt->GetSFNumberOfNonlinearConstraints(nnlc);

A.4.6.9 Method GetSFNonlinearConstraint

Declaration: void GetSFNonlinearConstraint(int cid, int& vid,
int& vid1, int& vid2, string& operator, double& constant1,
double& constant2

Function: This function returns the elements of nonlinear standardized constraint number cid in the standard form
of the problem.

Arguments to be specified by the client:

Argument Type Specified on Entry
cid int standardized nonlinear constraint id

Arguments returned to client:

Argument Type Value on Exit
vid int& left hand side variable id
vid1 int& first right hand side variable id
vid2 int& second right hand side variable id

operator string& operator type
constant1 double& first left hand side constant
constant2 double& second left hand side constant

Notes:� The standard nonlinear constraint ID (cid) always starts from 1.� In this discussion, we assume that each standard form nonlinear constraint has the form

variable � operand1 � operand2

where variable is the “added variable” that is defined by the right hand side and the operator � is either
unary or binary (if it is unary, then operand2 is a dummy placeholder).



Appendix A.
�
�������

Reference Manual 181

� vid is the variable id of variable.� vid1 is the variable id of operand1 if the latter is a variable (e.g. � � � 
 � 
 � ). If operand1 is a constant
then vid1 is set to -1 (e.g. � � � ��

� ).� vid2 is the the variable id of operand2 if the latter is a variable and if � is a binary operator. If operand2
is a constant (e.g. � � � 
 �� ) or if � is unary then vid2 is set to -1.� operator represents the type of operator. It can be one of the following strings (the meaning is self-
explanatory): "sum", "difference", "product","ratio", "power", "minus", "log", "exp",
"sin", "cos", "tan", "cot", "sinh", "cosh", "tanh", "coth" (cf. section A.2.4).� constant1 is meaningful only when vid1 is set to -1.� constant2 is meaningful only when vid2 is set to -1 and � is a binary operator.� Note that in a problem in standard form the constraint id cid only applies to nonlinear standardized con-
straints and does not take into account linear constraints.

Examples of usage:

int cid = 1;
int vid;
int vid1;
int vid2;
string operat;
double constant1;
double constant2;
NetOpt->GetSFNonlinearConstraint(cid, vid, vid1, vid2,

operat, constant1, constant2);

A.4.6.10 Method UpdateSolution

Declaration: void UpdateSolution(double* sol)

Function: This method is specifically designed to make it easy to insert the solution of the MINLP into both the
structured and the flat form. In short, this method updates the variable values in both the structured and flat MINLP
forms.

Arguments to be specified by the client:

Argument Type Specified on Entry
sol double array of (flat) variable values

Arguments returned to client: None

Notes:� The length of the array sol has to be at least nv, the number of variables in flat form (see section A.4.5.2).� This method has been specifically designed to make it easy to update the solution in the MINLP at the end
of a MINLP solver module, and is therefore targeted towards those programmers who wish to write their
own solver module.

Examples of usage:

double sol[nv];
NetOpt->UpdateSolution(&(sol[0]));



Appendix A.
�
�������

Reference Manual 182

A.5 MINLP solvers and systems

A.5.1 Introduction

Section A.4 of this document described in detail how ops objects can be constructed and modified, and how
information in them can be accessed in both a structured and a flat form. This section is concerned with the
solution of the mathematical problem described by an already existing ops object.

A.5.1.1 MINLP solver managers and MINLP systems

The solution of an MINLP is normally effected by a numerical solver. There are commercial solvers (e.g. SNOPT)
as well as non-commercial ones (e.g. DONLP2). A major objective for the ���
	 ��
 software is to provide appli-
cation programs with a uniform interface to all such solvers. This is achieved by embedding each solver within a
opssolvermanager object.

The main function of the Manager for a given MINLP Solver is the creation of opssystem objects (cf. section
A.2.1) by combining an existing ops object with the numerical solver embedded within the Manager. It is this
combination that ultimately permits the solution of the MINLP to take place.

A.5.1.2 Algorithmic parameters for MINLP solvers

MINLP solvers of the kind of interest to ���
	���
 are sophisticated pieces of software. Although the basic algo-
rithms implemented by different solvers are often very similar, the specific implementations may be significantly
different. Moreover, the users of these solvers are normally provided with substantial flexibility in configuring the
details of the behaviour of the implementation. This is typically achieved by setting the values of one or more
algorithmic parameters. These are usually quantities of logical, integer, real or string type. Different MINLP
solvers may recognise different sets of parameters; some typical examples include:� The branching strategy to be used by branch-and-bound algorithms (e.g. depth-first, breadth-first, etc.).� The maximum number of nodes to be examined during the branch-and-bound search.� The maximum CPU time to be spent by the solution.� The infeasibility tolerance within which constraints need to be satisfied.

Usually, MINLP solvers also incorporate a default value for each parameter. Although these values may lead to
reasonably good performance for a wide range of applications, sophisticated users may wish to change them to
suit the specific characteristics of particular applications.

���
	���
 provides general mechanisms for handling algorithmic parameters that allows the client program (a)
to determine the parameters a particular MINLP solver recognises, and their current values, and (b) to specify new
values for one or more of these parameters. Parameter specification can operate at two levels:

� At the Solver Manager level:
Specifying the value of a parameter in a MINLPSolverManager object ensures that any opssystem
objects subsequently created from this MINLPSolverManager will, at least initially, have this value of
the parameter.� At the MINLP System level:
Specifying the value of a parameter in a opssystem object affects this particular object only.

A.5.2 The ssolpar and sstat argument types

In order to handle the passing of these different kinds of parameters, ���
	���
 introduces the following C++ type
definitions:



Appendix A.
�
�������

Reference Manual 183

� variant: a union containing a value which may be one of several different types� ssolpar: a sequence of solver parameters� sstat: a sequence of solution statistics

The following C++ type definitions, which are included in the ops.h header file supplied to the user describe
these types fully:

enum vtype {logical, integer, real, expression};

struct variant {
vtype thetype;
union val {
int ival;
double dval;
string* sval;
bool bval;

};
};

struct solparameter {
variant theval;
string name;
string description;
double lowerbound;
string upperbound;

};

typedef vector<solparameter> ssolpar;

struct statistic {
variant theval;
string description;
string unit;

};

typedef vector<statistic> sstat;

A.5.3 MINLP Solver Manager Instantiation: The NewMINLPSolver-
Manager Function

Declaration: opssolvermanager* (*NewMINLPSolverManager)(void)

Function: Creates a new MINLPSolverManager object incorporating a specified numerical code.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Specified On Entry
return value opssolvermanager* the ops solver manager

incorporating the MINLP

Notes:� This function is not available at compile time (hence it is only a pointer to a function). It is loaded from
a shared object library at run time using the dlopen()/dlsym() mechanism. See example below for
details.



Appendix A.
�
�������

Reference Manual 184

� When using run time linking, keep in mind that search paths for shared object files vary from operating
system to operating system and do not usually include the current working directory.� Please be warned that shared object files produced from C++ source code have ”mangled” symbol named
which usually dlopen and dlsym cannot read properly. There are two solutions: first, write wrapper
functions to dlopen and dlsym which take care of this problem; and second, use non-demangled symbol
names (as in the example below).� When writing a new solver manager for a particular solver code, the new solver manager has to expose the
following function in the global namespace:

opssolvermanager* NewMINLPSolverManager(void) {
// ... code
return new opssolvermanager_i();

}

Please use the provided template source files for the creation of new solver managers.

Examples of usage:

The following creates a new MINLP solver manager called MySNOPTSolverManager incorporating the SNOPT
numerical MINLP solver:

#include <dcfcn.h>
opssolvermanager* (*NewMINLPSolverManager)(void);
opssolvermanager* MySNOPTSolverManager;
void* handle = dlopen("libopssnopt.so", RTLD_LAZY);
if (!handle) {
cerr << "MAIN: shared object error: \n\t" << dlerror() << endl;
exit(-1);

} else {
// have to use "non-demangled" C++ symbol names
void *tmp = dlsym(handle, "NewMINLPSolverManager__Fv");
char* error;
if ((error = dlerror()) != NULL) {
cerr << "MAIN: shared object error: \n\t" << error << endl;
exit(-1);

}
NewMINLPSolverManager = (opssolvermanager* (*)()) (tmp);

}
opssolvermanager* MySNOPTSolverManager = (*NewMINLPSolverManager)();
// ... code
dlclose(handle);

This manager can now be used to create one or more MINLP systems, each incorporating a separate ops object
(see section A.5.4.3 below).

A.5.4 MINLP solver managers

A.5.4.1 Method GetParameterList

Declaration: ssolpar* GetParameterList()

Function: Gets the list of parameters with which a MINLPSystem can be configured. It returns a sequence of
structures holding the current values of the parameters, their (single word) names and short descriptions, and valid



Appendix A.
�
�������

Reference Manual 185

upper and lower bounds where applicable (the values MinusInfinity and PlusInfinity will be used to
indicate unconstrained parameters).

The section A.5.2 for the detailed description of this type.

Arguments to be specified by the client: None

Arguments returned to client: None

Examples of usage:

The following retrieves the list of parameters for a solver:

ssolpar* params = SnoptManager->GetParameterList();

A.5.4.2 Method SetParameter

Declaration: void SetParameter(string ParamName,
variant ParamValue)

Function: Sets a specific parameter to configure a Solver Manager. Subsequent calls to GetParameterList
will return the value supplied, and all MINLPSystems subsequently created will use the value supplied.

Arguments to be specified by the client:

Argument Type Specified On Entry
ParamName string parameter name
ParamValue variant assigns a value to the parameter

Arguments returned to client: None

Examples of usage:

The following sets a parameter named “MaxRelaxations” to 100 in the Solver Manager SnoptManager:

variant var100;
var100.vtype=integer;
var100.val.ival=100;
SnoptManager->SetParameter("MaxRelaxations",var100) ;

A.5.4.3 Method NewMINLPSystem

Declaration: opssystem* NewMINLPSystem(const ops* theops)

Function: Creates a new opssystem object from a given ops object.

Arguments to be specified by the client:

Argument Type Specified On Entry
theops const ops* the ops object to be incorporated

in the new opssystem

Arguments returned to client:



Appendix A.
�
�������

Reference Manual 186

Argument Type Specified On Entry
return value opssystem* the ops system incorporating

the MINLP and the numerical code

Notes:� The specified theops object must already exist, having been created using the NewMINLP function (cf.
section A.4.1 and the methods described in sections A.4.2 and A.4.3.

Examples of usage:

The following uses the MINLP solver manager object SnoptManager created in the example of section A.5.3 to
create a new MINLP system, called NetOptSnopt incorporating the ops object NetOpt created in the example
of section A.4.1:

opssystem* NetOptSnopt = SnoptManager->NewMINLPSystem(NetOpt) ;

A.5.5 MINLP systems

A.5.5.1 Method GetParameterList

Declaration: ssolpar* GetParameterList()

Function: Gets the list of parameters with which a MINLPSystem can be reconfigured after creation. It returns a
sequence of structures holding the current values of the parameters, their (single word) names and short descrip-
tions, and valid upper and lower bounds where applicable (the values MinusInfinity and PlusInfinity
will be used to indicate unconstrained parameters).

See section A.5.2 for the detailed description of this type.

Arguments to be specified by the client: None

Arguments returned to client: None

Examples of usage:

The following retrieves the list of parameters for a system:

ssolpar* params=NetOptSnopt->GetParameterList();

A.5.5.2 Method SetParameter

Declaration: void SetParameter(string ParamName,
variant ParamValue)

Function: Sets a specific parameter to configure an MINLPSystem.

Arguments to be specified by the client:

Argument Type Specified On Entry
ParamName string parameter name
ParamValue variant assigns a value to the parameter

Arguments returned to client: None



Appendix A.
�
�������

Reference Manual 187

Examples of usage:

The following sets a parameter named “DiagnosticsOutputFile” to “mydiag.out” in the MINLPSystem
NetOptSnopt:

variant filename;
filename.vtype=string;
filename.val.sval="mydiag.out";
NetOptSnopt->SetParameter("DiagnosticsOutputFile",filename) ;

A.5.5.3 Method GetStatistics

Declaration: sstat* GetStatistics()

Function: Gets the list of solution statistics which accumulate during the lifetime of the MINLPSystem. It returns
a sequence of structures holding the current values of the statistics, their short descriptions, and units.

See section A.5.2 for the detailed description of this type.

Arguments to be specified by the client: None

Arguments returned to client: None

Examples of usage:

The following retrieves the statistics for a system and writes them to standard output, assuming the C++ << operator
has been suitably configured for the variant type.

sstat* stats = NetOptSnopt->GetStatistics();
cout << "Solution statistics:" << endl;
for(sstat::const_iterator it = stats->begin();

it != stats->end();
it++)

cout << " " << it->description << ";"
<< it->theval << it->unit << endl;

The output produced might be:

Solution statistics:
CPU time: 233.23 seconds
Number of relaxations: 23

A.5.5.4 Method Solve

Declaration: void Solve()

Function: Attempts to solve the MINLP problem incorporated in the opssystem object using the numerical
MINLP solver embedded within the opssystem object.

Arguments to be specified by the client: None

Arguments returned to client: None

Notes:



Appendix A.
�
�������

Reference Manual 188

� The numerical solution algorithm is applied to the “flat” form of the MINLP. The solver obtains the latter
from the ops object incorporated within the opssystem object using the methods of section A.4.5. This
operation is performed automatically and is completely transparent to the client.� The solution procedure will leave the final values of variables and other information within the ops object.
The client may subsequently retrieve them from there using the methods of section A.4.4.

Examples of usage:

The following method invocation applied to the MINLP system NetOptSnopt created in the example of section
A.5.4.3 will trigger the solution of the MINLP described by the ops object NetOpt using the SNOPT solver:

NetOptSnopt->Solve() ;

A.5.5.5 Method GetSolutionStatus

Declaration: void GetSolutionStatus(int& status)

Function: Returns the exit status of the solver which attempted to solve the MINLP.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Specified On Entry
status int& exit status

Notes:� This method only returns meaningful information after the method Solve() has been called.

Examples of usage:

The following returns the exit status of the numerical solver (SNOPT) which just tried to solve the NetOpt
problem

int status;
NetOptSnopt->GetSolutionStatus(status);
if (status == 0)
cout << "Solution OK!" << endl;

A.6 Auxiliary interfaces

A.6.1 The convexification module

This interface provides functionality for producing a convex relaxation of the MINLP. The ���
	 ��
 software pro-
vides a convexifiermanager object which embeds an existing ops object and provides only one public
method, Convexify(), which returns an ops containing a convex flat MILP.

The “convexification” algorithm gets its input data from the MINLP in standard form (see section A.4.6) and
produces a convex (linear) MILP. The output convex problem is embedded in a slightly modified version of the
ops class (see section A.4) whose interface only offers flat form data access (see section A.6.1.4).



Appendix A.
�
�������

Reference Manual 189

A.6.1.1 Convexifier manager instantiation: the function NewConvexifierManager

Declaration: convexifiermanager* (*NewConvexifierManager) (ops*
theops)

Function: Creates a new convexifiermanager object incorporating the MINLP theops.

Arguments to be specified by the client:

Argument Type Specified On Entry
theops ops* the MINLP to be convexified

Arguments returned to client:

Argument Type Specified On Entry
return value convexifiermanager* the convexifiermanager

incorporating the MINLP

Notes:� This function is not available at compile time (hence it is only a pointer to a function). It is loaded from
a shared object library at run time using the dlopen()/dlsym() mechanism. See example below for
details.� When using run time linking, keep in mind that search paths for shared object files vary from operating
system to operating system and do not usually include the current working directory.� Please be warned that shared object files produced from C++ source code have ”mangled” symbol named
which usually dlopen and dlsym cannot read properly. There are two solutions: first, write wrapper
functions to dlopen and dlsym which take care of this problem; and second, use non-demangled symbol
names (as in the example below).

Examples of usage: The following creates a new convexifiermanager incorporating the MINLP NetOpt.

#include <dcfcn.h>
convexifiermanager* (*NewConvexifierManager)(ops*);
convexifiermanager* NetOptCM;
void* handle = dlopen("libopssnopt.so", RTLD_LAZY);
if (!handle) {
cerr << "MAIN: shared object error: \n\t" << dlerror() << endl;
exit(-1);

} else {
// have to use "non-demangled" C++ symbol names
void *tmp = dlsym(handle, "NewMINLPSolverManager__FP3ops");
char* error;
if ((error = dlerror()) != NULL) {
cerr << "MAIN: shared object error: \n\t" << error << endl;
exit(-1);

}
NetOptCM = (convexifiermanager*) (*)(ops*)) (tmp);

}
// ... code
dlclose(handle);

A.6.1.2 Method GetConvexMINLP

Declaration: ops* GetConvexMINLP(void)



Appendix A.
�
�������

Reference Manual 190

Function: Returns a convex linear relaxation of the MINLP embedded in the convexifiermanager.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Specified On Entry
return value ops* the convex linear relaxation of the MINLP

Notes:� The memory allocated by the returned convex linear problem should not be deallocated before the convex-
ifiermanager object is deleted.

Examples of usage: The following returns a new ops object containing a convex linear relaxation of the MINLP.

ops* myconvexops = NetOptCM->GetConvexMINLP() ;

A.6.1.3 Method UpdateConvexVarBounds

Declaration: void UpdateConvexVarBounds(double* lb, double* ub)

Function: Updates the convex problem created with GetConvexMINLP (see A.6.1.2) with new variable bounds.
Because of the way the convexification is done, this has the effect of changing some of the linear structure of the
convex problem.

Arguments to be specified by the client:

Argument Type Specified On Entry
lb double* new lower bounds of variables

in the convex problem
ub double* new upper bounds of variables

in the convex problem

Arguments returned to client: None

Notes:� The convex problem created with GetConvexMINLP must not be deallocated prior to the call to this
function.

Examples of usage: The following updates bounds to the first convex problem variable.

// get convex problem
ops* myconvexops = NetOptCM->GetConvexMINLP() ;
// get convex problem size
int NumberOfVariables ;
int NumberOfIntegerVariables ;
int NumberOfLinearVariables ;
int NumberOfLinearIntegerVars ;
int NumberOfConstraints ;
int NumberOfLinearConstraints ;
int NumberOfNZLinVarsInConstraints ;
int NumberOfNZNonLinJacInConstraints ;



Appendix A.
�
�������

Reference Manual 191

int NumberOfNZLinVarsInObjFun ;
int NumberOfNZNonLinJacInObjFun ;
myconvexops->GetFlatMINLPSize(&NumberOfVariables,

&NumberOfIntegerVariables,
&NumberOfLinearVariables,
&NumberOfLinearIntegerVariables,
&NumberOfConstraints,
&NumberOfLinearConstraints,
&NumberOfNZLinVarsInConstraints,
&NumberOfNZNonLinJacInConstraints,
&NumberOfNZLinVarsInObjFun,
&NumberOfNZNonLinJacInObjFun);

// get convex problem variable bounds
double vlb = new double [NumberOfVariables];
double vub = new double [NumberOfVariables];
string strdummy;
si* sidummy;
bool bdummy1, bdummy2;
double ddummy;
for(int i = 1; i <= NumberOfVariables; i++) {
myconvexops->GetFlatMINLPVariableInfo(i, strdummy, sidummy,

bdummy1, bdummy2, ddummy,
vlb[i - 1], vub[i - 1]);

}
// change first variable bounds
vlb[0] = vlb[0] - 1;
vub[0] = vub[0] + 1;
// update the convex problem
NetOptCM->UpdateConvexVarBounds(vlb, vub);

A.6.1.4 Methods of the convex MILP

This is a cut-down version of the MINLP object interface (the ops class, see section A.4) which only offers func-
tionality for reading/writing (linear) data in the flat form problem. This modified ops class offers no methods for
dealing with (nonlinear) information, no multidimensional construction methods and no standard form methods.

The methods provided by this interface are:� GetFlatMINLPSize (see A.4.5.2);

Notes: Call is the same as in section A.4.5.2.� GetFlatMINLPStructure (see A.4.5.3);

Notes: Call is the same as in section A.4.5.3.� GetFlatMINLPVariableInfo (see A.4.5.4);

Notes: The argumentsstring vname, si* index, bool isinteger, bool islinear
are meaningless in this context and are only kept for compatibility3.� GetFlatMINLPConstraintInfo (see A.4.5.8);

Notes: The arguments string cname, si* index, si* cilist, sd* cflist,
FlatExpression* fe are meaningless in this context and are only kept for compatibil-
ity4.

3They can simply be skipped in the call.
4They can simply be skipped in the call.



Appendix A.
�
�������

Reference Manual 192

� GetFlatMINLPVariableValues (see A.4.5.6);

Notes: Call is the same as in section A.4.5.6.� SetFlatMINLPVariableValues (see A.4.5.7);

Notes: Call is the same as in section A.4.5.7.� SetFlatMINLPVariableBounds (see A.4.5.5);

Notes: Call is the same as in section A.4.5.5.� EvalFlatMINLPNonlinearObjectiveFunction (see A.4.5.9);

Notes: This is for compatibility only; it returns 0.� EvalFlatMINLPNonlinearConstraint (see A.4.5.10);

Notes: This is for compatibility only; it does not do anything.� GetFlatMINLPObjectiveFunctionDerivatives— linear objective function only (see A.4.5.11);

Notes: Call is the same as in section A.4.5.3.� GetFlatMINLPConstraintDerivatives— linear constraints only (see A.4.5.12).

Notes: Call is the same as in section A.4.5.3.

A.6.2 The FlatExpression interface

This object class has the purpose of conveying symbolic flat expression information to the client. A Flat-
Expression object is returned by the GetFlatMINLPConstraintInfo method (see section A.4.5.8) and
is then transformed, according to its type, to any of the derived objects FlatVariableExpression, Flat-
ConstantExpression, FlatOperatorExpression. Each of these objects provides a special interface
used to access the encapsulated data.

The FlatExpression interface has only one method.

A.6.2.0.1 Method GetKind

Declaration: int GetKind()

Function: Returns the kind of this FlatExpression.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value On Exit
return value int kind of FlatExpression

Notes:� The value returned by this method can be one of FlatConstantType, FlatVariableType, Flat-
OperatorType according as to whether the current FlatExpression is respectively one of Flat-
ConstantExpression, FlatVariableExpression, FlatOperatorExpression.

Examples of usage:

See below for a comprehensive example of all the methods relative to FlatExpression.



Appendix A.
�
�������

Reference Manual 193

A.6.2.1 The FlatConstantExpression interface

This object class is derived from the FlatExpression class and provides flat symbolic information about
constant expression objects created with the NewConstantExpressionmethod (see section A.4.2.6).

This interface has only one method.

A.6.2.1.1 Method GetValue

Declaration: double GetValue()

Function: Returns the value of the flat symbolic constant expression.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value On Exit
return value double value of flat symbolic constant

Notes: None

Examples of usage:

See below for a comprehensive example of all the methods relative to FlatExpression.

A.6.2.2 The FlatVariableExpression interface

This object class is derived from the FlatExpression class and provides flat symbolic information about
variable expression objects created with the NewVariableExpressionmethod (see section A.4.2.7).

This interface has only one method.

A.6.2.2.1 Method GetVarIndex

Declaration: double GetVarIndex()

Function: Returns the variable index (or variable id, a.k.a. vid) of the flat symbolic variable expression.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value On Exit
return value double value of flat symbolic constant

Notes: None

Examples of usage:

See below for a comprehensive example of all the methods relative to FlatExpression.



Appendix A.
�
�������

Reference Manual 194

A.6.2.3 The FlatOperatorExpression interface

This object class is derived from the FlatExpression class and provides flat symbolic information about ex-
pression objects created with the UnaryExpression and BinaryExpressionmethods (see sections A.4.2.9
and A.4.2.8).

This interface has two methods.

A.6.2.3.1 Method GetOperator

Declaration: int GetOperator()

Function: Returns the operator type of the flat symbolic unary or binary expression.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value On Exit
return value int operator type

Notes:� The return function value describes the type of operator in the expression. It can be one of the following
strings (the meaning is self-explanatory): "sum", "difference", "product", "ratio", "power",
"minus", "log", "exp", "sin", "cos", "tan", "cot", "sinh", "cosh", "tanh", "coth"
(cf. section A.2.4).

Examples of usage:

See below for a comprehensive example of all the methods relative to FlatExpression.

A.6.2.3.2 Method GetOperand

Declaration: FlatExpression* GetOperand(int eid)

Function: Returns one of the operands of the flat symbolic unary or binary expression.

Arguments to be specified by the client:

Argument Type Specified on Entry
eid int the operand expression id

Arguments returned to client:

Argument Type Value On Exit
return value FlatExpression* flat symbolic

operand expression

Notes:� The operand expression id, eid, can only be 1 for unary expressions; it can be 1 or 2 for binary expressions.� The return value is placed into an object of type FlatExpression. This can be analysed with the
methods described in section A.6.2.



Appendix A.
�
�������

Reference Manual 195

Examples of usage:

See below for a comprehensive example of all the methods relative to FlatExpression.

A.6.2.4 Usage of FlatExpression interface

The procedure to gather symbolic expression information from a FlatExpression is as follows.

1. Find out the FlatExpression type; there are three possible types: Constant, Variable and
Operator.

int fetype = fe->GetKind();

2. Depending on the type, cast the FlatExpression object dynamically to one of the following objects:
FlatConstantExpression, FlatVariableExpressionand FlatOperatorExpression.

FlatConstantExpression* fke;
FlatVariableExpression* fve;
FlatOperatorExpression* foe;
switch(fetype) {
case Constant:

fke = dynamic_cast<FlatConstantExpression*>(fe);
break;

case Variable:
fve = dynamic_cast<FlatVariableExpression*>(fe);
break;

case Operator:
foe = dynamic_cast<FlatOperatorExpression*>(fe);
break;

}

3. Now find out the actual information.� The FlatConstantExpression interface has only one method:

double GetValue(void);

which returns the actual value of the constant.� The FlatVariableExpression interface has only one method:

long int GetVarIndex(void);

which returns the flat variable index of the variable.� The FlatOperatorExpression interface has two methods: the first,

int GetOpType(void);

returns the type of operator of the expression (possible values are as on page 146); the second method,

FlatExpression* GetFlatExpression(int index);

returns an operand of the operator given by GetOpType(). In the case of binary operators index
can be 0 (for the left operand) or 1 (for the right operand). In the case of unary operators index can
only be zero.

4. The symbolic analysis of the expression can go on in a recursive fashion until no more FlatOperator-
Expressions are found.

5. It is important to notice that the deallocation of all the FlatExpression objects is left to the client.

The following is the actual coded example:



Appendix A.
�
�������

Reference Manual 196

string cname ;
si* index ;
double LB ;
double UB ;
si* varList ;
sd* coefList;
FlatExpression* fe;

NetOpt->GetFlatMINLPConstraintInfo(532, cname, index, LB, UB,
varList, coefList, fe)

FlatConstantExpression* fke;
FlatVariableExpression* fve;
FlatOperatorExpression* foe;
switch(fe->GetKind()) {
case Constant:
fke = dynamic_cast<FlatConstantExpression*>(fe);
cout << "Constraint Nonlinear Part is a Constant" << endl;
cout << "Value = " << fke->GetValue() << endl;
break;

case Variable:
fve = dynamic_cast<FlatVariableExpression*>(fe);

cout << "Constraint Nonlinear Part is a Variable" << endl;
cout << "VarIndex = " << fve->GetVarIndex() << endl;
break;

case Operator:
foe = dynamic_cast<FlatOperatorExpression*>(fe);
cout << "Constraint Nonlinear Part is an Operator" << endl;
cout << "Operator Type = " << foe->GetOpType() << endl;
break;

}
delete fe;

A.7 Implementation restrictions

The following restrictions of the current implementation in comparison to the functionality described in this docu-
ment are known:

1. Limited number of arguments to IntSeq function
The IntSeq auxiliary function can have a maximum of 8 integer arguments.

2. Currently available MINLP Managers
The following MINLP solvers have been interfaced to date to ���
	���
 and can be used in conjunction with
the function NewMINLPSolverManager (see section A.5.3):� SNOPT v. 5.3 (Systems Optimization Laboratory, Stanford University.)

Accessed by specifying sname = "snopt"

A.8 An Example of the use of � �
� � �

The example is based on a slightly simplified form of the Resource Task Network (RTN) formulation proposed by
C. Pantelides for process scheduling, plus a few spurious nonlinear terms which mess up the model hopelessly and



Appendix A.
�
�������

Reference Manual 197

completely, but help show how to use the methods which deal with nonlinearity. The formulation seeks to optimise
a process involving � � resources � � � �9+:+ ��� � and ��� tasks � � � �9+:+ �	��� over a time horizon discretised into
��� time intervals � � � �,+�+ ����� . It involves the objective function:�

��� �
	
��'�
	 � � 	
� � � � � 	
� ��� �

�
� �	 � � (A.7)

subject to the constraints:

� 	 � � � 	
� ��� � � �



� ��
� � � ��� 
 	 � � 
 � ��� � ��� 
 	 ��� 
 � ��� � � ��� 	 � � � 	 � � 	
� ��� �� 	 � ! � � � (A.8)

; � � 	 � � �����
 	 � ! � � � (A.9)

! ��" #

 � 
 � � � 
 � � ! ���
 


 � 
 � ! � ��� (A.10)

The variables in the above formulation are the following:

Variable Type Range Description� � � Continuous
� � �

� � � ��� �
Amount of resource

�
at time

�� � �
� � � ��� �� � � Integer 
 � �
��� � ��� � Number of units used for

task 
 at time
�� � �

��� � ��� �
� � � Continuous 
 � �

��� � ��� � Size of task 
 at time
�� � �

� � � ��� �
Table A.1: Variable sets

A number of parameters and coefficients also appear in the formulation. These are listed in Table A.2. The initial
values of the resource levels,

� 	$� , are also fixed at given values
�&%	 .

Parameter Type Description
 �� Constant Unit cost of resource
�� � � Constant Production or consumption coefficient

referring to integer variable � � �
� � � Constant Production or consumption coefficient

referring to continuous variable
� � �' � � Constant Amount of resource

�
made available

from/to external sources at time
�

( � Constant Duration of task 
�*),+.-� � Constant Maximum amount of resource
�

that can be stored at time
�

% )0/21� Constant Minimum useful capacity
of unit suitable for task 


% ),+.-� Constant Maximum useful capacity
of unit suitable for task 


Table A.2: Parameters appearing in the RTN formulation



Appendix A.
�
�������

Reference Manual 198

A.8.1 Creating the MINLP

The first step is to create (an empty) ops object:

ops* RTNops=NewMINLP();

Now we have to add to this object (RTNops) the information that defines it. This is done below using the methods
described in section A.4.

A.8.1.1 Creating variables

Variables are added to the ops object using the variable construction methods described in section A.4.2.

Continuous variables are created using the method NewContinuousVariable in the way specified in sec-
tion A.4.2.1:

RTNops->NewContinuousVariable("Xi", IntSeq(1,1), IntSeq(NK,NT),
0.0, ooOPSPlusInfinity, 0.0);

RTNops->NewContinuousVariable("R", IntSeq(1,0), IntSeq(NR,NT),
0.0, ooOPSPlusInfinity, 0.0);

while integer variables are created using the method NewIntegerVariable described in section A.4.2.2:

RTNops->NewIntegerVariable("N", IntSeq(1,1), IntSeq(NK,NT),
0, ooOPSPlusInfinity, 0);

All variables are two-dimensional, their lower bounds are initialised to zero and so are their default values. No
upper bounds are imposed at this stage.

A.8.1.2 Creating constraints

We now use the construction method presented in section A.4.2.3 to create constraints (A.8) and (A.10):

RTNops->NewConstraint("ResourceBalance",IntSeq(1,1),
IntSeq(NR,NT), 0.0, 0.0);

RTNops->NewConstraint("EquipmentCapacityLB",IntSeq(1,1),
IntSeq(NK,NT), 0.0, ooOPSPlusInfinity);

RTNops->NewConstraint("EquipmentCapacityUB",IntSeq(1,1),
IntSeq(NK,NT), ooOPSMinusInfinity, 0.0);

We note that constraint A.8 has been rearranged to the form:

� � 	 � � � 	
� ��� � ��� 
 �
� �� � � ��� 
 	 � � 
 � ��� � � � 
 	 � � 
 � ��� � ������ 	 � �����������
	 ��� �

��� �?; ! � ��� (A.8 � )



Appendix A.
�
�������

Reference Manual 199

while A.10 has been split into two separate constraints of the form:

� 
 � � ! ��" #

 � 
 � � ; ! � � � (A.10 � )

and

� 
 � � ! ���
 

 � 
 � �2; ! � ��� (A.10 � � )

On the other hand, no constraint corresponding to (A.9) is introduced since this can be dealt with via upper bounds
imposed on the

� 	 � variables (see section A.8.1.6).

A.8.1.3 Adding variables to constraints

The constraints created in section A.8.1.2 do not yet contain any variables. We now have to create appropriate vari-
able occurrences in them by applying the method AddVariableSliceToConstraintSlice as described
in section A.4.2.4 5:

� Constraint (A.8 � )

for(int r=1 ; r<=NR ; r++){
for(int t=1 ; t<=NT ; t++){
RTNops->AddVariableSliceToConstraintSlice("R",

IntSeq(r,t), IntSeq(r,t), "ResourceBalance",
IntSeq(r,t),IntSeq(r,t), -1.0);

RTNops->AddVariableSliceToConstraintSlice("R",
IntSeq(r,t-1),IntSeq(r,t-1),"ResourceBalance",
IntSeq(r,t),IntSeq(r,t), 1.0);

for(int k=1 ; k<=NK ; k++){
for(int theta = 0;

theta <= min(tau(k), (double) t - 1);
theta++){

RTNops->AddVariableSliceToConstraintSlice("N",
IntSeq(k,t-theta), IntSeq(k,t-theta),
"ResourceBalance",IntSeq(r,t),IntSeq(r,t),
mu(k,r,theta));

RTNops->AddVariableSliceToConstraintSlice("Xi",
IntSeq(r,t-theta), IntSeq(r,t-theta),
"ResourceBalance",IntSeq(r,t),IntSeq(r,t),
nu(k,r,theta));

}
}

}
}� Constraint (A.10 � )

for(int k=1 ; k<=NK ; k++){
for(int t=1 ; t<=NT ; t++){

RTNops->AddVariableSliceToConstraintSlice("Xi",
IntSeq(k,t), IntSeq(k,t),
"EquipmentCapacityLB",

5Here we assume that appropriate sets holding data components to the parameters of table A.2 are already
available.



Appendix A.
�
�������

Reference Manual 200

IntSeq(k,t),IntSeq(k,t), 1.0);
RTNops->AddVariableSliceToConstraintSlice("N",

IntSeq(k,t), IntSeq(k,t),
"EquipmentCapacityLB",
IntSeq(k,t),IntSeq(k,t),
-Vmin(k,t));

}
}� Constraint (A.10 � )

for(int k=1 ; k<=NK ; k++){
for(int t=1 ; t<=NT ; t++){

RTNops->AddVariableSliceToConstraintSlice("Xi",
IntSeq(k,t), IntSeq(k,t),
"EquipmentCapacityUB",
IntSeq(k,t),IntSeq(k,t), 1.0);

RTNops->AddVariableSliceToConstraintSlice("N",
IntSeq(k,t), IntSeq(k,t),
"EquipmentCapacityUB",
IntSeq(k,t),IntSeq(k,t),
-Vmax(k,t));

}
}

A.8.1.4 Objective function

The creation of the objective function is effected using the method NewObjectiveFunction (cf. section
A.4.2.11):

RTNops->NewObjectiveFunction("TotalProfit","max");

For this example, the name of the objective function to be maximized is "TotalProfit" .

A.8.1.5 Objective function coefficients

The creation of the objective function is followed by the declaration of the coefficients of the variable instances ap-
pearing in it. The appropriate method is AddVariableSliceToObjectiveFunction described in section
A.4.2.12:

for(int r=1 ; r<=NR ; r++){
RTNops->AddVariableSliceToObjectiveFunction("R",IntSeq(r,NT),

IntSeq(r,NT), CFR(r),"TotalResources");
RTNops->AddVariableSliceToObjectiveFunction("R",IntSeq(r,0),

IntSeq(r,0), -CFR(r),"TotalResources");
}

Again, we assume the coefficients ' 
	 that appear in the objective function are stored in set CFR.



Appendix A.
�
�������

Reference Manual 201

A.8.1.6 Modifying the variable bounds

Variable
� 	 � is bounded as shown in eqn. (A.9). Method SetVariableBounds can be used to impose these

bounds which may be different for different elements of the
� 	 � set:

for(int r=1 ; r<=NR ; r++){
for(int t=1 ; t<=NT ; t++){
RTNops->SetVariableBounds("R",IntSeq(r,t),IntSeq(r,t),

0.0, R_max[r][t]);
}

}

Moreover, the initial resource levels
� 	
� are fixed at given values

�&%	 . This is achieved by setting both lower and
upper bounds to

�&%	 :

for(int r=1 ; r<=NR ; r++){
RTNops->SetVariableBounds("R",IntSeq(r,0),IntSeq(r,0),

R_star[r], R_star[r]);
}

A.8.1.7 Modifying the constraint bounds

Constraint (A.8) has a right hand coefficient which is not constant so we use the functionSetConstraintBounds
to obligate this restriction.

for(int r=1 ; r<=NR ; r++){
for(int t=1 ; t<=NT ; t++){
RTNops->SetConstraintBounds("ResourceBalance",

IntSeq(r,t), IntSeq(r,t),
-Pi[r][t], -Pi[r][t]);

}
}

A.8.1.8 Creating the nonlinear parts

We create nonlinear parts of constraints and objective function by employing the methods described in section
A.4.2.6.

// make nonlinear part of constraints
RTNops->NewVariableExpression("Leaf1", "R",

IntSeq(1,1), IntSeq(NR, NT));
RTNops->NewVariableExpression("Leaf2", "R",

IntSeq(1,1), IntSeq(NR, NT));
RTNops->BinaryExpression("Expr1",

"Leaf1", IntSeq(1,1), IntSeq(NR, NT),
"Leaf2", IntSeq(1,1), IntSeq(NR, NT),
"product");

RTNops->NewConstant("Const1", IntSeq(1,1), IntSeq(NR, NT), 1.0);
for(int r=1 ; r<=NR ; r++){
for(int t=1 ; t<=NT ; t++){



Appendix A.
�
�������

Reference Manual 202

RTNops->SetConstantValue("Const1", IntSeq(r,t), 1/Pi[r][t]);
}

}
RTNops->NewConstantExpression("Leaf3", "Const1",

IntSeq(1,1), IntSeq(NR, NT));
RTNops->BinaryExpression("Expr1",

"Expr1", IntSeq(1,1), IntSeq(NR,NT),
"Leaf3", IntSeq(1,1), IntSeq(NR,NT),
"ratio");

// make nonlinear part of objective function
RTNops->NewConstant("Const2", IntSeq(1,1), IntSeq(1,1), 2.0);
RTNops->NewConstantExpression("Power2", "Const2",

IntSeq(1,1), IntSeq(1,1));
RTNops->BinaryExpression("Expr2",

"Leaf1", IntSeq(1,1), IntSeq(NR,NT),
"Const2", IntSeq(1,1), IntSeq(1,1),
"power");

RTNops->NewConstant("Zero", IntSeq(1), IntSeq(1), 0);
RTNops->NewConstantExpression("Expr3", "Zero",

IntSeq(1), IntSeq(1));
for(int r=1; r<=NR; r++) {
for(int t=1; t<= NT; t++) {

RTNops->BinaryExpression("Expr3",
"Expr3", IntSeq(1), IntSeq(1),
"Expr2", IntSeq(r,t), IntSeq(r,t),
"sum");

}
}

A.8.1.9 Assigning expressions to constraints and objective function

After having created the expressions representing the nonlinear parts, we assign them to the existing constraints
and objective function by using the methods described in section A.4.2.7.

// assign expressions to constraints
RTNops->AssignExpressionSliceToConstraintSlice

("Expr1", IntSeq(1,1), IntSeq(NR, NT),
"ResourceBalance", IntSeq(1,1), IntSeq(NR, NT));

// assign expression to objective function
RTNops->AssignExpressionToObjectiveFunction

("Expr3", "TotalProfit");

A.8.2 MINLP solution

Having created the ops object RTNops, we now have to combine it with an appropriate MINLP solver to create
an opssystem that can be solved.



Appendix A.
�
�������

Reference Manual 203

A.8.2.1 Creating an MINLP solver manager object

We start by creating an appropriateopssolvermanager object. The usage of this method is described in section
A.5.3. Here, we create a MINLP solver manager based on the SNOPT solver:

opssolvermanager* SnoptManager = NewMINLPSolverManager("snopt");

A.8.2.2 Creating an MINLP system

Using the MINLP solver manager object created above, a opssystem is created from the ops object:

opssystem* RTNsystem = SnoptManager->NewMINLPSystem(RTNops);

A.8.2.3 Solving the MINLP

At last, the above MINLPsystem can be solved by invoking its Solve method as described in section A.5.5.4:

RTNsystem->Solve();

A.8.3 Accessing the Solution of the MINLP

Various aspects of the MINLP solution can be accessed using methods described in section A.4.4.

A.8.3.1 Obtaining information on the variables

The optimal values of the variables can be obtained using method A.4.4.1. In this example we have three types of
variables:

� � 	 �

double* R_value;
double* R_LB;
double* R_UB;

RTNops->GetVariableInfo("R",IntSeq(1,1),IntSeq(NR,NT),
R_value, R_LB, R_UB);� � 
 �

int* N_value;
int* N_LB;
int* N_UB;

RTNops->GetVariableInfo("N",IntSeq(1,1),IntSeq(NK,NT),
N_value, N_LB, N_UB);� � 
 �



Appendix A.
�
�������

Reference Manual 204

double* Xi_value;
double* Xi_LB;
double* Xi_UB;

RTNops->GetVariableInfo("Xi",IntSeq(1,1),IntSeq(NK,NT),
Xi_value, Xi_LB, Xi_UB);

A.8.3.2 Obtaining information on the objective function

The value of the objective function can be accessed using the method of section A.4.4.3:

char* obj_type;
double* obj_value;

RTNops->GetObjectiveFunctionInfo("TotalProfit",
objt_type, obj_value);

The value of the objective function returned is based on the current (hopefully optimal) values of the variables.



Index

� parameter, 100

� BB, 45


�
 � � � , 101, 120

NewMINLPSolverManager, 120

convexifiermanager, 118, 121, 122

opssolvermanager, 118, 120

opssystem, 118, 120

ops, 118, 122

acceleration device, 24, 26

affine function, 44

algorithm, 19, 25, 103

algorithmic property, 43

automatic procedure, 43

BARON, 53, 55

barrier function, 33

bilinear, 45, 50, 99, 102

bilinear form, 35, 38

generalized, 36

separation, 35

bilinear problem, 56

binary, 37

binary problem, 39

binary variable, 40, 56

bivariate, 53

black box procedure, 24

bound, 36

lower, 26, 106, 113, 121

tightening, 111

upper, 26, 107, 113, 121

bound factor, 56

box-constrained, 32

branch, 21, 107, 110

point, 111

rule, 25

Branch-and-Bound, 21, 26, 35, 37, 40, 46,

49, 97, 101

� BB, 22

convergence, 27

sBB, 22, 121

Branch-and-Select, 24

branching, 55

C++, 116

Cantor, 47

cardinality, 47

Cauchy, 35

chord, 52

code

optimization, 116

portability, 116

combinatorial optimization, 24

combinatorial problem, 56

complementarity problem, 42

complexity, 23, 41

concave

optimization, 19

univariate, 52

concave envelope, 18

concave function, 17



Index 206

concave problem, 41

concave relaxation, 18, 40

concavoconvex, 54

constrained optimization, 18

constraint, 20, 50–52

bounds, 113

equality, 113

inequality, 113

structured, 116

constraint factor, 56

continuity, 43

continuous, 96

everywhere, 47

continuous method, 40

continuous optimization, 18

continuous variable, 40

continuum, 47

convenient, 36, 41, 47

convergence, 25, 111, 112

finite, 26

proof, 24

convex, 20, 52

envelope, 50, 109

locally, 34

convex envelope, 18, 49

convex function, 17

convex hull, 17

convex inequality, 18

convex optimization, 19

convex problem, 38

convex relaxation, 18, 38, 40, 45, 49, 52, 54,

56

Smith, 53

convex set, 17, 53

convexification, 109, 118, 122

convexity, 56

convexity gap, 40, 56

cut, 23

d.c. function, 18, 35

d.c. optimization, 19

d.c. problem, 43

d.c. set, 18

Dantzig, 37

deallocation, 122

decomposition, 35, 36

dense, 43

derivative

left, 44

right, 44

deterministic, 19, 23, 49

method, 32

diagonal shift matrix, 52

diagonalization, 35

differentiable, 96

nowhere, 47

dimensionality reduction, 47

discrete problem, 39

disjunction, 42

disjunctive constraint, 58

divide-and-conquer, 20, 24

dual bound, 34

duality, 34

duality gap, 34

ECP method, 23

eigenvalue, 52

envelope, 53, 91, 96

concave, 18, 91

convex, 18, 91

nonlinear, 91, 97

standard linear, 99

Euclidean space, 18, 38, 48, 123



Index 207

evaluation, 26

exact, 36, 37, 39, 41–44, 46, 48, 50

expression, 109

factorable, 44, 45

factorable problem, 45, 54, 56

feasibility bounds tightening, 55

feasibility problem, 42

feasible region, 17

filter, 24

fixed-point, 42

flat form, 123

Floudas, 49

formulation, 18, 24, 41

formulation of problem, 20, 106

fractional, 51, 54

trilinear, 51

fractional term, 54

function

affine, 44

barrier, 33

concave, 17

convex, 17

d.c., 18

penalty, 33

Galois, 93

Galois group, 93

Gauss, 35

global minimality, 38

global optimality, 47, 101

global optimality conditions, 43

global optimization, 19

global optimum, 41

global solution, 49

Gröbner bases, 23

gradient, 92

Hessian, 34, 52

Hilbert, 47

hypercube, 123

implementation, 55

incumbent, 25, 26

inequality

convex, 18

infeasible, 25

infeasible point, 33

integer optimization, 18

integrality enforcing constraint, 40

interval, 21

matrix, 52

open, 97

interval analysis, 35, 36

interval arithmetic, 57

Jacobi, 35

Karush-Kuhn-Tucker (KKT), 21

KKT conditions, 34

Lagrange, 20

multipliers, 21

Lagrange coefficients, 34

Lagrange multipliers, 34

Lagrangian, 34

lattice, 48

lifting, 38, 40, 47

linear

problem, 37

linear optimization, 19

linear relaxation, 56, 57

linearization, 57

linking

run-time, 120

Lipschitz, 33, 41



Index 208

local convexity, 34

local optimization, 19, 41, 49, 113

local optimum, 34

local solution, 26

lower bound, 56

valid, 49

via duality, 34

lower semicontinuous, 43

matrix theory, 36

max clique problem, 58

max-min problem, 42

maximization, 20

memory, 123

MILP, 58

minimization, 20

minimizer, 48

mixed integer optimization, 18

monomial, 53, 95, 98, 102

monotonic, 95

multi-extremal, 41

neighbourhood, 97

net, 24

refinement, 24

NLP, 19–22, 106, 111

node, 39, 97

non-convex function, 100

non-singular, 36

non-smooth, 33

non-soluble group, 93

nonconvex, 52

nonconvex optimization, 19

nonlinear optimization, 19

nonseparable, 45

normal subgroup, 93

NP-hard, 23

numerical results, 101

objective function, 17

definition of, 20

lower bound, 108

odd power, 91

optimality

tolerance, 26

optimality bounds tightening, 55

optimization

combinatorial, 24

concave, 19

constrained, 18

continuous, 18

convex, 19

d.c., 19

global, 19, 20

history of, 20

integer, 18

interval, 21

introduction to, 17

linear, 19

local, 19, 23, 113

mixed integer, 18

nonconvex, 19

nonlinear, 19

unconstrained, 19

overestimator, 108

concave, 91

partition, 24, 36, 43

Peano, 47

penalty function, 33

phase

global, 23

local, 23

piecewise convex, 102



Index 209

point

infeasible, 33

polyhedral set, 41

polynomial, 92

polynomial problem, 56, 57

polytope, 35

pooling problem, 58

positive

semi-definite, 52

positive definite, 35, 38

problem

factorable, 45

formulation, 20, 106

pseudo-convex, 18, 23

quadratic form, 35

quasi-convex, 18

radical, 93

range, 93

including zero, 98

unbounded, 96

range reduction, 55

re-entrancy, 116

refinement, 24

reformulation, 31, 99

	 -dimensional to 1-dimensional, 48

bilinear to concave, 41

binary to concave, 41

binary to continuous, 40

complementarity to concave, 42

convenient, 31

discrete to binary, 39

equality to inequality, 47

exact, 31

exact convex, 38

factorable to separable, 45

heuristic, 32

inequality to equality, 47

linear, 37

max-min to concave, 42

quadratic to linear, 37

Smith, 53

symbolic, 46

to box-constrained, 33

to unconstrained, 33

useful, 31

Reformulation-Linearization Technique, 45,

56

region, 123

relaxation, 31

alternative, 98, 102

concave, 18, 98

continuous, 31

convex, 18, 31, 44, 49, 98, 111, 118,

121, 122

linear, 40, 56, 91, 98, 121

novel, 102

tight, 58, 91, 100

update, 123

RLT, 45, 56

robustness, 58

root, 92

negative, 95

real, 94

unique, 95

Sahinidis, 53, 58

search space, 23

second derivative, 100

segment, 97

selection rule, 24

exact, 25



Index 210

semi-definite, 52

semi-separable, 36

semicontinuous

lower, 43

upper, 43

semidefinite, 35

separability, 35

separable, 35

separable function, 35, 43

separable problem, 35

set

d.c., 18

Sherali, 56

simplex, 58

simplex method, 37

slack variable, 47

slope, 92, 97

Smith, 40, 53

standard form, 46

solution, 47

solver

global, 121

module, 120

space-filling curve, 48

square matrix, 35

standard form, 32, 46, 49, 108, 109, 113

Smith, 46, 53

stationary point, 58

stochastic, 19, 23, 32

Sylvester, 35

symbolic, 109

symmetric group, 93

tangent, 91, 97

termination, 25

finite, 26

tight relaxation, 58

tolerance, 26

tree, 97

trilinear, 50

TSP, 24

unconstrained, 32, 37

unconstrained optimization, 19

underestimation, 100

underestimator, 52, 108

convex, 91

integer exponent, 110

uniform convergence, 43

univariate, 53, 99

univariate function, 45

upper semicontinuous, 43

usual topology, 47

valid cut, 56

variable, 20, 111

added, 114

binary, 40, 42

branch, 114, 123

change of, 38

continuous, 40

intermediate, 113

new, 38, 50–52, 113

original, 114

range, 118, 122, 123

slack, 47, 113

structured, 116

variable bound, 57

vertex, 41


