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ABSTRACT

Following ideas of van Dijk and Hille we study the link which exists between maximal degenerate
representations and Berezin kernels.
We consider the conformal group Conf(V ) of a simple real Jordan algebra V . The maximal degenerate
representations πs (s ∈ C) we shall study are induced by a character of a maximal parabolic subgroup P̄

of Conf(V ). These representations πs can be realized on a space Is of smooth functions on V . There is
an invariant bilinear form Bs on the space Is . The problem we consider is to diagonalize this bilinear
form Bs , with respect to the action of a symmetric subgroup G of the conformal group Conf(V ).
This bilinear form can be written as an integral involving the Berezin kernel Bν , an invariant kernel
on the Riemannian symmetric space G/K , which is a Makarevich symmetric space in the sense
of Bertram. Then we can use results by van Dijk and Pevzner who computed the spherical Fourier
transform of Bν . From these, one deduces that the Berezin kernel satisfies a remarkable Bernstein
identity:

D(ν)Bν = b(ν)Bν+1,

where D(ν) is an invariant differential operator on G/K and b(ν) is a polynomial. By using this
identity we compute a Hua type integral which gives the normalizing factor for an intertwin-
ing operator from I−s to Is . Furthermore, we obtain the diagonalization of the invariant bilin-
ear form with respect to the action of the maximal compact group U of the conformal group
Conf(V ).
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1. BEREZIN KERNELS ON MAKAREVICH SPACES

In this section we shall introduce the notion of a Berezin kernel on a symmetric
space of a particular type by mean of Jordan algebraic methods.

1.1. Jordan algebras and their conformal groups

A finite-dimensional vector space V on R or C is a Jordan algebra if it is endowed
with a bilinear map (x, y) → xy from V × V into V satisfying the two following
axioms:

(J1) xy = yx, ∀x, y ∈ V, (J2) x(x2y) = x2(xy), x, y ∈ V.

Let L(x) ∈ End(V ) denote for every x ∈ V the linear map defined by L(x)y = xy

for every y ∈ V . Let r and n denote respectively the rank and the dimension of
the Jordan algebra V . For a regular element x, the minimal polynomial fx is of
degree r ,

fx(λ) = λr − a1(x)λr−1 + · · · + (−1)rar(x).

The coefficient aj is a homogeneous polynomial of degree j , �(x) = ar(x) is the
Jordan determinant, and tr(x) = a1(x) is the Jordan trace of x. (See [8, p. 28] for
more details.)

Define the so-called quadratic representation of V by: P(x) = 2L(x)2 − L(x2),
x ∈ V . One checks that �(x)2 = det(P (x))r/n, where P(x) is seen as an endomor-
phism of V .

A real Jordan algebra V is said to be semi-simple if the bilinear form TrL(xy) is
nondegenerate on V . Such an algebra is unital. Furthermore it is called Euclidean
if the above bilinear form is positive definite.

An involutive automorphism α of V is called Euclidean if the bilinear form
TrL(α(x)y) is positive definite on V . For a semi-simple Jordan algebra such a
Euclidean involution always exists.

Assume from now on that V is a simple real Jordan algebra. According to the
general construction of Kantor–Koecher–Tits one associates to V a simple Lie
group which can be understood as a group of conformal transformations of the
corresponding Jordan algebra (in a sense we shall explain).

Let us recall this classical construction. The structure group Str(V ) of V can be
defined as the subgroup of GL(V ) of elements g such that there exists a real number
χ(g) for which

�(g.x) = χ(g)�(x), x ∈ V.(1.1)

The map g → χ(g) is a character of Str(V ) which is a reductive Lie group.
The Jordan algebra V can be identified with the abelian group N of its own

translations via the map y → ny from V to N , where ny(x) = x + y, ∀x ∈ V .
The conformal group Conf(V ) (or the Kantor–Köcher–Tits group) of the Jordan
algebra V is the group of rational transformations of V generated by translations,
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elements in Str(V ) and the inversion map j :x → −x−1. It is a simple Lie group.
A transformation g ∈ Conf(V ) is conformal in the sense that, at each point x, where
g is well defined, its differential (Dg)x belongs to the structure group Str(V ).

The subgroup of all affine conformal transformations P = Str(V ) � N is a
maximal parabolic subgroup of Conf(V ). Let σ be the involution of Conf(V ) given
by

σ(g) = j ◦ g ◦ j, g ∈ Conf(V ),

where j ∈ Conf(V ) is the inversion map. We define N = σ(N) and P := Str(V ) �

N .
From the geometric point of view the subgroup P can be characterized in the

following way:

P = {
g ∈ Conf(V )′ | g(0) = 0

}
,

where Conf(V )′ is the subset of Conf(V ) of all conformal transformations
well-defined at 0 ∈ V . It is open and dense in Conf(V ). Moreover, Conf(V )′ =
N Str(V )N . The map N × Str(V ) × N → Conf(V )′ is a diffeomorphism. We
shall refer to this decomposition as to the Gelfand–Naimark decomposition of
the conformal group. Furthermore, for every transformation g ∈ Conf(V ) which
is well defined at x ∈ V , the transformation gnx belongs to Conf(V )′ and its
Gelfand–Naimark decomposition is given by:

gnx = ng.x(Dg)xn̄
′,(1.2)

where (Dg)x ∈ Str(V ) is the differential of the conformal map x → g.x at x and
n̄′ ∈ N (see [17, Proposition 1.4]).

The flag variety M = Conf(V )/P , which is compact, is the conformal compact-
ification of V . In fact the map x → (nx ◦ j)P gives rise to an embedding of V into
M as an open dense subset, and every transformation in Conf(V ) extends to M.

The Euclidean involution α of V introduced above also defines an involution θ

of Conf(V ) by:

θ(g) = α ◦ j ◦ g ◦ j ◦ α.(1.3)

It turns out that θ is a Cartan involution of Conf(V ) (see [17, Proposition 1.1]).
So the fix points subgroup of θ : U = Conf(V )θ is a maximal compact subgroup of
Conf(V ).

Let us recall that a simple real Jordan algebra is either a real form of a simple
complex Jordan algebra or a simple complex Jordan algebra considered as a real
one. We conclude this section with the classification of simple Jordan algebras,
together with their conformal groups and maximal compact subgroups U , given in
Table 1. We shall refer to the Jordan algebras given in the first and fourth columns
as to the nonsplit case, and to those of the second and third columns as to the split
case.
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Table 1

Complex Euclidean Non-Euclidean Non-Euclidean

Nonsplit Split Split Nonsplit (m = 2	)

V Symm(C) Symm(R) × Sym2	(R) ∩ M	(H)

Conf(V ) Spm(C) Spm(R) × Sp(	, 	)

U Spm Um × Sp	 × Sp	

V Mm(C) Hermm(C) Mm(R) M	(H)

Conf(V ) SL2m(C) SU(m,m) SL2m(R) SL2	(H)

U SU2m S(Um × Um) SO2m SU2	(H)

V Skew2m(C) Hermm(H) Skew2m(R) ×
Conf(V ) SO4m(C) SO∗

4m SO(2m,2m) ×
U SO4m U2m SO2m × SO2m ×
V C × C

n−1
R × R

n−1
R

p × R
q

R
n

Conf(V ) SOn+2(C) SOo(2, n) SOo(p + 1, q + 1) SOo(1, n + 1)

U SOn+2 SO2 × SOn SOp+1 × SOq+1 SOn+1

V Herm(3,O)C Herm(3,O) Herm(3,Os) ×
Conf(V ) E7(C) E7(−25) E7(7) ×
U E7 E6 × SO2 SU8 ×
Type IV I II III

1.2. Makarevich Riemannian symmetric spaces

A Makarevich symmetric space of tube type is a reductive symmetric space which
can be realized as an open symmetric orbit in the conformal compactification M
of a simple real Jordan algebra V . We refer the reader to [3,4] and literature cited
there for a detailed description. We shall concentrate our interest on Makarevich
symmetric spaces carrying an invariant Riemannian metric.

Let α be as previously a Euclidean involution of the Jordan algebra V and let

V0 := {
x ∈ V | α(x) = x

}
, V1 := {

x ∈ V | α(x) = −x
}
,

be the corresponding eigenspaces of α on V . Notice that the set V0 is a Euclidean
Jordan algebra, whose dimension and rank will be denoted by n0 and r0. This fact
implies that the interior 
0 of the set {x2 | x ∈ V0} of “positive” elements in V0

is a symmetric cone in V0. Notice that r = r0 in the split case and r = 2r0 in the
nonsplit case. The Jordan algebra W = V0 + iV1 is a Euclidean real form of the
complexification V C = V + iV . We will denote by 
 the symmetric cone of W . If
V is a simple Jordan algebra of type I, II, or III, then W is simple, while, if V is of
type IV, W � V0 × V0.
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According to [3] one introduces two groups:

G := {
g ∈ Conf(V ) | (−α) ◦ g ◦ (−α) = g

}
o

and K := {g ∈ G | g.e = e},
where the subscript o stands as usual for the connected component of the identity
transformation and e denotes the identity element of the Jordan algebra V . It follows
that K is a maximal compact subgroup of G. Moreover, the associated Riemannian
symmetric space is a real tube domain:

X := G/K = 
0 + V1.(1.4)

The set X is a Riemannian Makarevich symmetric space of tube type. We shall
refer to the previous description as to the tube realization of X .

Such a Riemannian Makarevich symmetric space can be obtained as a real form
of a Hermitian symmetric space of tube type. The transform x 	→ u = (x − e)(x +
e)−1 maps the symmetric space X onto a bounded domain D, which is the unit ball
in V with respect to a so-called spectral norm. Its inverse is the Cayley transform

c :u 	→ x = c(u) = (e + u)(e − u)−1.(1.5)

If V is a Euclidean Jordan algebra, then V1 = {0}, and X is a symmetric cone. If
V has a complex structure, then X is a Hermitian symmetric tube.

Table 2 gives the classification of Riemannian Makarevich symmetric spaces
obtained in this way. The second row of table gives the root system of the pair
(g,a), where g is the Lie algebra of G, and a is a Cartan subspace.

Example 1. Let V = M(m,R), the space of m×m real matrices, be equipped with
the Jordan product x ◦ y = 1

2 (xy + yx). Then the Jordan determinant coincides with
the usual matrix determinant: �(x) = detx. The structure group Str(V ) is the group
S
(
GL(m,R) × GL(m,R)

)
, acting on V by x 	→ g1xg−1

2 (g1, g2 ∈ GL(m,R)). The
conformal group Conf(V ) is the group SL(2m,R)/{±I } acting on V by

x 	→ (ax + b)(cx + d)−1 if g =
(

a b

c d

)
.

The differential of a conformal transformation g is given by (Dg)xy = h1(x)y

×h2(x), where, under the condition that det c 
= 0, h1(x) = (ac−1d −b)(cx +d)−1c,

h2(x) = (cx + d)−1. Since det(ac−1d − b)det c = det
(

a b

c d

)
= 1 we finally get:

χ((Dg)x) = det(cx + d)−2. The Euclidean involution α on V = M(m,R) is given
by the usual matrix transposition: α(x) = xT , and V0 = Symm(R), V1 = Skewm(R).
Recall that an element g ∈ Conf(V ) belongs to the group G if and only if g ◦ (−α) =
(−α) ◦ g. If g.x = (ax + b)(cx + d)−1, the above condition on g to be in G leads to

(
xcT + dT

)
(−ax + b) = −(

xaT + bT
)
(−cx + d),

or equivalently, aT c + cT a = 0, bT d + dT b = 0, and, for every x ∈ V , x(aT +
dcT b) = (dT a+bT c)x. By Schur’s lemma this last condition says that there is λ ∈ R

such that aT d + cT b = λ Idm.
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Table 2

Complex Euclidean Non-Euclidean Non-Euclidean

Split Nonsplit (m = 2	)

Cm Am−1 Dm C	

V Symm(C) Symm(R) × Sym2	(R) ∩ M	(H)

G Spm(R) SLm(R) × R+ × Sp	(C)

K Um SOm × Sp	

V Mm(C) Hermm(C) Mm(R) M	(H)

G SU(m,m) SLm(C) × R+ SO(m,m) Sp(	, 	)

K S(Um × Um) SUm SOm × SOm Sp	 × Sp	

V Skew2m(C) Hermm(H) Skew2m(R) ×
G SO∗

4m SLm(H) × R+ SO2m(C) ×
K U2m Spm SO2m ×
V C × C

n−1
R × R

n−1
R

p × R
q

R
n

G SO0(2, n) SO0(1, n − 1) × R+ SO0(1,p) × SO0(1, q) SO0(1, n)

K SO2 × SOn SOn−1 SOp × SOq SOn

V Herm(3,O)C Herm(3,O) Herm(3,Os) ×
G E7(−25) E6(−26) × R+ SU∗

8 ×
K E6 × SO2 F4 Sp4 ×

Define the matrix

ϒ =
(

0 Idm

Idm 0

)
.

Then the element g belongs to G if and only if gT ϒg = λϒ . Since detg = 1, it
follows that λ2m = 1, and since G is connected, λ = 1.

Finally we have shown that G = SOo(ϒ)/ ± Id, where SO(ϒ) stands for the
special orthogonal group of the quadratic form defined by the matrix ϒ which has
signature (m,m). Therefore G � SOo(m,m)/± Id. The conformal compactification
M of V is the Grassmann manifold M = Gr(2m,m) of m-dimensional vector
subspaces in R

2m. The corresponding Riemannian Makarevich symmetric space
X in its tube realization is the set of matrices x ∈ M(m,R) with a positive definite
symmetric part: x + xT � 0. Its bounded realization is the ball D = {x ∈ M(m,R) |
‖x‖op < 1}.

Example 2. Let V be the space R × R
n−1. One writes x = (x0, x1), x0 ∈ R,

x1 ∈ R
n−1. Then the Jordan product is defined as follows: z = x ◦ y if z0 =

x0y0 − (x1|y1), z1 = x0y1 + y0x1, where (x1|y1) is the usual inner product on
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R
n−1. The Jordan determinant is then given by �(x) = x2

0 + ‖x1‖2. (This Jordan
algebra is actually a Jordan field.) The corresponding structure group is the group
Str(V ) = R+ × O(n), and the conformal group Conf(V ) is equal to O(1, n + 1).
The conformal compactification of V is the n-sphere Sn. Consider the involution
α : (x0, x1) 	→ (x0,−x1). The corresponding groups G and K are isomorphic
respectively to SO0(1, n) and SO(n). The Riemannian symmetric space X is the
real hyperbolic space of dimension n, realized as a half-space

X = {
(x0, x1) ∈ R × R

n−1 | x0 > 0
}
.

The bounded realization of this symmetric space is isomorphic to the Euclidean
ball:

D = {
x ∈ R

n | ‖x‖ < 1
}
.

1.3. Iwasawa decomposition and spherical Fourier transform

According to (1.3) the Cartan involution of the group G is given by

θ(g) = (−j) ◦ g ◦ (−j), g ∈ G.

The Lie algebra g, which is an algebra of quadratic vector fields on V , decomposes
under dθ into a direct sum of two eigenspaces: g = k + p, where k is the Lie algebra
of the group K introduced above. Let us fix a Jordan frame {c1, . . . , cr0} in V0. Then
the space a of the linear vector fields

ξ(x) =
r0∑

j=1

tjL(cj )x (tj ∈ R),

is a Cartan subspace in p. The root system of the pair (g,a) is of type A, C, or D.
We choose the Weyl chamber a+ defined by t1 < · · · < tr0 in case of type A, or
0 < t1 < · · · < tr0 in case of type C or D.

For type A the positive roots are:
{ tj −ti

2 , i < j
}
, for type D:

{ tj −ti
2 , i <

j,
tj +ti

2 , i 
= j
}

and for type C:
{ tj −ti

2 , i < j,
tj +ti

2 , i 
= j, ti
}
.

We define A = expa, and, as usual the nilpotent subgroup N . It can be written
N = N0 � N1, where N0 is a triangular subgroup in Str(V0), and N1 is the group of
translations

x 	→ x + v with v ∈ V1.

The Iwasawa decomposition can be described as follows: every x ∈ X can be
uniquely written

x = na · e = n0a · e + v,
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with a ∈ A, n0 ∈ N0, v ∈ V1. One writes a = expA(x) with A(x) ∈ a. If λ ∈ a∗
C

, we
write, for ξ(x) = ∑

j tjL(cj )x,

〈λ, ξ 〉 =
r0∑

j=1

λj tj .

Then e〈λ,A(x)〉 = �λ(x0), where �λ is the power function of the symmetric cone

0 in the Euclidean Jordan algebra V0, and x0 denotes the V0-component of x:
x = x0 + x1, x0 ∈ V0, x1 ∈ V1.

The spherical functions ϕλ for X = G/K are given by

ϕλ(x) =
∫

K

�ρ−λ

(
(k · x)0

)
dk,(1.6)

where dk is the normalized Haar measure of K , and ρ is the half-sum of the positive
roots:

〈ρ, ξ 〉 = 1

2
Tr(ad ξ)

∣∣∣∣
Lie(N)

= 1

2
Tr(ad ξ)

∣∣∣∣
Lie(N0)

+ 1

2
Tr(ad ξ)

∣∣∣∣
Lie(N1)

.

One obtains ρj = d0
4 (2j − r0 − 1) + n1

2r0
, where the integer d0 is defined by n0 =

r0 + d0
2 r0(r0 − 1).

The spherical Fourier transform of a K-invariant integrable function f on X is
defined on ia∗ by

Ff (λ) =
∫

X

ϕ−λ(x)f (x)µ(dx) =
∫

X

�ρ+λ(x0)f (x)µ(dx),

where µ(dx) = �(x0)
−n/r dx is a G-invariant measure on X . Here and elsewhere

further the measure dx denotes the Euclidean measure associated to the Euclidean
structure defined on V by (x|y) = tr(xα(y)).

1.4. Berezin kernels and the Kantor cross ratio

The Kantor cross ratio of four points of a simple Jordan algebra V is the rational
function

{x1, x2, x3, x4} = �(x1 − x3)

�(x2 − x3)
: �(x1 − x4)

�(x2 − x4)
.(1.7)

It is invariant under conformal transformations and extends to the conformal
compactification M of V .

The invariance by translations is obvious. The invariance under Str(V ) comes
from the fact that � is semi-invariant under Str(V ). The invariance under the inverse
j :x 	→ −x−1 follows from the formula [8, Lemma X.4.4]:

�
(
j (x) − j (y)

) = �(y − x)

�(x)�(y)
.
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Furthermore, it is proved that a local transformation which preserves the cross
ratio is the restriction of an element of Conf(V ) (cf. [11, Theorem 6]).

Being given the Kantor cross ratio (1.7) we shall introduce the kernel F on X by

F(x, y) = {
x, y,−α(x),−α(y)

}
(1.8)

= �(x + α(x))�(y + α(y))

�(x + α(y))�(y + α(x))
.

This function is invariant under G and positive. The Berezin kernel Bν can be
defined for every ν ∈ C as

Bν(x, y) = F(x, y)
r0
r ν =

{
F(x, y)ν in the split case,
F(x, y)

ν
2 in the nonsplit case.

(1.9)

In virtue of the G-invariance of the kernel Bν the Berezin function

ψν(x) = Bν(x, e) =
(

�(x0)

�
(

x+e
2

)2

) r0
r ν

is K-invariant. In this formula x0 denotes as before the V0-component of x in the
decomposition V = V0 + V1, x = x0 + x1.

If {c1, . . . , cr0} is a Jordan frame of V0, and if x = ∑r0
j=1 etj cj , then

ψν(x) =
r0∏

j=1

(
cosh

tj

2

)−2ν

.

Theorem 1.1. Assume �ν > n
r0

− 1. Then the function ψν is integrable and its
spherical Fourier transform is given by

Fψν(λ) = P(λ, ν)P (−λ, ν)

Q(ν)
,(1.10)

with

P(λ, ν) =
ro∏

j=1

�

(
1

2
+ ν − δ + λj

)
, δ = n

2r0
, Q(ν) = c

2ro∏

j=1

�(ν − βj )

where the constant c1 and the real numbers βj ’s depend on the Jordan algebra V .
In particular, for ν real and λ ∈ ia∗, then λ̄ = −λ and

Fψν(λ) = |P(λ, ν)|2
Q(ν)

� 0,

1 We denote by c throughout this paper different constants depending only on V .
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Recall that the Gindikin �-function of a symmetric cone 
 is defined by

�
(ν) =
∫




e− tr(x)�(x)ν− n
r dx.

If the cone 
 is irreducible (the corresponding Euclidean Jordan algebra W is
simple), then

�
(ν) = (2π)
n−r

2

r∏

j=1

�

(
ν − (j − 1)

d

2

)
,

where the integer d is defined by n = r + d
2 r(r − 1).

For types I and II: Q(ν) = c2−2rν�
(2ν). For type III: Q(ν) = c�
(ν). For type
IV: �
(ν) = (�
0(ν))2, notice that in this case the Jordan algebra W is not simple
anymore: W � V0 × V0. The above theorem was proved by different methods in
[25,29,21].

Let h(z,w) stand for the so-called canonical polynomial defined on V C × V C by
the following conditions (see [8, p. 262]):

• It is holomorphic in the first variable and anti-holomorphic in the second one.
• For every g ∈ Str(V C) one has h(gz,w) = h(z, g∗w).
• For every x ∈ W one has h(x, x) = �(e−x2). Recall that the Bergman kernel of

the Hermitian symmetric space, whose X is a real form, is given by h(z,w)− 2n
r .

Example 1. For V = M(m,R) the canonical polynomial is given by h(x, x) =
det(I − xxT ).

Example 2. For V = R × R
n−1 the canonical polynomial is given by h(x, x) =

(1 − ‖x‖2)2.

Recall that the Cayley transform (1.5) maps the bounded domain D onto the
tube X = 
0 + V1. Define F̃ (u, v) = F(c(u), c(v)). Since −α(c(u)) = c(α(u−1))

we obtain

F̃ (u, v) := {
u,v,α

(
u−1), α

(
v−1)} = �(u − α(u−1))�(v − α(v−1))

�(u − α(v−1))�(v − α(u−1))
.

Furthermore, F̃ (u,0) = limv→0 F̃ (u, v) = �(α(u−1) − u)�(α(u)), and one can
show that F̃ (u,0) = h(u,u). Define similarly

B̃ν(u, v) = Bν

(
c(u), c(v)

)
,

ψ̃ν(u) = ψν

(
c(u)

)
.

Then

ψ̃ν =
{

h(u,u)ν in the split case,
h(u,u)

ν
2 in the nonsplit case.
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Consider the integral

I (ν) =
∫

D

ψ̃ν(u)h(u,u)−
n
r du.

It can be written as
∫

D

h(u,u)
r0
r ν− n

r du.

Since h(u,u)− n
r du is an invariant measure on D the last integral equals

I (ν) = c

∫

X

ψν(x)µ(dx) = cFψν(ρ).

Therefore we obtain

Corollary 1.2.

I (ν) = volD
Q(n

r
)

P (ρ, n
r
)P (−ρ, n

r
)

· P(ρ, ν)P (−ρ, ν)

Q(ν)
.

Eventually we may notice that according to the Jordan algebra’s type some
simplifications in the above formula, due to explicit expressions of �-factors, are
possible, see examples below.

Example 1. Let V = M(m,R). Then V0 = Symm(R), V1 = Skewm(R), the invariant
measure on X is given by det(x0)

−mdx0dx1, and the Berezin function is

ψν(x) = 4mν

[
detx0

det(e + x)2

]ν

, with φν(e) = 1.

Its push-forward to D = {u ∈ V | ‖u‖op < 1} equipped with the invariant measure
det(e − uuT )−mdu is given by ψ̃ν(u) = det(e − uuT )ν .

The spherical Fourier transform of ψν is the given by

Fψν(λ) =
∫

ω0+V1

[
detx0

det(e + x)2

]ν

�o
ρ−λ(x0)�

o(x0)
−m dx0 dx1

= c

∏m
j=1 �(ν − m−1

2 + λj )�(ν − m−1
2 − λj )

4−mν
∏m

j=1 �(2ν − j + 1)
.

Notice that in this case

Q(ν) = c4−mν�
(2ν) = c′�
0(ν)�
0

(
ν + 1

2

)

= c′′
m∏

j=1

�

(
ν − j − 1

2

) m∏

j=1

�

(
ν + 1

2
− j − 1

2

)
.
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Moreover,

I (ν) = �
0(ν − m−1
2 )

�
0(ν + 1
2 )

.

Example 2. In the case when V = R
n = R × R

n−1 the Jordan determinant is given
by �(x) = x2

0 + ‖x1‖2 and the Berezin function is given by

ψν(x) =
[

4x0

(1 + x0)2 + ‖x1‖2

]ν

.

Its spherical Fourier transform is equal to

Fψν(λ) = c
�(ν + λ − n−1

2 )�(ν − λ − n−1
2 )

�(ν)�(ν + 1
2 − n−1

2 )
.

And finally,

I (ν) = c
�(ν − n + 1)

�(ν + 1
2 − n−1

2 )
.

1.5. A Bernstein identity

An interesting consequence of Theorem 1.1 is a Bernstein identity. Let D(ν) be the
invariant differential operator on X = G/K whose symbol, i.e. its image through
the Harish-Chandra isomorphism

γ : D(X ) → S
(
C

r0
)
, D 	→ γD(λ),

is

γD(ν)(λ) = γν(λ) =
r0∏

j=1

(
ν + 1

2
− δ + λj

)(
ν + 1

2
− δ − λj

)
.

Corollary 1.3. The Berezin kernel (1.9) satisfies the following identity:

D(ν)Bν = b(ν)Bν+1,

where b(ν) is the polynomial of degree 2r0 given by:

b(ν) = Q(ν + 1)

Q(ν)
=

2ro∏

j=1

(ν − βj ).

In the split case (types I and II): b(ν) = ∏r0
j=1(ν − d

4 (j −1))(ν + 1
2 − d

4 (j −1)). In

case when V is of type III (r = 2r0), b(ν) = ∏2r0
j=1(ν − d

2 (j − 1)), where the integer
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d is defined through n = r + d
2 r(r − 1). In case when V is complex (type IV):

b(ν) = ∏r0
j=1(ν − d0

2 (j − 1))2.
This identity has been established for V complex by Engliš [5], also in a slightly

different form by Unterberger and Upmeier [21], and has been generalized in [6].
In general we do not know any explicit expression for the differential operator

D(ν). However an explicit formula has been obtained in the special case of a simple
complex Jordan algebra, and for ν = δ [12]:

D(δ) = �(y)1+ n
r �

(
∂

∂z

)
�

(
∂

∂z̄

)
�(y)1− n

r ,

where z = x + iy.
Observe that, for V = C we get: D(δ) = y2 ∂2

∂z∂z̄
is nothing but the Laplace–

Beltrami operator of the upper hyperbolic upper half-plane.

Example 1. When V = M(m,R) the Bernstein polynomial and the Harish-
Chandra symbol are respectively given by

b(ν) =
m∏

j=1

(
ν − j − 1

2

)(
ν + 1

2
− j − 1

2

)
,

γν(λ) =
m∏

j=1

(
ν − 1

2
(m − 1) + λj

)(
ν − 1

2
(m − 1) − λj

)
.

Example 2. When V = R × Rn−1

b(ν) = ν

(
ν − n

2
+ 1

)
, γν(λ) =

(
ν + λ − n − 1

2

)(
ν − λ − n − 1

2

)
.

1.6. Hua integral

Let us introduce the compact dual U/K of the symmetric space X = G/K in the
complexification XC = GC/KC of the symmetric space X .

Define u = k + ip and let U be the analytic subgroup of GC with the Lie
algebra u. The compact symmetric space Y = U/K is isomorphic to the conformal
compactification M of the Jordan algebra V . The set Y ′ of invertible elements y in
V C such that ȳ = y−1 is open and dense in Y . For ν = −κ (κ ∈ N) the function ψ−κ

extends as a meromorphic function on XC. For y = ∑r0
j=1 eiθj cj we have

ψ−κ(y) =
r0∏

j=1

(
cos2 θj

2

)κ

.

This shows that this function is well defined on Y for κ ∈ C, and bounded for
�κ � 0.
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Denote by µo the normalized invariant measure on Y and define

J (κ) =
∫

Y

ψ−κ(y)µo(dy).(1.11)

Theorem 1.4. For �κ � 0,

J (κ) = c

∏2ro
j=1 �(κ + 1 + βj )

∏ro
j=1 �(κ + 1

2 + δ − ρj )�(κ + 1
2 + δ + ρj )

.

Proof. Assume first that κ ∈ N. The Bernstein identity (1.3) implies that

D−κψ−κ = b(−κ)ψ−κ+1.

By integrating this identity on Y we obtain

b(−κ)J (κ + 1) =
∫

Y

D−κψ−κµo(dy) =
∫

Y

ψ−κ(y)D−κ1µo(dy),

since the operator D−κ is self adjoint. The constant term of the differential operator
D−κ is given by D−κ1 = γ−κ(ρ).

We finally get

γ−κ(ρ)J (κ) = b(−κ)J (κ − 1).(1.12)

On the other hand, the sequence

φ(κ) =
∏2ro

j=1 �(κ + 1 + βj )
∏ro

j=1 �(κ + 1
2 + δ − ρj )�(κ + 1

2 + δ + ρj )

satisfies the same recursion relation. Indeed,

φ(κ) =
∏2ro

j=1(κ + βj )
∏ro

j=1(κ + 1
2 + δ − ρj )(κ + 1

2 + δ + ρj )
φ(κ − 1).

Therefore J (κ) = cφ(κ) and because of the “initial” condition J (0) = 1, we finally
get

J (κ) = φ(κ)

φ(0)
.

The functions φ(κ) and J (κ) are holomorphic for �κ > 0 and grow polynomially:

∣∣φ(κ)
∣∣ � c1

(
1 + |κ|)N1 ,

∣∣J (κ)
∣∣ � J (0) = 1.
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Indeed, 0 � ψ−κ(y) � 1. Therefore, the Carlson’s theorem implies that J (κ) = φ(κ)
φ(0)

,
for every κ ∈ C such that �κ > 0. �

By writing y = c(iv), J (κ) becomes an integral over iV . One shows that

ψ̃−κ(iv) := ψ−κ

(
c(iv)

) = h(v,−v)−
r0
r κ .

Therefore,

J (κ) =
∫

V

h(v,−v)−
r0
r κ− n

r dv.

In fact, in this realization an invariant measure µo on Y is given by h(v,−v)− n
r dv.

The above integral has been considered and computed by Hua in [10, Chapter II]
in several special cases.

2. BEREZIN KERNELS AND REPRESENTATIONS

Following ideas developed in [22,23,9] we shall now give an alternative approach
to the theory of Berezin kernels considering intertwining operators for the maximal
degenerate series representations of a conformal group.

2.1. Maximal degenerate series representations

The character χ of the structure group Str(V ) (cf. (1.1)) can be trivially extended
to the whole parabolic subgroup P by χ(hn̄) := χ(h) for every h ∈ Str(V ), n̄ ∈ N .

For every s ∈ C we define a character χs of P by χs(p̄) := |χ(p̄)|s+ n
2r .

The induced representation π̃s = IndConf(V )

P
(χs) of the conformal group acts on

the space

Ĩs := {
f ∈ C∞(

Conf(V )
) ∣∣ f (hp̄) = χs(p̄)f (h), ∀h ∈ Str(V ), p̄ ∈ P

}
,

by left translations. A pre-Hilbert structure on Ĩs is given by ‖f ‖2 = ∫
U

|f (u)|2 du,
where U is the maximal compact subgroup of Conf(V ) associated with the Cartan
involution θ , and du is the normalized Haar measure of U .

According to the Gelfand–Naimark decomposition a function f ∈ Ĩs is deter-
mined by its restriction fV (x) = f (nx) on N � V . Let Is be the subspace of C∞(V )

of functions fV with f ∈ Ĩs . The conformal group acts on Is by:

πs(g)f (x) = ∣∣A(g,x)
∣∣s+ n

2r f
(
g−1.x

)
, g ∈ Conf(V ), x ∈ V,(2.1)

where A(g,x) := χ((Dg−1)x). This action is usually called the even maximal
degenerated series representation of Conf(V ).

One shows that the norm of a function f (nx) = fV (x) ∈ Is is given by:

‖f ‖2 =
∫

V

∣∣fV (x)
∣∣2

h(x,−x)2�s dx.(2.2)
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The formula (2.2) implies that for �s = 0 the space Is is contained in L2(V ) and
the representation πs extends as a unitary representation on L2(V ).

In order to address the question of irreducibility and unitarity of these represen-
tations we refer the reader to [17], [18,20] and to [27].

Following the standard procedure we introduce an intertwiner between πs and
π−s . Consider the map Ãs defined on Ĩs by

f → (Ãsf )(g) :=
∫

N

f (gjn)dn, ∀g ∈ Conf(V ),(2.3)

where dn is a left invariant Haar measure on N . We will see that this integral
converges for �s > n

2r0
.

Proposition 2.1. For every f ∈ Ĩs the function Ãsf belongs to Ĩ−s and the map
Ãs given by (2.3) intertwines the corresponding representations of the conformal
group:

π̃−s(g)
(
Ãsf

) = Ãs

(
π̃s(g)f

)
, ∀f ∈ Ĩs , g ∈ Conf(V ).(2.4)

Proof. The map Ãs obviously commutes with the left action of Conf(V ). We have
to check that Ãsf transforms in an appropriate way under the right action of P .
Notice first that Ãsf is N right invariant. Indeed

(
Ãsf

)
(gn̄) =

∫

N

f (gn̄jn)dn =
∫

N

f (gjn′jjn)dn

=
∫

V

f (gjn′′) dn′′ = (
Ãsf

)
(g).

For what concerns the action of Str(V ) we have for every f ∈ Ĩs :

(
Ãsf

)
(g	) =

∫

N

f (g	jn)dn =
∫

N

f
(
gj (	t )−1n

)
dn,(2.5)

where ht denotes the transformation adjoint to h ∈ Str(V ) with respect to the
bilinear form TrL(xy) on V .

Indeed, one shows, (see [8, Proposition VIII.2.5]) that j	j = (	t )−1, ∀	 ∈ Str(V ).
Thus the equality (2.5) implies that

(
Ãsf

)
(g	) =

∫

N

f
(
gj (	t )−1n	t (	t )−1)dn = |det	| n

r

∫

N

f
(
gjn′(	t )−1)dn′

= |det	| n
r −s n

2r
(
Ãsf

)
(g) = χ−s(	)

(
Ãsf

)
(g). �

Define the map As : Is → I−s by As(fV ) = (Ãsf )V (f ∈ Ĩs ).
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Proposition 2.2. For every f ∈ Is we have,

(Asf )(x) =
∫

V

∣
∣�(x − u)

∣
∣2s− n

r f (u)du.

Proof. By definition of Ãs , we have (Ãsf )(nx) = ∫
V

f (nxjnv) dv (f ∈ Ĩs ). Ac-
cording to the Gelfand–Naimark decomposition (1.2) for g = nxj we have

nxjnv = n(nx◦j).v

(
D(nx ◦ j)

)
v
n̄′ = n(x−v−1)P

(
v−1)n̄′.

Thus (Asf )(x) = ∫
V

f (x − v−1)χs(P (v)−1) dv. Let u = x − v−1. The Jacobian

of this transformation being equal to |�(v)| 2n
r , we finally get:

(Asf )(x) =
∫

V

f (u)
∣∣�(x − u)

∣∣2s− n
r du. �(2.6)

The bilinear form on Ĩ−s × Ĩs defined by 〈f1, f2〉 = ∫
U

f1(u)f2(u) du is Conf(V )-
invariant. By using the fact that 〈f1, f2〉 = c

∫
V
(f1)V (x)(f2)V (x) dx it gives rise to

a Conf(V )-invariant bilinear form on Is × Is :

Proposition 2.3. For �s > n
2r0

, the bilinear form Bs ,

Bs(f1, f2) =
∫ ∫

V ×V

∣
∣�(x − y)

∣
∣2s− n

r f1(x)f2(y) dx dy,

is well defined on Is × Is and is Conf(V )-invariant.

According to the general theory (see for instance [13]) these maximal degenerate
series representations πs are spherical. We shall determine the corresponding U -
fixed vector of the representation πs . Using the Iwasawa decomposition of Conf(V )

we write g = u	(g)n̄, where 	(g) ∈ Str(V ), which is defined up to a multiplication
by an element of U ∩ Str(V ) on the left. Notice by the way that with the above
notation we have θ(g−1)g = n−1	(g)2n̄.

Consider nx ∈ N admitting the decomposition nx = u	(nx)n̄. Therefore

	(nx)
2 = D

(
θ(n−x)nx

)
(0) = P

(
x−1 + α(x)

)−1
P(x)−1.

Let f o ∈ Ĩs be a U -invariant function, with f o(e) = 1. Then

f o(g) = f o
(
u	(g)n̄

) = χs

(
	(g)

)
f o(u) = χs

(
	(g)

)
.

Eventually we get that the U -fixed vector f o
V in Is is given by

f o
V (x) = ∣∣�

(
x−1 + α(x)

)
�(x)

∣∣−(s+ n
2r

) = h(x,−x)−(s+ n
2r

).
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In order to conclude this section we shall discuss conditions under which the
intertwining operator As is well defined.

Let us evaluate Asf
o at the identity of the conformal group.

Ãsf
o(e) =

∫

N

f o(jn)dn =
∫

N

f o(n)dn =
∫

V

h(x,−x)−(s+ n
2r

) dx.

Notice that the value C(s) of this integral equals

C(s) = J

(
r

r0

(
s − n

2r

))
,

where J (ν) is given by (1.11). For u ∈ U , f o(u) 
= 0. Therefore, for f ∈ Ĩs ,
∣∣f (g)

∣∣ � M
∣∣f o(g)

∣∣,

with

M = sup
u∈U

|f (u)|
|f 0(u)| .

Now it is clear that the integral defining As is well defined for �s > n
2r0

. One shows
that the map s → As can be actually extended to the whole complex plane as a
meromorphic function. Because of the intertwining property we eventually get:

As ◦ A−s = C(s)C(−s) IdIs .

2.2. Restriction of πs and canonical representations

We shall study the representations πs when restricted to the subgroup G. The rep-
resentation space Ĩs can be seen as a line bundle over the conformal compactifica-
tion M. The Makarevich space X is one of the open orbits of G acting on M. The
space Is(X ) of functions in I (s) = Is(V ) supported in the closure X ⊂ V is then
invariant. We shall consider the corresponding representation Ts of G on Is(X ).
The problem is to determine for which values of the parameter s the representation
Ts of the group G is unitarizable, and then to decompose it into irreducible ones.
According to an established terminology taking its roots in [26] one calls such
representations canonical representations of the group G.

A key observation is the connection between the canonical representation Ts and
the Berezin kernel. We shall make this link clear.

Consider the bilinear form on Is(X ) × Is(X ) given by

B̃
α
s (f1, f2) := Bs

(
f1, f2 ◦ (−α)

)
,(2.7)

where Bs(f1, f2) is the bilinear form on Is(V ) × Is(V ) introduced in Proposi-
tion 2.3.

Proposition 2.4. The bilinear form B̃α
s is invariant under the action of the

group G.
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The proof uses the invariance property of the cross ratio, and the two following
lemmas.

Lemma 2.5. For every g ∈ G the following identity holds:

A
(
g,−α(x)

) = A(g,x).

Lemma 2.6. Let x be an element in V , then for every g ∈ G the following identity
holds:

�
(
(gx)0

) = A(g,x)�(x0).

(Recall that the subscript 0 means the V0-component.)

Let us introduce the multiplication operator Ms on the space Is(X ) by

Msf (x) = �(x0)
s+ n

2r f (x).

This operator intertwines the canonical representation Ts and the left regular action
L of the group G,

Ms ◦ Ts(g) = L(g) ◦ Ms, g ∈ G,

where (L(g)f )(x) = f (g−1 · x).

Proposition 2.7. Let us define the bilinear form Bα
s on Cc(X ) × Cc(X ) by

B
α
s (F1,F1) = B

α
s (Msf1,Msf2) = B̃

α
s (f1, f2).

Then

B
α
s (F1,F2) =

∫ ∫

X×X

Bν(x, y)F1(x)F2(y)µ(dx)µ(dy),(2.8)

where Bν(x, y) is the Berezin kernel introduced in (1.9) and ν = − r
r0

(s − n
2r

).

Therefore the decomposition of the canonical representations reduces now to a
classical problem in spherical harmonic analysis.

Let � be the set of parameters λ ∈ a∗
C

for which the spherical function ϕλ given
by (1.6) is positive definite. Let ψ be a continuous function of positive type on
G which is K-biinvariant. By the Bochner–Godement theorem there is a unique
bounded positive measure m on � such that

ψ(x) =
∫

�

ϕλ(x)m(dλ).
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If ψ is integrable, then the measure m is absolutely continuous with respect to the
Plancherel measure, with a density given by the Fourier transform of ψ :

m(dλ) = Fψ(λ)
dλ

|c(λ)| ,

where c(λ) is the Harish-Chandra c-function of the symmetric space X .
Therefore the problem is:
(1) Determine the set W ⊂ R of values ν for which the Berezin kernel Bα

ν (or the
corresponding K-biinvariant function ψν ) is of positive type.

(2) For ν ∈ W , determine the positive measure mν on � such that

ψν(x) =
∫

�

ϕλ(x)mν(dλ).

These problems have been solved for hyperbolic spaces by van Dijk, Hille,
Pasquale [22,24]. Notice however that only real hyperbolic spaces are Makarevich
spaces of tube type as introduced above.

The case G = U(p,q) was studied by Hille and Neretin [9,14], and the case
G = SO(p,q) by Neretin in [14–16].

One should point out that the first problem is not equivalent to the determination
of the so called Wallach set which is the positive definiteness domain of the
Bergman kernel. Since a Makarevich symmetric space of tube type is a real form of
a Hermitian symmetric space, the set W does contain the Wallach set related to the
associated Bergman kernel. In fact the restriction to a subset of a kernel of positive
type is of positive type too. But this inclusion can be strict, as it is the case for real
hyperbolic spaces.

For ν > n
r0

− 1 the function ψν is integrable and, for λ ∈ ia∗:

Fψν(λ) = |P(λ, ν)|2
Q(ν)

� 0.

It follows that ψν is of positive type, and

ψν(x) =
∫

ia∗
φλ(x)

|P(λ, ν)|2
Q(ν)

dλ

|c(λ)|2 .

According to Helgason we define the Fourier transform of an integrable function
f on X . The Iwasawa decomposition of the group G can be written as G = NAK .
If k−1g ∈ N exp(H)K with H ∈ a, one writes H = A(x, b), x ∈ gK , b ∈ kM ∈ B =
K/M, where M is the centralizer of A in K .

The Fourier transform of f is the function f̂ defined on ia∗ × B by

f̂ (λ, b) =
∫

X

f (x)e〈−λ+ρ,A(x,b)〉 dx.
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We consider f̂ (λ) := f̂ (λ, ·) as an element of the space Hλ � L2(B) which
carries a unitary spherical principal series �λ of G. Then the map f 	→ f̂ (λ)

intertwines the left regular representation L and �λ.

Theorem 2.8. For ν > n
r0

− 1, the Berezin form is positive definite. Therefore the
representation Ts is unitarizable, decomposes multiplicity free as a direct integral of
spherical principal series �λ of G, which corresponds to the following Plancherel
formula:

B
α
s

(
f, f̄

) =
∫

ia∗

∥∥f̂ (λ)
∥∥2 |P(λ, ν)|2

Q(ν)

dλ

|c(λ)|2 ,

where ν = − r
r0

(s − n
2r

) and f ∈ Cc(X ).

2.3. Berezin kernel on the Riemannian compact dual

In order to study the “deformation” of the regular representation of the compact
group U we shall investigate the spherical Fourier transform of the Berezin kernel
on the compact dual symmetric space Y .

The spherical functions of the symmetric space Y = U/K are given by

�m(x) =
∫

K

�m
(
(k.x)0

)
dk = ϕm−ρ(x),(2.9)

where the weights m = (m1, . . . ,mn) ∈ Z
n are given according to different cases by

the following conditions:

• If V is a Euclidean Jordan algebra (root system of type A), then m1 � m2 �
· · · � mn.

• If V is a non-Euclidean algebra of split type (root system of type D), them
−|m|1 � m2 � · · · � mn.

• If V is either a complex or a non-Euclidean Jordan algebra of nonsplit type
(root system of type C), then 0 � m1 � m2 � · · · � mn.

The spherical Fourier coefficients of a K-invariant integrable function f on Y
are given by

a(m) =
∫

Y

f (y)�m(y)µ0(dy).

For �κ � 0, the Berezin function ψ−κ is bounded on Y . We will determine its
spherical Fourier coefficients

aκ(m) =
∫

Y

ψ−κ(y)�m(y)µ0(dy).

Notice that aκ(0) = J (κ).
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Theorem 2.9. The Fourier coefficients of the Berezin kernel function ψ−κ are
given by

aκ(m) = J (κ)

∏n
j=1 �(κ + 1

2 + δ − ρj )�(κ + 1
2 + δ + ρj )

∏n
j=1 �(κ + 1

2 + δ − ρj + mj)�(κ + 1
2 + δ + ρj − mj)

.

Proof. We use the same method as in [28].
(a) We show first that the measure on Y given by

1

J (κ)
ψ−κ(y)µ0(dy)

converges to the Dirac measure δ at the base point e of Y in the sense of tight
convergence of measures. The proof of this fact is based on the following lemma.

Lemma 2.10. Let K be a compact topological space, and µ a positive measure
on it such that every non empty open set has a positive measure. Let q � 0 be a
continuous function on K which attains its maximum at only one point x0. Define,
for n ∈ N,

an =
∫

K

q(x)nµ(dx),

and, for a continuous function ϕ on K,

Ln(ϕ) = 1

an

∫

K

ϕ(x)q(x)nµ(dx).

Then

lim
n→∞Ln(ϕ) = ϕ(x0).

Proof. For 0 < α < M = maxq , there exits a constant Cα such that an � Cααn. In
fact there is a neighborhood V of x0 such that q(x) � α for x ∈ V , and an � µ(V)αn.
Let W be a neighborhood of x0. For x ∈ K \W , q(x) � β < M . Choose α such that
β < α < M . Then

1

an

∫

K\W
q(x)nµ(dx) � 1

Cα

µ(K)

(
β

α

)n

,

and

lim
n→∞

1

an

∫

K\W
q(x)nµ(dx) = 0. �
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The function ψ−κ attains its maximum M = 1 only at y = e. Therefore
Lemma 2.10 applies. It follows that, for every m,

lim
κ→∞

1

J (κ)
aκ(m) = 1.

(b) Assume that κ ∈ N. From the Bernstein identity (1.3) it follows that the
spherical Fourier coefficients aκ(m) satisfy the following recursion relation:

γ−κ(ρ − m)aκ(m) = b(−κ)aκ−1(m).

Since, for m = 0, γ−κ(ρ)aκ(0) = b(−κ)aκ−1(0) we obtain

γ−κ(ρ − m)

γ−κ(ρ)

aκ(m)

aκ(0)
= aκ−1(m)

aκ−1(0)
.

Furthermore, since aκ(0) = J (κ), by (a)

lim
κ→∞

aκ(m)

aκ(0)
= 1.

The sequence given by

φ(κ) =
∏n

j=1 �(κ + 1
2 + δ − ρj )�(κ + 1

2 + δ + ρj )
∏n

j=1 �(κ + 1
2 + δ − ρj + mj)�(κ + 1

2 + δ + ρj − mj)
,

satisfies the same recursion relation as aκ (m)
aκ (0)

does. Moreover, from the asymptotic
equivalence

�(z + a)

�(z + b)
∼ za−b

(
1 + 1

2z
(b − a)(b + a − 1) + O

(
z−2)

)
, as z → ∞,

it follows that limκ→∞ φ(κ) = 1. Therefore we have proved the theorem for κ ∈ N.
(c) By using Carlson’s theorem, as we did in the proof of Theorem 1.4, we

conclude that the statement is still valid for �κ � 0. �
2.4. Restriction of the representation πs to the compact group U

The compact symmetric space Y = U/K is also of Makarevich type. Indeed,

U = {
g ∈ Conf(V ) | α ◦ j ◦ g ◦ j ◦ α = g

}
o
.

From the generalized cross ratio (1.7) we define the kernel Fc(u, v) by

Fc(u, v) = {
u,v,−α

(
u−1),−α

(
v−1)}

= �(u + α(u−1))�(v + α(v−1))

�(u + α(v−1))�(v + α(u−1))

and Fc(u,0) = h(u,−u).
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Similarly to what we did in Section 2.2 we twist the bilinear form Bs by the
involution j ◦ α, in other words we replace y by α(y−1), and by introducing
multiplication operators

Mc
s f (x) = h(x,−x)s+

n
2r f (x)

we eventually obtain a U -invariant bilinear form on C∞(Y):

B
c
s (F1,F2) =

∫ ∫

Y×Y

Bc
s (x, y)F1(x)F2(y)µ0(dx)µ0(dy),

where Bc
s (x, y) = Fc(x, y)

r0
r ν .

The spherical dual ÛK is parameterized by the set of weights m = (m1, . . . ,mn)

described in the previous section. To such a weight m corresponds a (class of)
unitary spherical representation �m on a finite dimensional vector space Hm of
dimension dm. The highest weight µ of �m is given by 〈µ,ξ 〉 = −∑r0

j=1 mj tj ,
if ξ(x) = ∑

tjL(cj )x. In the space Hm there is a normalized K-fixed vector vm.
The Fourier coefficient f̂ (m) of an integrable function f on Y is the vector in Hm

defined by

f̂ (m) =
∫

U/K

�m(g)vmf (g)dg.

The map f 	→ f̂ (m) intertwines the left regular representation of U and �m.

Theorem 2.11. For κ ∈ N, the Berezin form Bc
s is positive definite. Therefore the

restriction of πs to the compact group U decomposes into a direct sum of spherical
principal series representations �m of U according to the following Plancherel
formula:

B
c
s

(
f, f̄

) =
∑

m∈ÛK

dmaκ(m)
∥∥f̂ (m)

∥∥2
,

where κ = r
r0

(s − n
2r

), f ∈ C(U/K).

By the first part of the proof of Theorem 2.8, in some sense, the canonical
representations of the compact dual of G tend to the left regular representation when
the parameter κ goes through the negative integer points. In fact, for f ∈ Cc(Y),

lim
κ→∞

1

J (κ)

∫

Y×Y

B
c
κ (x, y)f (x)f (y)µ0(dx)µ0(dy) =

∫

Y

∣∣f (y)
∣∣2

µ0(dy).
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Similarly, in the noncompact case, as ν → ∞, the probability measure I (ν)−1ψν(x)

×µ(dx) converges to the Dirac measure δe at the identity element e. It follows that,
for f ∈ Cc(X ),

lim
ν→∞

1

I (ν)

∫

X×X

Bα
ν (x, y)f (x)f (y)µ(dx)µ(dy) =

∫

X

∣∣f (x)
∣∣2

µ(dx).

In some sense, as ν → ∞, the canonical representation Tν tends to the regular
representation of G on L2(X ).
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[4] Bertram W. – Algebraic structures of Makarevič spaces. I, Transform. Groups 3 (1) (1998) 3–32.
[5] Engliš M. – A mean value theorem on bounded symmetric domains, Proc. Amer. Math. Soc. 127

(1999) 3259–3268.
[6] Faraut J. – Intégrales de Riesz sur un espace symétrique ordonné, in: Geometry and Analysis

on Finite- and Infinite-Dimensional Lie Groups (Bȩdlewo, 2000), in: Banach Center Publ.,
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