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We report direct numerical simulations of dynamo generation for flow generated using a Taylor-Green forcing. We find that the bifurcation is subcritical, and show its bifurcation diagram. We connect the associated hysteretic behavior with hydrodynamics changes induced by the action of the Lorentz force. We show the geometry of the dynamo magnetic field and discuss how the dynamo transition can be induced when an external field is applied to the flow.

Larmor [1] is generally credited for suggesting that the magnetic field of the Sun (and, by extension, that of planets and other celestial bodies) could be due to dynamo actioni.e. self-generation from the motions of an electrically conducting fluid. This principle has received much theoretical support [START_REF] Moffatt | Magnetic field generation in electrically conducting fluids[END_REF] since then and has recently been validated by experimental observations [START_REF] Gailitis | [END_REF]4,5,6]. Dynamo action results from an instability: when the flow magnetic Reynolds number R M exceeds a critical value R c M , the null magnetic field state looses its stability to a non-zero magnetic field state. Because of the low value the magnetic Prandtl number of the considered fluids, this instability usually happens on a turbulent (noisy) basic state and the choice of an order parameter can be ambiguous [7]. However, we can assume that the usual concepts of stability theory apply (cf. later) and study if the transition is supercritical or subcritical [START_REF] Manneville | Dissipative Structures and Weak Turbulence[END_REF]. In most models and in all experiments, this bifurcation is supercritical: R c M is a unique number, albeit flow dependant. For instance R c M ∼ 14 and R c M ∼ 18 for the constrained Karlsruhe and Riga experiments, while R c M ∼ 32 for the fully turbulent VKS dynamo [5]. On the other hand, the dynamo bifurcation may also be subcritical particularly because the action of a growing magnetic field is supposed to reduce hydrodynamic turbulence and maintain dynamo action for lower R M values. In fact, the transition can be globally subcritical if the basic state experiences instability with respect to finite amplitude perturbations [START_REF] Dauchot | [END_REF]. A characteristic hysteretic behavior is then associated to the bifurcation, and the dynamo operates for a range of lower values R g M < R M < R c M . Subcriticality has been discussed in MHD Alpha-Omega dynamical systems [START_REF] Robbins | Proc. Nati. Acad. Sci. USA[END_REF][START_REF] Fedotov | [END_REF] and also for numerical simulations of convective dynamos in spherical geometries [12] In this Letter, we study the dynamo bifurcation using full MHD simulations, generated in a 3D-periodical domain, by the Taylor Green forcing [13]. At low Reynolds numbers, this flow has several metastable hydrodynamics states [14]. At higher Reynolds numbers, it has a well de-fined mean flow structure with superimposed intense turbulent fluctuations. Recent studies of the linear problem have shown that, while the dynamo thresholds may runaway in flows generated by random forcing [15], a dynamo is observed at all kinetic Reynolds numbers [16,17,18] in the Taylor-Green flow. We study the fully nonlinear regime and report here evidence of the subcriticality of the bifurcation.

Using standard direct numerical simulation (DNS) procedures we integrate pseudospectrally the MHD equations in a 2π-periodic box:

∂v ∂t + v • ∇v = -∇P + j × B + ν∇ 2 v + F, (1) 
∂B ∂t + v • ∇B = B • ∇v + η∇ 2 B , (2) 
together with ∇ • v = ∇ • B = 0; a constant mass density ρ = 1 is assumed. Here, v stands for the velocity field, B the magnetic field (in units of Alfvén velocity), j = (∇×B)/µ 0 the current density, ν the kinematic viscosity, η the magnetic diffusivity and P is the pressure. The forcing term F is given by the TG vortex

F TG (k 0 ) = 2f (t)   sin(k 0 x) cos(k 0 y) cos(k 0 z) -cos(k 0 x) sin(k 0 y) cos(k 0 z) 0   , (3) 
implemented here at k 0 = 1. In the sequel, we consider two types of forcing: one in which f (t) is set to a constant -this is the constant force forcing (f (t) = 1.5) considered in [16]. In a second one 2f (t) is set by the condition that the (1, 1, 1) Fourier components of the velocity remains equal to the Taylor-Green vortex -this is the constant velocity forcing considered in [17]. For the linear instability problem, both forcing yield the same value of R c M [16,17]. We now explore the non-linear regime, as well as the response to finite amplitude perturbations. Three control parameters drive the instability: the magnetic and kinetic Reynolds numbers and the amplitude of an external magnetic field B 0 when applied.

R M = v 0 rms π η R V = v 0 rms π ν Λ = B 0 v 0 rms . (4) 
In the definition of the Reynolds numbers, the characteristic length scale is set to π, the size of a TG cell when k 0 = 1. The characteristic speed v 0 rms is computed from hydrodynamic runs in which the Navier-Stokes equation is not coupled to the induction equation, v 0 rms = 2E V (t) t . Here E V is net kinetic energy E V (t) and • t stands for averaging in time (1/T T • dt). Likewise, in dynamo runs, the intensity of the magnetic field is estimated from the net magnetic energy E M (t), as b = 2E M (t) t . Previous works [17,18] have explored the response of TG flows to infinitesimal magnetic perturbations, as a function of the kinetic Reynolds number R V . It was found that at any R V , there exists a critical R c M above which perturbations grow exponentially. This is illustrated in Fig. 1 for a run at R V = 563 and R M = 281 above the critical value R c M = 206. The initial magnetic field perturbation -with an energy level E M = 10 -17first grows exponentially. At time t ∼ 300, the magnetic field has reached sufficient amplitude so that it can react back onto the velocity field, saturate the instability and reach a statistically stationary state, with approximate equipartition E M ∼ E V . Note that times are given here in units of equation ( 1), for which 1 is very close to one eddy turnover time of the flow (T NL = π/v 0 rms ∼ 1.17). This transition from infinitesimal perturbations builds the (solid) red curve in Fig. 2.

We have then quenched the system: at t = 1000, the magnetic diffusivity η is suddenly increased by a factor of 4, lowering R M below R c M . After a short transient, both E V and E M decrease and reach a second statistically stationary state, with a non zero magnetic energy -a new dynamo state, for which equipartition is reached again (Fig. 1). This behavior is an evidence for global subcriticality [START_REF] Dauchot | [END_REF]. The different levels of fluctuations in the two regimes suggest the possibility of different dynamo states, depending on the magnetic field or on history of the system.

As subcritical bifurcations are also associated with hysteresis cycles, we have repeated the quenching procedure starting from the same dynamo state A (obtained at t = 1000 at R V = 563 in Fig. 1) for increasing values of η, i.e. for decreasing R M values. The (time-averaged) magnetic and kinetic energy obtained after rearrangements are then recorded, and results summarized in Fig. 2 FIG. 1: After a dynamo is self-generated from infinitesimal perturbations, the induction equation is quenched at t = 1000 by a four-fold increase of the magnetic diffusivity. It corresponds to a sudden change from A to A9 -cf. Table I.

Point η RM b LB vrms LU A 0.03 281 2.8 5.2 2.7 3.0 A2 0.035 241 2.8 5.3 2.5 3.0 A3 0.04 211 2.8 5.4 2.5 2.9 A4 0.05 169 2.7 5.5 2.3 2.9 A5 0.07 121 2.6 5.7 2.0 2.9 A6 0.08 106 2.5 5.7 1.8 2.9 A7 0.09 94 2.4 5.7 1.7 2.9 A8 0.1 84 2.0 5.5 1.7 2.9 A9 0.12 70 1.6 5.1 1.9 3.0 A10 0.15 56 0.0 0.0 2.7 2.6 TABLE I: For each regime: root mean square amplitude of the magnetic/resp.velocity fields b = 2Em(t) , vrms = 2Ev(t) , integral scale of the magnetic/resp.velocity fields

LB = EB(k, t))/k , LU = EV (k, t))/k -E(k, t) is the uni-dimensional energy spectra.
the magnetic and kinetic energies, so as to detect possible changes in the flow structure. In a first regime, until point A7, the kinetic energy (and hence v rms , i.e. the turbulence intensity -see Table I) decreases and so does the magnetic energy -equipartition being essentially preserved. Past A8, changes occur: E V starts to increase abruptly, while E M continues to decrease, resulting in a decreasing ratio E M /E V -see also Fig. 4. Other global quantities are also changing along this branch (see Table I). It corresponds to a modification in the spatial structure of the magnetic energy. As can bee seen in Fig. 3, the dynamo modes in A7 and A8 are different. At A7, the dynamo has a structure with magnetic energy 'tubes' in which the field line are concentrated along diagonal direction (aligned with the energy structures). In A8, the dynamo has a magnetic energy with a wavy shape and the field line are no longer parallel to the energy structures. In fact, the geometry of the A8 and A9 dynamo modes is reminiscent of the low kinematic mode of the TG dynamo [18]. As turbulence influences the dynamo, we have repeated the above sequence of quenching at varying kinetic Reynolds numbers R V . The result is shown in Fig. 4. We first observe that the hysteretic behavior persists as R V is lowered. In addition, the hysteresis cycle width, R c M -R g M , decreases with R V . It is interesting to compare their locations with respect to the dynamos windows evidenced in [17,18] for the Taylor-Green forcing. As shown in Fig. 4,R g M values are almost independent of R V and lie close to the beginning of the first kinematic dynamo mode. Of course, the onset R c M switches from the kinematic low branch to the kinematic high branch as R V increases (and turbulence develops) [17,18]. The width of the dynamo cycle is thus linked to the evolution of the R c M (R V ) curve. The above results were obtained with a constant force scheme. We have also repeated the quenching procedure using the constant velocity forcing. As can be seen in Fig. 4 (black curve / diamonds symbols), the hysteretic behaviour remains, but the transition towards the nondynamo state is more abrupt. Another difference concerns the response to quenching; with a constant velocity forcing we observed a lower magnetic saturation level b. Those differences could be explained by a change in hydrodynamics properties such as the fluctuation level, at the same Reynolds number. In addition, when the velocity is kept constant there may be less possibility for the Lorentz force to change the flow. Finally, we have checked the influence of finite amplitude external perturbations on the hysteresis cycle by applying an external magnetic field of amplitude B 0 = 0.07 in the vertical direction. The result at R V = 563 is shown by the blue line in Fig. 2. When comparing to the B 0 = 0 case (red curve), two effects are readily observed : (i) the hysteresis cycle is shortened and this is essentially due to a decrease in the onset R c M from infinitesimal perturbations; (ii) the amplitude of the magnetic energy in the dynamo is decreased, as lower b values are obtained. These observations are indications that the external magnetic field has mediated a transition towards another equilibrium state [14]. The transition towards this second equilibrium state is quite robust: one can also obtain it by switching on the vertical magnetic field starting from a state with a well-developed dynamo (jump from A to A ′ in Fig. 2). Conversely, starting from a dynamo state with an applied magnetic field and switching it off, one returns to the zero-magnetic field hysteresis curve (jump from C to C ′ in Fig. 2).

A less deterministic behaviour is observed when the system is operated in the vicinity of point D -shown along the blue curve in Fig. 2. At this point, the system is operated at a magnetic Reynolds number slightly smaller than the linear threshold (93.8 compared to about 100) and one observes that the the systems spontaneously switches between dynamo and non-dynamo periods, as shown in Fig. 5. This is reminiscent of the "onoff" bifurcation scenario sometimes proposed for the dynamo [START_REF] Lozhkin | [END_REF]21,22,23] at high R V . It has been observed in models [24] and experimental [25] versions of the Bullard dynamo [26], and possibly in turbulent fluid dynamos [6]. We note in Fig. 5 that the kinetic energy has stronger fluctuations during the dynamo periods. To summarize, we have evidenced in the TG flow several features characteristic of subcriticality of the dynamo instability. At variance with usual dynamical system, this behaviour is obtained in a fully turbulent system, where fluctuations are of the same order of magnitude as the mean flow. We may remark that in this case, the traditional concept of amplitude equation may be ill-defined and one may have to generalize the notion of 'subcritical transition' for turbulent flows. Another feature is the sensitivity to perturbations of the order parameter through the application of an external magnetic field. The perturbation mainly acts through macroscopic changes in the system configuration (perturbation of the velocity field), allowing lower thresholds for dynamo instability. These findings open new perspective for experimental dynamos.

For the TG flow, we observe a decrease of the dynamo threshold by as much as 57 percent, with an external applied field of B 0 = 0.07. We have also found that changes in the geometry of the dynamo states in the subcritical branch are consistent with the coexistence of several metastable hydrodynamics states [14]. Preliminary observations in the VKS experiment also point to the existence of subcritical dynamos in the presence of global rotation [27], a feature also noted in some numerical models of the geodynamo [12].

  by the curve in the B 0 = 0 plane. Starting from point A, one can sustain the dynamo after quenching through points A2 to A9, until a value R g M substantially lower than R c M (at A9, R M = 70 compared to R M = 211 in A3).We have investigated further the system behaviour along the cycle by monitoring the spatial structure of

FIG. 2 :

 2 FIG.2: Bifurcation curves and hysteresis cycles when an external magnetic field is applied (full diamond symbols) or without one (full circle symbols). In this case, the subcritical quenched states (see text) form the red line. Jumps between the two branches link A to A ′ and C to C ′ .

FIG. 4 :

 4 FIG. 4: Hysteresis cycle for different Reynolds numbers and forcings -constant force (red, blue) and constant velocity (black). The thick solid line in the b = 0 plane is the linear instability R cM vs RV from dynamical runs; the kinematic dynamo windows[18], RM ∈ [50, 110] and RM > 320, are delimited by the thick dotted lines.
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 5 FIG.5: Evolution on time of the kinetic (EV ) and magnetic energy (EB) when the flow is operated in the immediate vicinity of point D -see Fig.2.
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