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Efficient edge-swapping heuristics for finding
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DEI, Politecnico di Milano, Piazza L. da Vinci 82, 20138 Milano, Italy
{liberti,amaldi,maculan,maffioli}@elet.polimi.it

Abstract. The problem of finding a fundamental cycle basis with min-
imum total cost in a graph is NP-hard. Since fundamental cycle bases
correspond to spanning trees, we propose new heuristics (local search and
metaheuristics) in which edge swaps are iteratively applied to a current
spanning tree. Structural properties that make the heuristics efficient are
established. We also present a mixed integer programming formulation
of the problem whose linear relaxation yields tighter lower bounds than
known formulations. Computational results obtained with our algorithms
are compared with those from existing constructive heuristics on several
types of graphs.

1 Introduction

Let G = (V,E) be a simple, undirected graph with n nodes and m edges,
weighted by a non-negative cost function w : E — R*. A cycle is a subset
C of E such that every node of V is incident with an even number of edges in
C. Since an elementary cycle is a connected cycle such that at most two edges
are incident to any node, cycles can be viewed as the (possibly empty) union of
edge-disjoint elementary cycles. If cycles are considered as edge-incidence binary
vectors in {0,1}/Fl it is well-known that the cycles of a graph form a vector
space over GF(2). A set of cycles is a cycle basis if it is a basis in this cycle
vector space associated to G. The cost of a cycle is the sum of the costs of all
edges contained in the cycle. The cost of a set of cycles is the sum of the costs
of all cycles in the set. Given any spanning tree of G characterized by an edge
set T C E, the edges in T are called branches of the tree, and those in E\T
(the co-tree) are called the chords of G with respect to T'. Any chord uniquely
identifies a cycle consisting of the chord itself and the unique path in T' con-
necting the two nodes incident on the chord. These m —n + 1 cycles are called
fundamental cycles and they form a Fundamental Cycle Basis (FCB) of G with
respect to T'. It turns out [1] that a cycle basis is fundamental if and only if each
cycle in the basis contains at least one edge which is not contained in any other
cycle in the basis. In this paper we consider the problem of finding Minimum
Fundamental Cycle Bases (MINFCB) in graphs, that is FCBs with minimum
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total cost. Since the cycle space of a graph is the direct sum of the cycle spaces
of its biconnected components, we assume that G is biconnected, i.e., G contains
at least two edge-disjoint paths between any pair of nodes.

Cycle bases have been used in the field of electrical networks since the time of
Kirchoff [2]. Fundamental cycle bases can be uniquely identified by their corre-
sponding spanning trees, and can therefore be represented in a highly compact
manner. Besides the above-mentioned characterization, Systo established sev-
eral structural results concerning FCBs [3, 1,4]. For example, two spanning trees
whose symmetric difference is a collection of 2-paths (paths where each node,
excluding the endpoints, has degree 2) give rise to the same FCB [1]. Although
the problem of finding a minimum cycle basis can be solved in polynomial time
(see [5] and the recent improvement [6]), requiring fundamentality makes the
problem NP-hard [7]. In fact, it does not admit a polynomial-time approxima-
tion scheme (PTAS) unless P=NP; that is, under the same assumption there
exists no polynomial-time algorithm that guarantees a solution within a factor
of 1+ € for every instance and for any € > 0 [8]. In the same work, a 4 + € ap-
proximation algorithm is presented for complete graphs, and a 20(vIognlogTogn)
approximation algorithm for arbitrary graphs.

Interest in minimum FCBs arises in a variety of application fields, such as
electrical circuit testing [9], periodic timetable planning [16] and generating min-
imal perfect hash functions [10].

The paper is organized as follows. In Section 2 we describe a local search
algorithm in which the spanning tree associated to the current FCB is iteratively
modified by performing edge swaps, and we establish structural results that make
its implementation efficient. In Section 3 the same type of edge swaps is adopted
within two metaheuristic schemes, namely a variable neighbourhood search and
a tabu search. To provide lower bounds on the cost of optimal solutions, a new
mixed integer programming (MIP) formulation of the problem is presented in
Section 4. Computational results are reported and discussed in Section 5.

2 Edge-swapping local search

In our local search algorithm for the MIN FCB problem, we start from the span-
ning tree associated to an initial FCB. At each iteration we swap a branch of
the current spanning tree with one of its chords until the cost cannot be further
decreased, i.e., a local minimum is found.

2.1 Initial feasible solutions

Initial solutions are obtained by applying a very fast “tree-growing” proce-
dure [11], where a spanning tree and its corresponding FCB are grown by adding
nodes to the tree according to predefined criteria. The adaptation of Paton’s pro-
cedure to the MIN FCB problem proceeds as follows. The node set of the initial
tree Vr only contains a root node vg, and the set X of nodes to be examined is
initialized at V. At each step a node u € X N Vr (not yet examined) is selected
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according to a predefined ordering. For all nodes z adjacent to u, if z € Vr, the
edge {z,u} is included in T (the edge is selected), the node z is added to Vr
and the node u is removed from X . Nodes to be examined are selected according
to non-increasing degree and, to break ties, to increasing edge star costs. The
resulting order tends to maximize the chances of finding very short fundamental
cycles early in the process. The performance of this tree-growing procedure is
comparable to other existing tree-growing techniques [7, 10].

2.2 Edge swap

Using edge swaps to search the solution space of the MIN FCB problem is a
good strategy, since all spanning trees of a graph can be obtained from any
initial spanning tree by the repeated application of edge swaps [12]. Consider
any given spanning tree T of G. For each branch e of T, the removal of e from T
induces the partition of the node set V into two subsets S% and S%. Denote by
05 the fundamental cut of G induced by the branch e of T, i.e., 6% = §(S%) =
{{u,v} € E | u € S&,v € S&}. For any chord f € 67, let m = (e, f) be the
edge swap which consists in removing the branch e from T" while adding f to T.
Denote by #T the resulting spanning tree.

Let T be the initial spanning tree constructed as in Section 2.1;
loop
Aopt = 0;
initialize mopt to the identity;
for alleeT
for all f € 6% with f#e
m:= (e, f);
if Ax > Aopt then
Topt = T
Aopt = Aqr;
end if
end for
end for
if mopt is not the identity then
T := 7moptT}
end if
until 7oy is the identity

Fig. 1. Local search algorithm for the MIN FCB problem.

For any spanning tree T, let C(T") be the set of cycles in the FCB associated
to T, and let w(C(T')) denote the FCB total cost (the function w is extended
to sets of edges in the obvious way: w(F) = 3 ;. pw(f) for any F C E). We
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are interested in finding edge swaps ® = (e, f), where e is a branch of the
current tree T and f is a chord in the fundamental cut 0% induced by e, such
that w(C(xT)) < w(C(T)). For each branch e and chord f, the cost difference
Ar = w(C(T)) —w(C(nT)) must be computed. Let A,y be the largest such A,
and mop¢ be the corresponding edge swap. If Aypy < 0 we let mop¢ be the identity
permutation.

The local search algorithm based on this edge-swapping operation is summa-
rized in Fig. 1.

2.3 Efficient implementation

Given the high worst-case computational complexity of each iteration of the
basic local search procedure (see Section 2.4), an efficient implementation is of
foremost importance. Since applying an edge swap to a spanning tree may change
the fundamental cycles and cut structure considerably, efficient procedures are
needed to determine the cuts ¢ for all e € #T, and to compute A, from the
data at the previous iteration, namely from T, = and the cuts 65, for e € T'.

Edge swap effect on the cuts In this subsection we prove that any edge swap
m = (e, f) applied to a spanning tree T, where e € T and f € 6%, changes a
cut 6% if and only if f is also in 0%. Furthermore, m(0%) = 6" is the symmetric
difference 6% Ad%. This makes it easy to maintain data structures relative to the
cuts that can be updated efficiently when 7 is applied to T'.

For each pair of nodes u,v € V let {(u,v) be the unique path in T from u to
v. Let e = {uc,ve} € T be an edge of the spanning tree and ¢ = {uc,vc} € T
be a chord, where the respective endpoints ue, Ve, U, V. are nodes in V. Let
pi(e;c) = (ue,uc), p2(e;c) = (ue,ve), p3(e,c) = (ve,uc), pale,c) = (ve,v.) and
Pr(e,c) = {pi(e,c) CT |i=1,...,4}. Note that exactly two paths in Pr(e,c)
do not contain e. Let Pr(e, ¢) denote the subset of Pr(e, c) composed of those two
paths not containing e. Let Pj(e,c) be whichever of the sets {pi (e, c),ps(e,c)},
{p2(e,c),ps3(e,c)} has shortest total path length in T (see Fig. 2). In the sequel,
with a slight abuse of notation, we shall sometimes say that an edge belongs to a
set of nodes, meaning that its endpoints belong to that set of nodes. For a path
p and a node set N C V(@) we say p C N if the edges of p are in the edge set
E(Gy) (i-e., the edges of the subgraph of G induced by N). Furthermore, we
shall say that a path connects two edges e, f if it connects an endpoint of e to
an endpoint of f.

Lemma 2.1. For any branch e € T and chord ¢ € E\T, we have c € 6% if and
only if Pr(e,c) = Pj(e,c).

Proof. First assume that ¢ € §5. Denoting by u.,v. the endpoints of ¢ and
by u.,v. those of e, we can assume w.l.o.g. that wu., v, u.,v. are labeled so
that u.,u. € S% and v.,v. € S%. Since there is a unique shortest path ¢ in T
connecting u. to v, with u, € S%, v. € S%, then e € p. Thus, there are unique
shortest sub-paths g¢1,¢2 of ¢ such that ¢ = (ue,uc), g2 = {ve,v.) and ¢ C
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Fig. 2. (A) If ¢ is in the fundamental cut induced by e, Pr(e,c) = Pj(e,c) = {p1,pa}.
Otherwise, up to symmetries, we have the situation depicted in (B) where Pr(e,c) #
Pr(e,c).

S5, g2 C S%. Hence Pj(e,c) = {q1,q2} = Pr(e,c). Conversely, let Pj(e,c) =
{q1,¢2}, and assume that e & g1, ¢2. Since either ¢; C S% and g2 C S% or vice
versa, the endpoints of ¢ are separated by the cut 65, i.e., ¢ € 65. O

Let T be a spanning tree for G = (V, E) and © = (e, f) an edge swap with
e€T,fe€é5 and f # e. First we note that the cut in G induced by e of T is
the same as the cut induced by f of #T.

Proposition 2.2. 7(é5) = 57{T.

Proof. Since f € 6%, swapping e with f does not modify the partitions that
induce the cuts, i.e., ST = Sj:T. O

Second, we show that the cuts that do not contain f are not affected by .

Proposition 2.3. For each h € T such that h # e, and f ¢ 6%, we have
m(oh) = oh.

Proof. Let g € 6. By Lemma 2.1, the shortest paths p!, pf" from the endpoints
of h to the endpoints of g do not contain h. We shall consider three possibilities.
(1) In the case where e and f do not belong either to p! or pl we obtain
trivially that P.r(e,c) = Pr(e,c) = Pj(e,c) = P*y(e,c) and hence the result.
(2) Assume now that e € p, and that both e, f are in S%. The permutation
changes p! so that f € pI'?, whilst p57 = pI. Now p77 is shortest because it is
the unique path in 7T connecting the endpoints of pT, and since h & pfT,p5T
because 7 does not affect h, we obtain Prr(e,c) = Pr(e,c). (3) Suppose that
e €pl,ee Shand f € St Since f € 05, by Lemma 2.1 there are shortest
paths ¢f ,¢7 connecting the endpoints of e and f such that ¢f C S%, ¢I C 5.
Since e € Sk, f € Sh and T is tree, there is an i in {1,2} such that h € ¢} (say,
w.lo.g. that i = 1);let ¢f = rf U{h}uUr?, where r} C S2 connects h and e, and
r3 C S% connects h and f. Let ¢* =r{ U{e}Uqj, then ¢" is the unique path
in S% connecting h and f. Since rJ connects h and f in SE, we must conclude

that f € 6%, which is a contradiction. O
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Third, we prove that any cut containing f is mapped by the edge swap
m = (e, f) to its symmetric difference with the cut induced by e of T'.

Theorem 2.4. For each h € T such that h # e and f € 0%, we have n(6%) =
ShAGS..

Due to its length, the proof is given in the Appendix.

Edge swap effect on the cycles In order to compute A, efficiently, we have
to determine how an edge swap m = (e, f) affects the FCB corresponding to the
tree T'. For each chord h of G with respect to T', let v be the unique fundamental
cycle induced by h.

Fact If h & 0%, then v% is unchanged by .

The next result characterizes the way m acts on the cycles that are changed
by the edge swap 7.

Theorem 2.5. If h € 65, then v, = w(yh) = YL A~ where v is the funda-
mental cycle in T corresponding to the chord f.

Proof. We need the two following claims.

Claim 1. For all h € 8% such that h # e, ¥4 N 6% = {e, h}.

Proof. Since v2 is the simple cycle consisting of h and the unique path in T
connecting the endpoints of h through e, the only edges both in the cycle and
in the cut of e are e and h.

Claim 2. For all pairs of chords g, h € §% such that g # h there exists a unique
simple cycle v C G such that g € y, h € v, and y\{g,h} C T.

Proof. Let g = (g1, 92), h = (h1, h2) and assume w.l.0.g. g1, h1, g2, ho are labeled
so that gi,h; € S% and go,hs € S5. Since there exist unique paths p C T
connecting g1, h1 and ¢ C T connecting g2, ha, the edge subset v = {g,h} UpUgq
is a cycle with the required properties. Assume now that there is another cycle 4
with the required properties. Then «' defines paths p’, ¢’ connecting respectively
g1, h1 and g2, ho in T Since T is a spanning tree, p = p' and ¢ = ¢'; thus ' = ~.

Consider the cycle v = fyrf,EAfy{M By definition, e € 72, e € fy%, he~h fe 7:’;.
Since h, f € 6%, by Claim 1 h € ). and f € ¥2. Thus h € v, f € v, e & 7.
Consider now m(y%). Since e € v and 7 = (e, f), f € w(7%). Furthermore, since
7 fixes h, h € m(yk). Hence, by Claim 2, we have that 7(y2) = v = yAA~y]. O

2.4 Computational complexity

We first evaluate the complexity of applying an edge swap to a given spanning
tree and of computing the fundamental cut and cycle structures in a basic im-
plementation. Computing the cost of a FCB given the associated spanning tree
T is O(mn), since there are m — n + 1 chords of G relative to T and each one
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of the corresponding fundamental cycles contains at most n edges. To select the
best edge swap available at any given iteration, one has to evaluate the FCB
cost for all the swaps involving one of the n — 1 branches e € T' and one of the
(at most m —n + 1) chords f € 5. Since computing a fundamental cut requires
O(m), the total complexity for a single edge swap is O(m?®n?).

In the efficient implementation described in Section 2.3, fundamental cuts and
cycles are computed by using symmetric differences of edge sets, which require
linear time in the size of the sets. Since there are m fundamental cycles of size at
most n, and n fundamental cuts of size at most m, updating the fundamental cut
and cycle structures after the application of an edge swap (e, f) requires O(mn).
Doing this for each branch of the tree and for each chord in the fundamental cut
induced by the branch, leads to an O(m?n?) total complexity.

It is worth pointing out that computational experiments show larger speed-
ups in the average running times (with respect to the basic implementation)
than those suggested by the worst-case analysis.

2.5 Edge sampling

The efficient implementation of the local search algorithm described in Fig. 1 is
still computationally intensive, since at each iteration all pairs of tree branches
e and chords f € 65 must be considered to select the best available edge swap.
Ideally, we would like to test the edge swap only for a small subset of pairs e, f
while minimizing the chances of missing pairs which yield large cost decreases.

C— @ —¢ @
e a) 6! g, 10, (&D |6 ‘a4 f a) 6!
S > > S D > > S

Fig. 3. All edge weights are equal to 1 and the numbers indicated on the chords corre-
spond to the costs of the corresponding fundamental cycles. The cut on the left has a
difference between the cheapest and the most expensive cycles of 10 — 4 = 6; after the
edge swap the difference amounts to 6 — 4 = 2.

A good strategy is to focus on branches inducing fundamental cuts whose
edges define fundamental cycles with “unbalanced” costs, i.e., with a large differ-
ence between the cheapest and the most expensive of those fundamental cycles.
See Fig. 3 for a simple example. This is formalized in terms of an order <; on
the tree branches. For branches e, e; € T, we have e; < e if the difference be-
tween the maximum and minimum fundamental cycle costs deriving from edges
in 67 is smaller than that deriving from edges in 7. Computational experience
suggests that branches that appear to be larger according to the above order
tend to be involved in edge swaps leading to largest decreases in the FCB cost.

This strategy can be easily adapted to sampling by ordering the branches of
the current spanning tree as above and by testing the candidate edge swaps only
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for the first o fraction of the branches, where 0 < ¢ < 1 is an arbitrary sampling
constant.

3 Metaheuristics

To go beyond the scope of local search and try to escape from local minima,
we have implemented and tested two well-known metaheuristics: variable neigh-
bourhood search (VNS) [13] and tabu search (TS) [14].

3.1 Variable neighbourhood search

In VNS one attempts to escape from a local minimum '’ by choosing another
random starting point in increasingly larger neighbourhoods of x'. If the cost of
the local minimum " obtained by applying the local search from z’ is smaller
than the cost of @', then =" becomes the new best local minimum and the
neighbourhood size is reset to its minimal value. This procedure is repeated
until a given termination condition is met.

For the MIN FCB problem, given a locally optimal spanning tree T” (obtained
by applying the local search of Fig. 1), we consider a neighbourhood of size p
consisting of all those spanning trees T' that can be reached from T” by applying
p consecutive edge swaps. A random solution in a neighbourhood of size p is
then obtained by generating a sequence of p random edge swaps and applying
it to T".

3.2 Tabu search

Our implementation of tabu search includes diversification steps & la VNS (vTS).
In order to escape from local minima, an edge swap that worsens the FCB cost
is applied to the current solution and inserted in a tabu list. If all possible edge
swaps are tabu or a pre-determined number of successive non-improving moves
is exceeded, t random edge swaps are applied to the current spanning tree. The
number ¢ increases until a pre-determined limit is reached, and is then re-set to
1. The procedure runs until a given termination condition is met.

Other TS variants were tested. In particular, we implemented a “pure” TS
(pTS) with no diversification, and a fine-grained TS (fTS) where, instead of
forbidding moves (edge swaps), feasible solutions are forbidden by exploiting
the fact that spanning trees can be stored in a very compact form. We also
implemented a TS variant with the above-mentioned diversification steps where
pTS tabu moves and fTS tabu solutions are alternatively considered. Although
the results are comparable on most test instances, vTS performs best on average.
Computational experiments indicate that diversification is more important than
intensification when searching the MIN FCB solution space with our type of edge
swaps.
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4 Lower bounds

A standard way to derive a lower bound on the cost of the optimal solutions of
a combinatorial optimization problem (and thus to estimate heuristics perfor-
mance) is to solve a linear relaxation of a (mixed) integer programming formu-
lation. Three different integer programming formulations were discussed in [15].

We now describe an improved formulation that uses non-simultaneous flows
on arcs to ensure that the cycle basis is fundamental. Consider a biconnected
graph G = (V, E) with a non-negative cost w;; assigned to each edge {i,j} € E.
For each node v € V, 6(v) denotes the node star of v, i.e., the set of all edges
incident to v. Let Go = (V, A) be the directed graph associated with G, namely
A={(i,5),J,9)|{i,j} € E}. We use two sets of decision variables. For each edge
{k,1} € E, the variable z}} > 0 represents the flow through arc (i, ) € A from
k to I. Moreover, for each edge {i,j} € E, the variable z;; is equal to 1 if edge
{i,j} is in the spanning tree of G, and equal to 0 otherwise. For each pair of
arcs (i,j) € A and (j,i) € A, we define wj; = w;;.

The following MIP formulation of the MIN FCB problem provides much
tighter bounds than those considered in [15]:

min Z Z wi; T + Z (1 = 2z;5)w;; (1)

{k,\}EE (i,j)eA {i.j}eE

Y (af—ak)=1  V{kI}eE (2)

J€s(k)
S @i -ak)y=0 V{kI}€E, VieV\{k1} (3)

jes(i)
off <z;  V{k,I} € E, V{i,j} € E (4)
ol <z;  V{kI} € E, V{i,j} € E (5)
Z Zijg =N — 1 (6)

{i,j}eE

zff >0 V{kI}e€E, V(i,j)e A
Rij € {0, 1} V{Z,j} e k.

For each edge {k,l} € E, a path p from k to [ is represented by a unit
of flow through each arc (7,j) in p. In other words, a unit of flow exists node
k and enters node [ after going through all other (possible) nodes in p. For
each edge {k,l} € E, the flow balance constraints (2) and (3) account for a
directed path connecting nodes k£ and [. Note that the flow balance constraint
for node [ is implied by constraints (2) and (3). Since constraints (4) and (5)
require that z;; = 1 for every edge {4, j} contained in some path (namely with a
strictly positive flow), the z variables define a connected subgraph of G. Finally,
constraint (6) ensures that the connected subgraph defined by the z variables is
a spanning tree. The objective function (1) adds the cost of the path associated
to every edge {k,l} € E and the cost of all tree chords, and subtracts from it
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the cost of the tree branches (which are counted when considering the path for
every edge {k,l}).

Besides the quality of the linear relaxation bounds, the main shortcoming of
this formulation is that it contains a large number of variables and constraints
and hence its solution becomes cumbersome for the largest instances.

5 Some computational results

Our edge-swapping local search algorithm and metaheuristics have been imple-
mented in C++ and tested on three types of unweighted and weighted graphs.
CPU times refer to a Pentium 4 2.66 GHz processor with 1 GB RAM running
Linux.

5.1 Unweighted mesh graphs

One of the most challenging testbeds for the MIN FCB problem is given by
the square n x n mesh graphs with unit costs on the edges. This is due to the
large number of symmetries in these graphs, which bring about many different
spanning trees with identical associated FCB costs. Uniform cost square mesh
graphs have n? nodes and 2n(n — 1) edges. Table 1 reports the FCB costs and
corresponding CPU times of the solutions found with: the local search algorithm
(LS) of Fig. 1, the variant with edge sampling (Section 2.5), the NT-heuristic
cited in [10], the VNS and tabu search versions described in Section 3. For
LS with edge sampling, computational experiments indicate that a sampling
constant of 0.1 leads to a good trade-off between solution quality and CPU time
for this type of graphs. The lower bounds in the last column correspond to the
cost of a non-fundamental minimal cycle basis, that is to four times the number
of cycles in a basis: 4(m — n + 1). For this particular type of graphs, the linear
relaxation of the MIP formulation provides exactly the same lower bounds.

5.2 Random Euclidean graphs

To asses the performance of our edge-swapping heuristics on weighted graphs,
we have generated simple random biconnected graphs. The nodes are positioned
uniformly at random on a 20 x 20 square centered at the origin. Between each
pair of nodes an edge is generated with probability p, with 0 < p < 1. The cost of
an edge is equal to the Euclidean distance between its adjacent nodes. For each
n in {10, 20, 30,40, 50} and p in {0.2,0.4,0.6,0.8}, we have generated a random
graph of size n with edge probability p.

Table 2 reports the results obtained with the edge-swapping heuristics (pure
local search and metaheuristics) on these random graphs. The first two columns
indicate the performance of LS in terms of FCB cost and CPU time. The next
two columns correspond to the lower bounds obtained by partially solving the
MIP formulation of Section 4. The third and fourth two-column groups indicate
the performances of VNS and TS. There was enough available data to ascribe
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LS LS with edge sampling| NT [10] VNS | TS |Bound
n || Cost Time | Cost Time Cost Time | Cost | Cost | Cost
5( 72 0:00:00] 74 0:00:00 78 0:00:00] 72 72 64
10|| 474 0:00:00| 524 0:00:00 518 0:00:00| 466" | 466" | 324
15|| 1318 0:00:00| 1430 0:00:00 1588 0:00:00| 1280* | 1276* | 784
20(| 2608 0:00:03| 3186 0:00:00 3636 0:00:00| 2572* | 2590* | 1444

25| 4592 0:00:16| 5152 0:00:02 6452 0:00:00| 4464 | 4430" | 2304
30|| 6956 0:00:47| 8488 0:00:03 11638 0:00:00| 6900* | 6882* | 3364
35/(10012 0:02:19|11662 0:00:08 16776 0:00:00| 9982* | 9964™ | 4624
40((13548 0:06:34(15924 0:00:26 28100 0:00:01|13524* (13534 | 6084
45((18100 0:14:22(22602 0:01:00 35744 0:00:01| 18100 | 18100 | 7744
50((23026 0:31:04|33274 0:01:10 48254 0:00:03| 23026 | 23552 | 9604

Table 1. Computational results (FCB cost and CPU times (h:mm:ss)) for n X n mesh
graphs having unit edge costs, obtained with different heuristics. The VNS and TS
metaheuristics were run for 10 minutes (after finding the first local optimum). Values
marked with * denote an improved value with respect to LS. Lower bounds on the
optimal value are reported in the last column.

some statistical significance to the average percentage gap between heuristic and
lower bounding values (8.19%), and its reassuringly low standard deviation (%
5.15%). The maximum frequency value is also a rather low value (6%). It is worth
pointing out that the lower bounds obtained by solving the linear relaxation of
the formulation presented in Section 4 are generally much tighter than those
derived from the formulations considered in [15].

5.3 Weighted graphs from periodic timetabling

An interesting application of MIN FCB arises in periodic timetabling for trans-
portation systems. To design the timetables of the Berlin underground, Liebchen
and Mohring [16] consider the mathematical programming model based on the
Periodic Event Scheduling Problem (PESP) [17] and the associated graph G in
which nodes correspond to events. Since the number of integer variables in the
model can be minimized by identifying an FCB of G and the number of discrete
values that each integer variable can take is proportional to the total FCB cost,
good models for the PESP problem can be obtained by looking for minimum
fundamental cycle bases of the corresponding graph G.

Due to the way the edge costs are determined, the MIN FCB instances aris-
ing from this application have a high degree of symmetry. Such instances are
difficult because, at any given heuristic iteration, a very large number of edge
swaps may lead to FCBs with the same cost. Notice that this is generally not
the case for weighted graphs with uniformly distributed edge costs. The re-
sults reported in Table 3 for instance timtab2, which is available from MIPLIB
(http://miplib.zib.de) and contains 88 nodes and 316 edges, are promising,.
According to practical modeling requirements, certain edges are mandatory and
must belong to the spanning tree associated to the MIN FCB solution. The
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p=20.2
n LS CPU time| Bound CPU time| VNS CPU time| TS CPU time
10([216.698F 0 216.698" 0 216.6987 0 216.6987 0
20(/1052.381 0 1052.38"  0:56  |1052.38" 0 1052.38" 0
30| 3315.89 0 2750.92  0:28 |3111.71* 0:14 |3315.89 0

0

0

40(| 4634.04 0 4065.187 16:58 |4504.84* 0:22 |4633.45*

50(| 7007.34 0:01 6448.711 2:38:51 |6991.53* 1:11 7007.34 0:
p=04
n LS CPU time| Bound CPU time| VNS CPU time| TS CPU time
10| 472.599 0 459.3057 0:02 [459.3057 0 472.599 0

20(| 2021.82 0 1894.747 0:08 2021.37* 0:04 2021.37* 0

30| 4467.13 0 4265.6 22:56 4455.2* 0:29 4455.2* 0:01

40(| 7685.97 0:01 - - 7648 1:46  |7684.53" 0:02

50(| 11096.8 0:05 - - 11022.8" 9:32 11073.4" 0:12
p=20.6

n LS CPU time| Bound CPU time| VNS CPU time| TS CPU time
10(| 581.525 0 547.4067  0:08 [547.4067 0 547.4067 0
20|| 2776.22 0 2627.558  0:59 | 2756.6*  0:08 | 2756.6* 0

30(| 7031.2 0 6445.83  39:32 |6979.15*  1:13 7031.2 0:03

40| 11686.0 0:02 - - 11513* 6:40 |11683.4*  0:04

50(| 19387.3 0:10 - - 19174.1" 7:06 19174.1% 1:06
p=0.38

n LS CPU time| Bound CPU time| VNS CPU time| TS CPU time
10([ 992.866 0 775.8387  0:26  [775.838T 0 775.8387 0

20| 3478.11 0 3164.9 2:31  [3383.45"  0:13  (3383.45" 0:02
30| 8971.78 0:01 |7823.848 1:43:05 |8384.32* 2:42  |8930.17* 0:02
40| 14946.4 0:07 - - 14870.7* 5:30  |14902.2* 0:16
501| 25349.9 0:12 - - 25061.2*  31:55 |25245.5" 0:53

Table 2. Computational results (FCB costs, CPU times (mm:ss), lower bounds) for
Euclidean random graphs. Lower bound values marked with ' denote an optimal solu-
tion (MIP solved to optimality). FCB costs are marked with T when the metaheuristic
improved on the value found by LS. Missing values are due to excessive CPU timings.

above-mentioned instance contains 80 mandatory edges out of 87 tree branches,
and most of the these 80 fixed edges have very high costs. As shown in Table 3
(instance liebchen-fixed), this additional condition obviously leads to FCBs
with substantially larger costs.

6 Concluding remarks

We described and investigated new heuristics, based on edge swaps, for tackling
the MIN FCB problem. Compared to existing tree-growing procedures, our lo-
cal search algorithm and simple implementation of the VNS and Tabu search
metaheuristics look very promising, even though computationally more inten-
sive. We established structural results that allow an efficient implementation of
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Local search | NT [10] VNS TS Lower bound
Instance FCB cost Time|FCB cost|{FCB cost Time|FCB cost Time| FCB cost
liebchen 40520 0.7s | 50265 39801*  30s | 39841* 30s | 31220.534
liebchen-fixed|| 46072 0.13s - - - 46002  30s 39907.96

Table 3. Computational results for Liebchen’s instance. Missing values are due to a
missing implementation of the corresponding algorithm which deals with mandatory
spanning tree edges. Values marked with * correspond to an improvement with respect
to the LS solution.

the proposed edge swaps. We also presented a new MIP formulation whose lin-
ear relaxation provides tighter lower bounds than known formulations on several
classes of graphs.
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Appendix: proof of Theorem 2.4

To establish that, for each h € T such that h # e and f € 6%, we have (%) =
SR A8%., we proceed in four steps.

We prove that: (1) g € 62N 85 = g & 7(6%), (2) g € 02 U85 = g & w(Sh),

(3) g € 62\6¢ = g € w(62), and (4) g € 6°\o% = g € 7(oR).

When there is no ambiguity, d7 is written 6°.

Claim 1: g € " N é¢ = g & 7(6").

Proof. Since g € 6" there are shortest paths pY,pl connecting g, h and not

Fig. 4. Claim 1: If g € 6" N 6° then g & w(6").

containing h, such that p! C S% and pI C Sh. Since g € &¢, either p or
pd must contain e, but not both. Assume w.lo.g. that e € p;, e & py (i-e.,
e € Sh). Thus 7 sends p! to a path pT? containing f, whereas p3? = pZ". Thus
Prr(h,g) = {pT*,p3T}. Since f € 6%, there exist shortest paths ¢gf C S% and
¢} C SR connecting f,h and not containing h. Because ¢gi C S2, e & ¢f. In
7T, ¢ can be extended to a path ¢"* = ¢f U {f}. By Proposition 2.2 g € §7,.
Thus in 7T there exist paths 777 in S7,. = §% and r37 in S7,, = S& connecting
f, g and not containing f. Notice that the path ¢™7 UrT? connects the endpoint
of hin S and g, and p57 connects the same endpoint of h with the opposite
endpoint of g. Thus pfT = {h} U ¢"T Ur]T, which means that h € p7T, i.e.,
*+(h,g) # Prr(h,g). By Lemma 2.1, the claim is proved.
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Claim 2: g ¢ 6" Ud° = g & 7(d"). o
Proof. By hypothesis, g € S£NSk or g € SN S%. Assume the former w.l.o.g. Let

(e

Fig. 5. Claim 2: If g ¢ 6" U ¢ then g ¢ w(6").

p?,pl be unique shortest paths from h to g, and assume h € p!. Thus pI C Sh.
Since g & 6°, there are unique shortest paths ¢f,qJ from e to g such that e is
in one of them, assume e € ¢f. Since both h,e € T, there is a shortest path
rT between one of the endpoints of h and one of the endpoints of e, while the
opposite endpoints are linked by the path {h} Ur? U {e}. Suppose e € p!. Then
since both endpoints of g are reachable from e via qf , ¢, and e is reachable from
h through rT, it means that e € pZ. Conversely, if e & pT, then e & pZ. Thus, we
consider two cases. If e is not in the paths from h to g, then 7 fixes those paths,
ie., h € pIT and h & p57T, that is g ¢ 6". If e is in the paths from h to g, then
both the unique shortest paths pT? and p3? connecting h and g in 7T contain
f- Since g & (5,{T = 6%, there are shortest paths sT7, s connecting f to g one
of which, say sT7, contains f. Moreover, since both h, f € T, there is a shortest
path ™7 connecting one of the endpoints of h to one of the endpoints of f, the
other shortest path between the opposite endpoints being {h}Uu™T U{f}. Thus,
either pTT = u™ UsTT and p§T = {h}Uu™TU{f}UsiT, or piT = wTU{f}uUssT
and p3T = {h}Uu™" UsTT. Either way, one of the paths contains h. By Lemma
2.1, the claim is proved.

Claim 3: g € §"\6¢ = g € w(6").

Proof. Since g € 6", there are shortest paths pI C S&pf C Sk connecting h
and g, none of which contains h. Assume w.l.o.g. e € S%. Suppose e € pT, say
pf = ¢V U {e} UrT. Consider s = ¢¥ U {h} Upl and rT. These are a pair
of shortest paths connecting e and g such that e does not belong to either; i.e.,
g € 6%, which contradicts the hypothesis. Thus e & p{, i.e., 7 fixes paths 7{ , 71 ;

thus P,r(h,g) = Pr(h,g) = P;(h,g) = P*(h,g), which proves the claim.

Claim 4: g € §°\6" = g € w(5").

Proof. First consider the case where e, g € SE. Since g & 6%, the shortest paths
pl, pd connecting h, g are such that one of them contains h, say h € p¥, whilst
pd C Sk. Since g € &¢, there are shortest paths ¢f , g7 entirely in S, connecting
e, g such that neither contains e. Since both e,h € T there is a shortest path
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Fig. 7. Claim 4: If g ¢ 6" and g € 6%, then g € 7(6").

rT C S% connecting an endpoint of A to an endpoint of e, the opposite endpoints
being joined by {h}UrT U{e}. Thus w.lo.g. pT = {h}UrTu{e} Uq!. Since the
path 7 U ¢ does not include e and connects h, g, e € pd. Thus p3? = p" and
h & ptT. On the other hand 7 sends p! to a unique shortest path pT? connecting
h, g that includes f. Since f € %, there are shortest paths sI C Sk sI C Sh
that do not include h. Since pI C S2 sT may only touch the same endpoint of h
as pJ. Thus the endpoint of h touched by pI also originates s Since sI C Sk,
h ¢ sI. Since p77T joins h,g, contains f and is shortest, pT? = sT U{f} Uu,
where u™ is a shortest path from f to g (which exists because by Proposition
2.2 g € 67,), which shows that & ¢ p7Z. Thus by Lemma 2.1, g € w(6"). The
second possible case is that e € S, g € Sk. Since g € 6% there are shortest paths
pT,pl connecting e, g such that neither includes e. Assume w.l.o.g. h € S%. Since
e, g are partitioned by 0%, exactly one of pI', pl includes h (say h € pf, which
implies pI' C S2). Let ¢ be the sub-path of p! joining h and g and not including
h, and let 77" be the sub-path of p{ joining h and e and not including h. Let
¢ =rTU{e}Upl. We have that ¢, is a shortest path joining h, g not including
h. Thus Pr(h,g) = {¢f,q} = Pj(h,g), and by Lemma 2.1 g € 6%, which is a
contradiction. O



