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Following ideas of van Dijk and Hille we study the link which exists between maximal degenerate representations and Berezin kernels. We consider the conformal group Conf(V ) of a simple real Jordan algebra V . The maximal degenerate representations π s (s ∈ C) we shall study are induced by a character of a maximal parabolic subgroup P of Conf(V ). These representations π s can be realized on a space I s of smooth functions on V . There is an invariant bilinear form B s on the space I s . The problem we consider is to diagonalize this bilinear form B s , with respect to the action of a symmetric subgroup G of the conformal group Conf(V ). This bilinear form can be written as an integral involving the Berezin kernel B ν , an invariant kernel on the Riemannian symmetric space G/K, which is a Makarevich symmetric space in the sense of Bertram. Then we can use results by van Dijk and Pevzner who computed the spherical Fourier transform of B ν . From these, one deduces that the Berezin kernel satisfies a remarkable Bernstein identity:

where D(ν) is an invariant differential operator on G/K and b(ν) is a polynomial. By using this identity we compute a Hua type integral which gives the normalizing factor for an intertwining operator from I -s to I s . Furthermore, we obtain the diagonalization of the invariant bilinear form with respect to the action of the maximal compact group U of the conformal group Conf(V ).

BEREZIN KERNELS ON MAKAREVICH SPACES

In this section we shall introduce the notion of a Berezin kernel on a symmetric space of a particular type by mean of Jordan algebraic methods.

Jordan algebras and their conformal groups

A finite-dimensional vector space V on R or C is a Jordan algebra if it is endowed with a bilinear map (x, y) → xy from V × V into V satisfying the two following axioms:

(J1) xy = yx, ∀x, y ∈ V , (J2) x(x 2 y) = x 2 (xy), x, y ∈ V .

Let L(x) ∈ End(V ) denote for every x ∈ V the linear map defined by L(x)y = xy for every y ∈ V . Let r and n denote respectively the rank and the dimension of the Jordan algebra V . For a regular element x, the minimal polynomial f x is of degree r,

f x (λ) = λ r -a 1 (x)λ r-1 + • • • + (-1) r a r (x).
The coefficient a j is a homogeneous polynomial of degree j , (x) = a r (x) is the Jordan determinant, and tr(x) = a 1 (x) is the Jordan trace of x. (See [8, p. 28] for more details.) Define the so-called quadratic representation of V by: P (x) = 2L(x) 2 -L(x 2 ), x ∈ V . One checks that (x) 2 = det(P (x)) r/n , where P (x) is seen as an endomorphism of V .

A real Jordan algebra V is said to be semi-simple if the bilinear form Tr L(xy) is nondegenerate on V . Such an algebra is unital. Furthermore it is called Euclidean if the above bilinear form is positive definite.

An involutive automorphism α of V is called Euclidean if the bilinear form Tr L(α(x)y) is positive definite on V . For a semi-simple Jordan algebra such a Euclidean involution always exists.

Assume from now on that V is a simple real Jordan algebra. According to the general construction of Kantor-Koecher-Tits one associates to V a simple Lie group which can be understood as a group of conformal transformations of the corresponding Jordan algebra (in a sense we shall explain).

Let us recall this classical construction. The structure group Str(V ) of V can be defined as the subgroup of GL(V ) of elements g such that there exists a real number χ(g) for which (g.x) = χ(g) (x), x ∈ V . (1.1) The map g → χ(g) is a character of Str(V ) which is a reductive Lie group.

The Jordan algebra V can be identified with the abelian group N of its own translations via the map y → n y from V to N , where n y (x) = x + y, ∀x ∈ V . The conformal group Conf(V ) (or the Kantor-Köcher-Tits group) of the Jordan algebra V is the group of rational transformations of V generated by translations, elements in Str(V ) and the inversion map j : x → -x -1 . It is a simple Lie group. A transformation g ∈ Conf(V ) is conformal in the sense that, at each point x, where g is well defined, its differential (Dg) x belongs to the structure group Str(V ).

The subgroup of all affine conformal transformations P = Str(V ) N is a maximal parabolic subgroup of Conf(V ). Let σ be the involution of Conf(V ) given by

σ (g) = j • g • j, g ∈ Conf(V ),
where j ∈ Conf(V ) is the inversion map. We define N = σ (N) and P := Str(V ) N .

From the geometric point of view the subgroup P can be characterized in the following way:

P = g ∈ Conf(V ) | g(0) = 0 ,
where Conf(V ) is the subset of Conf(V ) of all conformal transformations well-defined at 0 ∈ V . It is open and dense in Conf(V ). Moreover, Conf(V ) = N Str(V )N . The map N × Str(V ) × N → Conf(V ) is a diffeomorphism. We shall refer to this decomposition as to the Gelfand-Naimark decomposition of the conformal group. Furthermore, for every transformation g ∈ Conf(V ) which is well defined at x ∈ V , the transformation gn x belongs to Conf(V ) and its Gelfand-Naimark decomposition is given by:

gn x = n g.x (Dg) x n , (1.2)
where (Dg) x ∈ Str(V ) is the differential of the conformal map x → g.x at x and n ∈ N (see [START_REF] Pevzner | Analyse conforme sur les algèbres de Jordan[END_REF]Proposition 1.4]).

The flag variety M = Conf(V )/P , which is compact, is the conformal compactification of V . In fact the map x → (n x • j)P gives rise to an embedding of V into M as an open dense subset, and every transformation in Conf(V ) extends to M.

The Euclidean involution α of V introduced above also defines an involution θ of Conf(V ) by:

θ(g) = α • j • g • j • α. (1.3) It turns out that θ is a Cartan involution of Conf(V ) (see [17, Proposition 1.1]). So the fix points subgroup of θ : U = Conf(V ) θ is a maximal compact subgroup of Conf(V ).
Let us recall that a simple real Jordan algebra is either a real form of a simple complex Jordan algebra or a simple complex Jordan algebra considered as a real one. We conclude this section with the classification of simple Jordan algebras, together with their conformal groups and maximal compact subgroups U , given in Table 1. We shall refer to the Jordan algebras given in the first and fourth columns as to the nonsplit case, and to those of the second and third columns as to the split case. 

(m = 2 ) V Sym m (C) Sym m (R) × Sym 2 (R) ∩ M (H) Conf(V ) Sp m (C) S p m (R) × Sp( , ) U S p m U m × Sp × Sp V M m (C) Herm m (C) M m (R) M (H) Conf(V ) SL 2m (C) SU (m, m) SL 2m (R) S L 2 (H) U S U 2m S(U m × U m ) S O 2m SU 2 (H) V Skew 2m (C) Herm m (H) Skew 2m (R) × Conf(V ) SO 4m (C) SO * 4m SO(2m, 2m) × U S O 4m U 2m SO 2m × SO 2m × V C × C n-1 R × R n-1 R p × R q R n Conf(V ) SO n+2 (C) SO o (2, n) SO o (p + 1, q + 1) SO o (1, n + 1) U S O n+2 SO 2 × SO n SO p+1 × SO q+1 SO n+1 V Herm(3, O) C Herm(3, O) Herm(3, O s ) × Conf(V ) E 7 (C) E 7(-25) E 7(7) × U E 7 E 6 × SO 2 SU 8 × Type IV I II III

Makarevich Riemannian symmetric spaces

A Makarevich symmetric space of tube type is a reductive symmetric space which can be realized as an open symmetric orbit in the conformal compactification M of a simple real Jordan algebra V . We refer the reader to [START_REF] Bertram | On some causal and conformal groups[END_REF][START_REF] Bertram | Algebraic structures of Makarevič spaces. I[END_REF] and literature cited there for a detailed description. We shall concentrate our interest on Makarevich symmetric spaces carrying an invariant Riemannian metric.

Let α be as previously a Euclidean involution of the Jordan algebra V and let

V 0 := x ∈ V | α(x) = x , V 1 := x ∈ V | α(x) = -x ,
be the corresponding eigenspaces of α on V . Notice that the set V 0 is a Euclidean Jordan algebra, whose dimension and rank will be denoted by n 0 and r 0 . This fact implies that the interior 0 of the set {x 2 | x ∈ V 0 } of "positive" elements in V 0 is a symmetric cone in V 0 . Notice that r = r 0 in the split case and r = 2r 0 in the nonsplit case. The Jordan algebra W = V 0 + iV 1 is a Euclidean real form of the complexification V C = V + iV . We will denote by the symmetric cone of W . If V is a simple Jordan algebra of type I, II, or III, then W is simple, while, if V is of type IV, W V 0 × V 0 .

According to [START_REF] Bertram | On some causal and conformal groups[END_REF] one introduces two groups:

G := g ∈ Conf(V ) | (-α) • g • (-α) = g o and K := {g ∈ G | g.e = e},
where the subscript o stands as usual for the connected component of the identity transformation and e denotes the identity element of the Jordan algebra V . It follows that K is a maximal compact subgroup of G. Moreover, the associated Riemannian symmetric space is a real tube domain:

X := G/K = 0 + V 1 . (1.4)
The set X is a Riemannian Makarevich symmetric space of tube type. We shall refer to the previous description as to the tube realization of X .

Such a Riemannian Makarevich symmetric space can be obtained as a real form of a Hermitian symmetric space of tube type. The transform x → u = (x -e)(x + e) -1 maps the symmetric space X onto a bounded domain D, which is the unit ball in V with respect to a so-called spectral norm. Its inverse is the Cayley transform

c : u → x = c(u) = (e + u)(e -u) -1 . (1.5) If V is a Euclidean Jordan algebra, then V 1 = {0},
and X is a symmetric cone. If V has a complex structure, then X is a Hermitian symmetric tube.

Table 2 gives the classification of Riemannian Makarevich symmetric spaces obtained in this way. The second row of table gives the root system of the pair (g, a), where g is the Lie algebra of G, and a is a Cartan subspace.

Example 1. Let V = M(m, R), the space of m × m real matrices, be equipped with the Jordan product x • y = 1 2 (xy + yx). Then the Jordan determinant coincides with the usual matrix determinant: (x) = det x. The structure group Str(V ) is the group

S GL(m, R) × GL(m, R) , acting on V by x → g 1 xg -1 2 (g 1 , g 2 ∈ GL(m, R)). The conformal group Conf(V ) is the group SL(2m, R)/{±I } acting on V by x → (ax + b)(cx + d) -1 if g = a b c d .
The differential of a conformal transformation g is given by (Dg) x y = h 1 (x)y × h 2 (x), where, under the condition that R) is given by the usual matrix transposition: α(x) = x T , and

det c = 0, h 1 (x) = (ac -1 d -b)(cx + d) -1 c, h 2 (x) = (cx + d) -1 . Since det(ac -1 d -b) det c = det a b c d = 1 we finally get: χ((Dg) x ) = det(cx + d) -2 . The Euclidean involution α on V = M(m,
V 0 = Sym m (R), V 1 = Skew m (R). Recall that an element g ∈ Conf(V ) belongs to the group G if and only if g • (-α) = (-α) • g. If g.x = (ax + b)(cx + d) -1
, the above condition on g to be in G leads to

xc T + d T (-ax + b) = -xa T + b T (-cx + d),
or equivalently, a T c + c T a = 0, b T d + d T b = 0, and, for every x ∈ V , x(a T + dc T b) = (d T a + b T c)x. By Schur's lemma this last condition says that there is 

λ ∈ R such that a T d + c T b = λ Id m .
(m = 2 ) C m A m-1 D m C V Sym m (C) Sym m (R) × Sym 2 (R) ∩ M (H) G Sp m (R) SL m (R) × R + × Sp (C) K U m SO m × Sp V M m (C) Herm m (C) M m (R) M (H) G SU (m, m) SL m (C) × R + SO(m, m) Sp( , ) K S(U m × U m ) S U m SO m × SO m Sp × Sp V Skew 2m (C) Herm m (H) Skew 2m (R) × G SO * 4m SL m (H) × R + SO 2m (C) × K U 2m Sp m SO 2m × V C × C n-1 R × R n-1 R p × R q R n G SO 0 (2, n) SO 0 (1, n -1) × R + SO 0 (1, p) × SO 0 (1, q) SO 0 (1, n) K SO 2 × SO n SO n-1 SO p × SO q SO n V Herm(3, O) C Herm(3, O) Herm(3, O s ) × G E 7(-25) E 6(-26) × R + SU * 8 × K E 6 × SO 2 F 4 Sp 4 ×
Define the matrix

ϒ = 0 Id m Id m 0 .
Then the element g belongs to G if and only if g T ϒg = λϒ . Since det g = 1, it follows that λ 2m = 1, and since G is connected, λ = 1.

Finally we have shown that G = SO o (ϒ)/ ± Id, where SO(ϒ) stands for the special orthogonal group of the quadratic form defined by the matrix ϒ which has signature

(m, m). Therefore G SO o (m, m)/ ± Id. The conformal compactification M of V is the Grassmann manifold M = Gr(2m, m) of m-dimensional vector subspaces in R 2m . The corresponding Riemannian Makarevich symmetric space X in its tube realization is the set of matrices x ∈ M(m, R) with a positive definite symmetric part: x + x T 0. Its bounded realization is the ball D = {x ∈ M(m, R) | x op < 1}. Example 2. Let V be the space R × R n-1 . One writes x = (x 0 , x 1 ), x 0 ∈ R, x 1 ∈ R n-1 . Then the Jordan product is defined as follows: z = x • y if z 0 = x 0 y 0 -(x 1 |y 1 ), z 1 = x 0 y 1 + y 0 x 1 , where (x 1 |y 1 ) is the usual inner product on R n-1 . The Jordan determinant is then given by (x) = x 2 0 + x 1 2 .
(This Jordan algebra is actually a Jordan field.) The corresponding structure group is the group

Str(V ) = R + × O(n), and the conformal group Conf(V ) is equal to O(1, n + 1).
The conformal compactification of V is the n-sphere S n . Consider the involution α : (x 0 , x 1 ) → (x 0 , -x 1 ). The corresponding groups G and K are isomorphic respectively to SO 0 (1, n) and SO(n). The Riemannian symmetric space X is the real hyperbolic space of dimension n, realized as a half-space

X = (x 0 , x 1 ) ∈ R × R n-1 | x 0 > 0 .
The bounded realization of this symmetric space is isomorphic to the Euclidean ball:

D = x ∈ R n | x < 1 .

Iwasawa decomposition and spherical Fourier transform

According to (1.3) the Cartan involution of the group G is given by

θ(g) = (-j) • g • (-j), g ∈ G.
The Lie algebra g, which is an algebra of quadratic vector fields on V , decomposes under dθ into a direct sum of two eigenspaces: g = k + p, where k is the Lie algebra of the group K introduced above. Let us fix a Jordan frame {c 1 , . . . , c r 0 } in V 0 . Then the space a of the linear vector fields

ξ(x) = r 0 j =1 t j L(c j )x (t j ∈ R),
is a Cartan subspace in p. The root system of the pair (g, a) is of type A, C, or D. We choose the Weyl chamber a + defined by

t 1 < • • • < t r 0 in case of type A, or 0 < t 1 < • • • < t r 0 in case of type C or D.
For type A the positive roots are:

t j -t i 2 , i < j , for type D: t j -t i 2 , i < j, t j +t i 2 , i = j and for type C: t j -t i 2 , i < j, t j +t i 2 , i = j, t i .
We define A = exp a, and, as usual the nilpotent subgroup N . It can be written

N = N 0 N 1 , where N 0 is a triangular subgroup in Str(V 0 ), and N 1 is the group of translations x → x + v with v ∈ V 1 .
The Iwasawa decomposition can be described as follows: every x ∈ X can be uniquely written

x = na • e = n 0 a • e + v, with a ∈ A, n 0 ∈ N 0 , v ∈ V 1 . One writes a = exp A(x) with A(x) ∈ a. If λ ∈ a * C , we write, for ξ(x) = j t j L(c j )x, λ, ξ = r 0 j =1 λ j t j .
Then e λ,A(x) = λ (x 0 ), where λ is the power function of the symmetric cone 0 in the Euclidean Jordan algebra V 0 , and

x 0 denotes the V 0 -component of x: x = x 0 + x 1 , x 0 ∈ V 0 , x 1 ∈ V 1 .
The spherical functions ϕ λ for X = G/K are given by

ϕ λ (x) = K ρ-λ (k • x) 0 dk, (1.6)
where dk is the normalized Haar measure of K, and ρ is the half-sum of the positive roots:

ρ, ξ = 1 2
Tr(ad ξ)

Lie(N) = 1 2
Tr(ad ξ)

Lie(N 0 ) + 1 2
Tr(ad ξ)

Lie(N 1 )
.

One obtains ρ j = d 0 4 (2jr 0 -1) + n 1 2r 0 , where the integer d 0 is defined by

n 0 = r 0 + d 0 2 r 0 (r 0 -1). The spherical Fourier transform of a K-invariant integrable function f on X is defined on ia * by Ff (λ) = X ϕ -λ (x)f (x)µ(dx) = X ρ+λ (x 0 )f (x)µ(dx),
where µ(dx) = (x 0 ) -n/r dx is a G-invariant measure on X . Here and elsewhere further the measure dx denotes the Euclidean measure associated to the Euclidean structure defined on V by (x|y) = tr(xα(y)).

Berezin kernels and the Kantor cross ratio

The Kantor cross ratio of four points of a simple Jordan algebra V is the rational function

{x 1 , x 2 , x 3 , x 4 } = (x 1 -x 3 ) (x 2 -x 3 ) : (x 1 -x 4 ) (x 2 -x 4 ) . (1.7)
It is invariant under conformal transformations and extends to the conformal compactification M of V .

The invariance by translations is obvious. The invariance under Str(V ) comes from the fact that is semi-invariant under Str(V ). The invariance under the inverse j : x → -x -1 follows from the formula [8, Lemma X.4.4]:

j (x) -j (y) = (y -x) (x) (y) .
Furthermore, it is proved that a local transformation which preserves the cross ratio is the restriction of an element of Conf(V ) (cf. [START_REF] Kantor | Non-linear groups of transformations defined by general norms of Jordan algebras[END_REF]Theorem 6]).

Being given the Kantor cross ratio (1.7) we shall introduce the kernel F on X by

F (x, y) = x, y, -α(x), -α(y) (1.8) = (x + α(x)) (y + α(y)) (x + α(y)) (y + α(x)) .
This function is invariant under G and positive. The Berezin kernel B ν can be defined for every ν ∈ C as

B ν (x, y) = F (x, y) r 0 r ν = F (x, y) ν in the split case, F (x, y) ν 2
in the nonsplit case. (1.9)

In virtue of the G-invariance of the kernel B ν the Berezin function

ψ ν (x) = B ν (x, e) = (x 0 ) x+e 2 2 r 0 r ν is K-invariant. In this formula x 0 denotes as before the V 0 -component of x in the decomposition V = V 0 + V 1 , x = x 0 + x 1 . If {c 1 , . . . , c r 0 } is a Jordan frame of V 0 , and if x = r 0 j =1 e t j c j , then ψ ν (x) = r 0 j =1 cosh t j 2 -2ν . Theorem 1.1. Assume ν > n r 0 -1.
Then the function ψ ν is integrable and its spherical Fourier transform is given by

Fψ ν (λ) = P (λ, ν)P (-λ, ν) Q(ν) , (1.10) with P (λ, ν) = r o j =1 1 2 + ν -δ + λ j , δ = n 2r 0 , Q(ν)= c 2r o j =1 (ν -β j )
where the constant c1 and the real numbers β j 's depend on the Jordan algebra V .

In particular, for ν real and λ ∈ ia * , then λ = -λ and

Fψ ν (λ) = |P (λ, ν)| 2 Q(ν) 0,
Recall that the Gindikin -function of a symmetric cone is defined by

(ν) = e -tr(x) (x) ν-n r dx.
If the cone is irreducible (the corresponding Euclidean Jordan algebra W is simple), then

(ν) = (2π) n-r 2 r j =1 ν -(j -1) d 2 ,
where the integer d is defined by n = r + d 2 r(r -1). For types I and II:

Q(ν) = c2 -2rν (2ν). For type III: Q(ν) = c (ν).
For type IV:

(ν) = ( 0 (ν)) 2 , notice that in this case the Jordan algebra W is not simple anymore: W V 0 × V 0 . The above theorem was proved by different methods in [START_REF] Van Dijk | Berezin kernels of tube domains[END_REF][START_REF] Zhang | Berezin transform on real bounded symmetric domains[END_REF][START_REF] Unterberger | The Berezin transform and invariant differential operators[END_REF].

Let h(z, w) stand for the so-called canonical polynomial defined on V C × V C by the following conditions (see [8, p. 262]):

• It is holomorphic in the first variable and anti-holomorphic in the second one.

• For every g ∈ Str(V C ) one has h(gz, w) = h(z, g * w).

• For every x ∈ W one has h(x, x) = (ex 2 ). Recall that the Bergman kernel of the Hermitian symmetric space, whose X is a real form, is given by h(z, w) -2n r .

Example 1. For V = M(m, R) the canonical polynomial is given by h(x, x) = det(Ixx T ).

Example 2. For

V = R × R n-1 the canonical polynomial is given by h(x, x) = (1 -x 2 ) 2 .
Recall that the Cayley transform (1.5) maps the bounded domain D onto the tube

X = 0 + V 1 . Define F (u, v) = F (c(u), c(v)). Since -α(c(u)) = c(α(u -1 )) we obtain F (u, v) := u, v, α u -1 , α v -1 = (u -α(u -1 )) (v -α(v -1 )) (u -α(v -1 )) (v -α(u -1 )) . Furthermore, F (u, 0) = lim v→0 F (u, v) = (α(u -1 ) -u) (α(u))
, and one can show that F (u, 0) = h(u, u). Define similarly

B ν (u, v) = B ν c(u), c(v) , ψ ν (u) = ψ ν c(u) .
Then

ψ ν = h(u, u) ν in the split case, h(u, u) ν 2
in the nonsplit case.

Consider the integral

I (ν) = D ψ ν (u)h(u, u) -n r du.
It can be written as

D h(u, u) r 0 r ν-n r du.
Since h(u, u) -n r du is an invariant measure on D the last integral equals

I (ν) = c X ψ ν (x)µ(dx) = cFψ ν (ρ).
Therefore we obtain Corollary 1.2.

I (ν) = vol D Q( n r ) P (ρ, n r )P (-ρ, n r ) • P (ρ, ν)P (-ρ, ν) Q(ν) .
Eventually we may notice that according to the Jordan algebra's type some simplifications in the above formula, due to explicit expressions of -factors, are possible, see examples below.

Example 1. Let

V = M(m, R). Then V 0 = Sym m (R), V 1 = Skew m (
R), the invariant measure on X is given by det(x 0 ) -m dx 0 dx 1 , and the Berezin function is

ψ ν (x) = 4 mν det x 0 det(e + x) 2 ν , with φ ν (e) = 1.
Its push-forward to D = {u ∈ V | u op < 1} equipped with the invariant measure det(euu T ) -m du is given by ψ ν (u) = det(euu T ) ν .

The spherical Fourier transform of ψ ν is the given by

Fψ ν (λ) = ω 0 +V 1 det x 0 det(e + x) 2 ν o ρ-λ (x 0 ) o (x 0 ) -m dx 0 dx 1 = c m j =1 (ν -m-1 2 + λ j ) (ν -m-1 2 -λ j ) 4 -mν m j =1 (2ν -j + 1)
.

Notice that in this case

Q(ν) = c4 -mν (2ν) = c 0 (ν) 0 ν + 1 2 = c m j =1 ν - j -1 2 m j =1 ν + 1 2 - j -1 2 .
Moreover,

I (ν) = 0 (ν -m-1 2 ) 0 (ν + 1 2 )
.

Example 2. In the case when

V = R n = R × R n-1 the Jordan determinant is given by (x) = x 2 0 + x 1 2
and the Berezin function is given by

ψ ν (x) = 4x 0 (1 + x 0 ) 2 + x 1 2 ν .
Its spherical Fourier transform is equal to

Fψ ν (λ) = c (ν + λ -n-1 2 ) (ν -λ -n-1 2 ) (ν) (ν + 1 2 -n-1 2 )
.

And finally,

I (ν) = c (ν -n + 1) (ν + 1 2 -n-1 2 )
.

A Bernstein identity

An interesting consequence of Theorem 1.1 is a Bernstein identity. Let D(ν) be the invariant differential operator on X = G/K whose symbol, i.e. its image through the Harish-Chandra isomorphism

γ : D(X ) → S C r 0 , D → γ D (λ), is γ D(ν) (λ) = γ ν (λ) = r 0 j =1 ν + 1 2 -δ + λ j ν + 1 2 -δ -λ j .
Corollary 1.3. The Berezin kernel (1.9) satisfies the following identity:

D(ν)B ν = b(ν)B ν+1 ,
where b(ν) is the polynomial of degree 2r 0 given by:

b(ν) = Q(ν + 1) Q(ν) = 2r o j =1 (ν -β j ).
In the split case (types I and II):

b(ν) = r 0 j =1 (ν -d 4 (j -1))(ν + 1 2 -d 4 (j -1)). In case when V is of type III (r = 2r 0 ), b(ν) = 2r 0 j =1 (ν -d 2 (j -1)),
where the integer 2 . This identity has been established for V complex by Engliš [START_REF] Engliš | A mean value theorem on bounded symmetric domains[END_REF], also in a slightly different form by Unterberger and Upmeier [START_REF] Unterberger | The Berezin transform and invariant differential operators[END_REF], and has been generalized in [START_REF] Faraut | Intégrales de Riesz sur un espace symétrique ordonné[END_REF].

d is defined through n = r + d 2 r(r -1). In case when V is complex (type IV): b(ν) = r 0 j =1 (ν -d 0 2 (j -1))
In general we do not know any explicit expression for the differential operator D(ν). However an explicit formula has been obtained in the special case of a simple complex Jordan algebra, and for ν = δ [START_REF] Khlif | Intégrales de Riesz sur un espace symétrique de type Cayley[END_REF]:

D(δ) = (y) 1+ n r ∂ ∂z ∂ ∂ z (y) 1-n r ,
where z = x + iy.

Observe that, for V = C we get: D(δ) = y 2 ∂ 2 ∂z∂ z is nothing but the Laplace-Beltrami operator of the upper hyperbolic upper half-plane.

Example 1. When V = M(m, R) the Bernstein polynomial and the Harish-Chandra symbol are respectively given by

b(ν) = m j =1 ν - j -1 2 ν + 1 2 - j -1 2 , γ ν (λ) = m j =1 ν - 1 2 (m -1) + λ j ν - 1 2 (m -1) -λ j . Example 2. When V = R × R n-1 b(ν) = ν ν - n 2 + 1 , γ ν (λ) = ν + λ - n -1 2 ν -λ - n -1 2 .

Hua integral

Let us introduce the compact dual U/K of the symmetric space X = G/K in the complexification X C = G C /K C of the symmetric space X . Define u = k + ip and let U be the analytic subgroup of G C with the Lie algebra u. The compact symmetric space Y = U/K is isomorphic to the conformal compactification M of the Jordan algebra V . The set Y of invertible elements y in V C such that ȳ = y -1 is open and dense in Y. For ν = -κ (κ ∈ N) the function ψ -κ extends as a meromorphic function on X C . For y = r 0 j =1 e iθ j c j we have

ψ -κ (y) = r 0 j =1 cos 2 θ j 2 κ .
This shows that this function is well defined on Y for κ ∈ C, and bounded for κ 0.

Denote by µ o the normalized invariant measure on Y and define

J (κ) = Y ψ -κ (y)µ o (dy). (1.11) Theorem 1.4. For κ 0, J (κ) = c 2r o j =1 (κ + 1 + β j ) r o j =1 (κ + 1 2 + δ -ρ j ) (κ + 1 2 + δ + ρ j )
.

Proof. Assume first that κ ∈ N. The Bernstein identity (1.3) implies that

D -κ ψ -κ = b(-κ)ψ -κ+1 .
By integrating this identity on Y we obtain

b(-κ)J (κ + 1) = Y D -κ ψ -κ µ o (dy) = Y ψ -κ (y)D -κ 1µ o (dy),
since the operator D -κ is self adjoint. The constant term of the differential operator

D -κ is given by D -κ 1 = γ -κ (ρ).
We finally get

γ -κ (ρ)J (κ) = b(-κ)J (κ -1). (1.12)
On the other hand, the sequence

φ(κ) = 2r o j =1 (κ + 1 + β j ) r o j =1 (κ + 1 2 + δ -ρ j ) (κ + 1 2 + δ + ρ j )
satisfies the same recursion relation. Indeed,

φ(κ) = 2r o j =1 (κ + β j ) r o j =1 (κ + 1 2 + δ -ρ j )(κ + 1 2 + δ + ρ j ) φ(κ -1).
Therefore J (κ) = cφ(κ) and because of the "initial" condition J (0) = 1, we finally get

J (κ) = φ(κ) φ(0) .
The functions φ(κ) and J (κ) are holomorphic for κ > 0 and grow polynomially:

φ(κ) c 1 1 + |κ| N 1 , J (κ) J (0) = 1.
Indeed, 0 ψ -κ (y) 1. Therefore, the Carlson's theorem implies that J (κ) = φ(κ) φ(0) , for every κ ∈ C such that κ > 0. P By writing y = c(iv), J (κ) becomes an integral over iV . One shows that

ψ -κ (iv) := ψ -κ c(iv) = h(v, -v) -r 0 r κ .
Therefore,

J (κ) = V h(v, -v) -r 0 r κ-n r dv.
In fact, in this realization an invariant measure µ o on Y is given by h(v, -v) -n r dv. The above integral has been considered and computed by Hua in [10, Chapter II] in several special cases.

BEREZIN KERNELS AND REPRESENTATIONS

Following ideas developed in [START_REF] Van Dijk | Maximal degenerate representations, Berezin kernels and canonical representations[END_REF][START_REF] Van Dijk | Tensor products of maximal degenerate series representations of the group SL(n, R)[END_REF][START_REF] Hille | Canonical representations[END_REF] we shall now give an alternative approach to the theory of Berezin kernels considering intertwining operators for the maximal degenerate series representations of a conformal group.

Maximal degenerate series representations

The character χ of the structure group Str(V ) (cf. (1.1)) can be trivially extended to the whole parabolic subgroup P by χ(h n) := χ(h) for every h ∈ Str(V ), n ∈ N .

For every s ∈ C we define a character χ s of P by χ s ( p) := |χ ( p)| s+ n 2r . The induced representation π s = Ind Conf(V ) P (χ s ) of the conformal group acts on the space

I s := f ∈ C ∞ Conf(V ) f (h p) = χ s ( p)f (h), ∀h ∈ Str(V ), p ∈ P ,
by left translations. A pre-Hilbert structure on I s is given by

f 2 = U |f (u)| 2 du,
where U is the maximal compact subgroup of Conf(V ) associated with the Cartan involution θ , and du is the normalized Haar measure of U .

According to the Gelfand-Naimark decomposition a function f ∈ I s is determined by its restriction f V (x) = f (n x ) on N V . Let I s be the subspace of C ∞ (V ) of functions f V with f ∈ I s . The conformal group acts on I s by:

π s (g)f (x) = A(g, x) s+ n 2r f g -1 .x , g ∈ Conf(V ), x ∈ V , (2.1)
where A(g, x) := χ((Dg -1 ) x ). This action is usually called the even maximal degenerated series representation of Conf(V ).

One shows that the norm of a function f (n x ) = f V (x) ∈ I s is given by:

f 2 = V f V (x) 2 h(x, -x) 2 s dx. (2.2)
The formula (2.2) implies that for s = 0 the space I s is contained in L 2 (V ) and the representation π s extends as a unitary representation on L 2 (V ).

In order to address the question of irreducibility and unitarity of these representations we refer the reader to [START_REF] Pevzner | Analyse conforme sur les algèbres de Jordan[END_REF], [START_REF] Sahi | Explicit Hilbert spaces for certain unipotent representations[END_REF][START_REF] Sahi | Jordan algebras and degenerate principal series[END_REF] and to [START_REF] Zhang | Jordan algebras and generalized principal series representations[END_REF].

Following the standard procedure we introduce an intertwiner between π s and π -s . Consider the map A s defined on I s by

f → ( A s f )(g) := N f (gjn) dn, ∀g ∈ Conf(V ), (2.3)
where dn is a left invariant Haar measure on N . We will see that this integral converges for s > n 2r 0 .

Proposition 2.1. For every f ∈ I s the function A s f belongs to I -s and the map A s given by (2.3) intertwines the corresponding representations of the conformal group:

π -s (g) A s f = A s π s (g)f , ∀f ∈ I s , g ∈ Conf(V ). (2.4)
Proof. The map A s obviously commutes with the left action of Conf(V ). We have to check that A s f transforms in an appropriate way under the right action of P . Notice first that A s f is N right invariant. Indeed

A s f (g n) = N f (g nj n) dn = N f (gjn jj n) dn = V f (gjn ) dn = A s f (g).
For what concerns the action of Str(V ) we have for every f ∈ I s : (2.5) where h t denotes the transformation adjoint to h ∈ Str(V ) with respect to the bilinear form Tr L(xy) on V .

A s f (g ) = N f (g jn) dn = N f gj ( t ) -1 n dn,
Indeed, one shows, (see [8, Proposition VIII.2.5]) that j j = ( t ) -1 , ∀ ∈ Str(V ). Thus the equality (2.5) implies that

A s f (g ) = N f gj ( t ) -1 n t ( t ) -1 dn = | det | n r N f gj n ( t ) -1 dn = | det | n r -s n 2r A s f (g) = χ -s ( ) A s f (g). P
Define the map A s :

I s → I -s by A s (f V ) = ( A s f ) V (f ∈ I s ).
Proposition 2.2. For every f ∈ I s we have,

(A s f )(x) = V (x -u) 2s-n r f (u) du.

Proof. By definition of A s , we have

( A s f )(n x ) = V f (n x jn v ) dv (f ∈ I s ). Ac- cording to the Gelfand-Naimark decomposition (1.
2) for g = n x j we have

n x jn v = n (n x •j).v D(n x • j) v n = n (x-v -1 ) P v -1 n . Thus (A s f )(x) = V f (x -v -1 )χ s (P (v) -1 ) dv. Let u = x -v -1
. The Jacobian of this transformation being equal to | (v)| 2n r , we finally get:

(A s f )(x) = V f (u) (x -u) 2s-n r du. P (2.6)
The bilinear form on

I -s × I s defined by f 1 , f 2 = U f 1 (u)f 2 (u) du is Conf(V )- invariant. By using the fact that f 1 , f 2 = c V (f 1 ) V (x)(f 2 ) V (x) dx it gives rise to a Conf(V )-invariant bilinear form on I s × I s : Proposition 2.3. For s > n 2r 0 , the bilinear form B s , B s (f 1 , f 2 ) = V ×V (x -y) 2s-n r f 1 (x)f 2 (y) dx dy,
is well defined on I s × I s and is Conf(V )-invariant.

According to the general theory (see for instance [START_REF] Kostant | On the existence and irreducibility of certain series representations[END_REF]) these maximal degenerate series representations π s are spherical. We shall determine the corresponding Ufixed vector of the representation π s . Using the Iwasawa decomposition of Conf(V ) we write g = u (g) n, where (g) ∈ Str(V ), which is defined up to a multiplication by an element of U ∩ Str(V ) on the left. Notice by the way that with the above notation we have θ(g -1 )g = n -1 (g) 2 n.

Consider n x ∈ N admitting the decomposition n x = u (n x ) n. Therefore

(n x ) 2 = D θ(n -x )n x (0) = P x -1 + α(x) -1 P (x) -1 . Let f o ∈ I s be a U -invariant function, with f o (e) = 1. Then f o (g) = f o u (g) n = χ s (g) f o (u) = χ s (g) .
Eventually we get that the U -fixed vector f o V in I s is given by

f o V (x) = x -1 + α(x) (x) -(s+ n 2r ) = h(x, -x) -(s+ n 2r ) .
In order to conclude this section we shall discuss conditions under which the intertwining operator A s is well defined.

Let us evaluate A s f o at the identity of the conformal group.

A s f o (e) = N f o (j n) dn = N f o (n) dn = V h(x, -x) -(s+ n 2r ) dx.
Notice that the value C(s) of this integral equals

C(s) = J r r 0 s - n 2r ,
where J (ν) is given by (1.11).

For u ∈ U , f o (u) = 0. Therefore, for f ∈ I s , f (g) M f o (g) , with M = sup u∈U |f (u)| |f 0 (u)| .
Now it is clear that the integral defining A s is well defined for s > n 2r 0 . One shows that the map s → A s can be actually extended to the whole complex plane as a function. Because of the intertwining property we eventually get:

A s • A -s = C(s)C(-s) Id I s .

Restriction of π s and canonical representations

We shall study the representations π s when restricted to the subgroup G. The representation space I s can be seen as a line bundle over the conformal compactification M. The Makarevich space X is one of the open orbits of G acting on M. The space I s (X ) of functions in I (s) = I s (V ) supported in the closure X ⊂ V is then invariant. We shall consider the corresponding representation T s of G on I s (X ).

The problem is to determine for which values of the parameter s the representation T s of the group G is unitarizable, and then to decompose it into irreducible ones.

According to an established terminology taking its roots in [START_REF] Vershik | Representations of the group SL(2, R), where R is a ring of functions[END_REF] one calls such representations canonical representations of the group G.

A key observation is the connection between the canonical representation T s and the Berezin kernel. We shall make this link clear.

Consider the bilinear form on I s (X ) × I s (X ) given by

B α s (f 1 , f 2 ) := B s f 1 , f 2 • (-α) , (2.7)
where B s (f 1 , f 2 ) is the bilinear form on I s (V ) × I s (V ) introduced in Proposition 2.3. The proof uses the invariance property of the cross ratio, and the two following lemmas.

Lemma 2.5. For every g ∈ G the following identity holds:

A g, -α(x) = A(g, x).
Lemma 2.6. Let x be an element in V , then for every g ∈ G the following identity holds:

(gx) 0 = A(g, x) (x 0 ).
(Recall that the subscript 0 means the V 0 -component.)

Let us introduce the multiplication operator M s on the space I s (X ) by

M s f (x) = (x 0 ) s+ n 2r f (x).
This operator intertwines the canonical representation T s and the left regular action L of the group G,

M s • T s (g) = L(g) • M s , g ∈ G,
where

(L(g)f )(x) = f (g -1 • x).
Proposition 2.7. Let us define the bilinear form B α s on C c (X ) × C c (X ) by

B α s (F 1 , F 1 ) = B α s (M s f 1 , M s f 2 ) = B α s (f 1 , f 2 ). Then B α s (F 1 , F 2 ) = X ×X
B ν (x, y)F 1 (x)F 2 (y)µ(dx)µ(dy), (2.8) where B ν (x, y) is the Berezin kernel introduced in (1.9) and ν = -r r 0 (s -n 2r ).

Therefore the decomposition of the canonical representations reduces now to a classical problem in spherical harmonic analysis.

Let be the set of parameters λ ∈ a * C for which the spherical function ϕ λ given by (1.6) is positive definite. Let ψ be a continuous function of positive type on G which is K-biinvariant. By the Bochner-Godement theorem there is a unique bounded positive measure m on such that

ψ(x) = ϕ λ (x)m(dλ).
If ψ is integrable, then the measure m is absolutely continuous with respect to the Plancherel measure, with a density given by the Fourier transform of ψ :

m(dλ) = Fψ(λ) dλ |c(λ)| ,
where c(λ) is the Harish-Chandra c-function of the symmetric space X . Therefore the problem is:

(1) Determine the set W ⊂ R of values ν for which the Berezin kernel B α ν (or the corresponding K-biinvariant function ψ ν ) is of positive type.

(2) For ν ∈ W, determine the positive measure m ν on such that

ψ ν (x) = ϕ λ (x)m ν (dλ).
These problems have been solved for hyperbolic spaces by van Dijk, Hille, Pasquale [START_REF] Van Dijk | Maximal degenerate representations, Berezin kernels and canonical representations[END_REF][START_REF] Van Dijk | Harmonic analysis on vector bundles over Sp(1, n)/ Sp(1) × Sp(n)[END_REF]. Notice however that only real hyperbolic spaces are Makarevich spaces of tube type as introduced above.

The case G = U(p, q) was studied by Hille and Neretin [START_REF] Hille | Canonical representations[END_REF][START_REF] Yu | Matrix analogues of the B-function, and the Plancherel formula for Berezin kernel representations[END_REF], and the case G = SO(p, q) by Neretin in [START_REF] Yu | Matrix analogues of the B-function, and the Plancherel formula for Berezin kernel representations[END_REF][START_REF] Yu | Matrix balls, radial analysis of Berezin kernels, and hypergeometric determinants[END_REF][START_REF] Yu | Plancherel formula for Berezin deformation of L 2 on Riemannian symmetric space[END_REF].

One should point out that the first problem is not equivalent to the determination of the so called Wallach set which is the positive definiteness domain of the Bergman kernel. Since a Makarevich symmetric space of tube type is a real form of a Hermitian symmetric space, the set W does contain the Wallach set related to the associated Bergman kernel. In fact the restriction to a subset of a kernel of positive type is of positive type too. But this inclusion can be strict, as it is the case for real hyperbolic spaces.

For ν > n r 0 -1 the function ψ ν is integrable and, for λ ∈ ia * :

Fψ ν (λ) = |P (λ, ν)| 2 Q(ν) 0.
It follows that ψ ν is of positive type, and

ψ ν (x) = ia * φ λ (x) |P (λ, ν)| 2 Q(ν) dλ |c(λ)| 2 .
According to Helgason we define the Fourier transform of an integrable function f on X . The Iwasawa decomposition of the group G can be written as

G = NAK. If k -1 g ∈ N exp(H )K with H ∈ a, one writes H = A(x, b), x ∈ gK, b ∈ kM ∈ B = K/M, where M is the centralizer of A in K.
The Fourier transform of f is the function f defined on ia * × B by

f (λ, b) = X f (x)e -λ+ρ,A(x,b) dx.
We consider f (λ) := f (λ, •) as an element of the space H λ L 2 (B) which carries a unitary spherical principal series λ of G. Then the map f → f (λ) intertwines the left regular representation L and λ . Theorem 2.8. For ν > n r 0 -1, the Berezin form is positive definite. Therefore the representation T s is unitarizable, decomposes multiplicity free as a direct integral of spherical principal series λ of G, which corresponds to the following Plancherel formula:

B α s f, f = ia * f (λ) 2 |P (λ, ν)| 2 Q(ν) dλ |c(λ)| 2 ,
where ν = -r r 0 (s -n 2r ) and f ∈ C c (X ).

Berezin kernel on the Riemannian compact dual

In order to study the "deformation" of the regular representation of the compact group U we shall investigate the spherical Fourier transform of the Berezin kernel on the compact dual symmetric space Y.

The spherical functions of the symmetric space Y = U/K are given by

m (x) = K m (k.x) 0 dk = ϕ m-ρ (x), ( 2.9) 
where the weights m = (m 1 , . . . , m n ) ∈ Z n are given according to different cases by the following conditions:

• If V is a Euclidean Jordan algebra (root system of type A), then m 1 m 2 • • • m n . • If V is a non-Euclidean algebra of split type (root system of type D), them -|m| 1 m 2 • • • m n . • If V is either a complex or a non-Euclidean Jordan algebra of nonsplit type (root system of type C), then 0 m 1 m 2 • • • m n .
The spherical Fourier coefficients of a K-invariant integrable function f on Y are given by

a(m) = Y f (y) m (y)µ 0 (dy).
For κ 0, the Berezin function ψ -κ is bounded on Y. We will determine its spherical Fourier coefficients

a κ (m) = Y ψ -κ (y) m (y)µ 0 (dy).
Notice that a κ (0) = J (κ).

Theorem 2.9. The Fourier coefficients of the Berezin kernel function ψ -κ are given by

a κ (m) = J (κ) n j =1 (κ + 1 2 + δ -ρ j ) (κ + 1 2 + δ + ρ j ) n j =1 (κ + 1 2 + δ -ρ j + m j ) (κ + 1 2 + δ + ρ j -m j )
.

Proof. We use the same method as in [START_REF] Zhang | Berezin transform on compact Hermitian symmetric spaces[END_REF].

(a) We show first that the measure on Y given by

1 J (κ) ψ -κ (y)µ 0 (dy)
converges to the Dirac measure δ at the base point e of Y in the sense of tight convergence of measures. The proof of this fact is based on the following lemma.

Lemma 2.10. Let K be a compact topological space, and µ a positive measure on it such that every non empty open set has a positive measure. Let q 0 be a continuous function on K which attains its maximum at only one point x 0 . Define, for n ∈ N,

a n = K q(x) n µ(dx),
and, for a continuous function ϕ on K,

L n (ϕ) = 1 a n K ϕ(x)q(x) n µ(dx).
Then

lim n→∞ L n (ϕ) = ϕ(x 0 ).
Proof. For 0 < α < M = max q, there exits a constant C α such that a n C α α n . In fact there is a neighborhood V of x 0 such that q(x) α for x ∈ V, and a n µ(V)α n . Let W be a neighborhood of x 0 . For

x ∈ K \ W, q(x) β < M. Choose α such that β < α < M. Then 1 a n K\W q(x) n µ(dx) 1 C α µ(K) β α n ,
and

lim n→∞ 1 a n K\W q(x) n µ(dx) = 0. P
The function ψ -κ attains its maximum M = 1 only at y = e. Therefore Lemma 2.10 applies. It follows that, for every m,

lim κ→∞ 1 J (κ) a κ (m) = 1.
(b) Assume that κ ∈ N. From the Bernstein identity (1.3) it follows that the spherical Fourier coefficients a κ (m) satisfy the following recursion relation:

γ -κ (ρ -m)a κ (m) = b(-κ)a κ-1 (m).
Since, for m = 0, γ -κ (ρ)a κ (0) = b(-κ)a κ-1 (0) we obtain

γ -κ (ρ -m) γ -κ (ρ)
a κ (m) a κ (0) = a κ-1 (m) a κ-1 (0) .

Furthermore, since a κ (0) = J (κ), by (a) The sequence given by

φ(κ) = n j =1 (κ + 1 2 + δ -ρ j ) (κ + 1 2 + δ + ρ j ) n j =1 (κ + 1 2 + δ -ρ j + m j ) (κ + 1 2 + δ + ρ j -m j )
, satisfies the same recursion relation as a κ (m) a κ (0) does. Moreover, from the asymptotic equivalence (c) By using Carlson's theorem, as we did in the proof of Theorem 1.4, we conclude that the statement is still valid for κ 0. P

Restriction of the representation π s to the compact group U

The compact symmetric space Y = U/K is also of Makarevich type. Indeed,

U = g ∈ Conf(V ) | α • j • g • j • α = g o .
From the generalized cross ratio (1.7) we define the kernel F c (u, v) by

F c (u, v) = u, v, -α u -1 , -α v -1 = (u + α(u -1 )) (v + α(v -1 )) (u + α(v -1 )) (v + α(u -1 ))
and F c (u, 0) = h(u, -u).

Similarly to what we did in Section 2.2 we twist the bilinear form B s by the involution j • α, in other words we replace y by α(y -1 ), and by introducing multiplication operators

M c s f (x) = h(x, -x) s+ n 2r f (x)
we eventually obtain a U -invariant bilinear form on C ∞ (Y):

B c s (F 1 , F 2 ) = Y×Y B c
s (x, y)F 1 (x)F 2 (y)µ 0 (dx)µ 0 (dy), where B c s (x, y) = F c (x, y) r 0 r ν . The spherical dual ÛK is parameterized by the set of weights m = (m 1 , . . . , m n ) described in the previous section. To such a weight m corresponds a (class of) unitary spherical representation m on a finite dimensional vector space H m of dimension d m . The highest weight µ of m is given by µ, ξ = -r 0 j =1 m j t j , if ξ(x) = t j L(c j )x. In the space H m there is a normalized K-fixed vector v m . The Fourier coefficient f (m) of an integrable function f on Y is the vector in H m defined by

f (m) = U/K m (g)v m f (g) dg.
The map f → f (m) intertwines the left regular representation of U and m . Theorem 2.11. For κ ∈ N, the Berezin form B c s is positive definite. Therefore the restriction of π s to the compact group U decomposes into a direct sum of spherical principal series representations m of U according to the following Plancherel formula:

B c s f, f = m∈ ÛK d m a κ (m) f (m) 2 ,
where κ = r r 0 (s -n 2r ), f ∈ C(U/K).

By the first part of the proof of Theorem 2.8, in some sense, the canonical representations of the compact dual of G tend to the left regular representation when the parameter κ goes through the negative integer points. In fact, for f ∈ C c (Y), Similarly, in the noncompact case, as ν → ∞, the probability measure I (ν) -1 ψ ν (x) × µ(dx) converges to the Dirac measure δ e at the identity element e. It follows that, for f ∈ C c (X ), In some sense, as ν → ∞, the canonical representation T ν tends to the regular representation of G on L 2 (X ).

Proposition 2 . 4 .

 24 The bilinear form B α s is invariant under the action of the group G.

  (z + a) (z + b) ∼ z a-b 1 + 1 2z (ba)(b + a -1) + O z -2 , as z → ∞,it follows that lim κ→∞ φ(κ) = 1. Therefore we have proved the theorem for κ ∈ N.

  y)f (x)f (y)µ 0 (dx)µ 0 (dy) = Y f (y)2 µ 0 (dy).

  , y)f (x)f (y)µ(dx)µ(dy) = X f (x)2 µ(dx).
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We denote by c throughout this paper different constants depending only on V .
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