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Subcritical dynamo bifurcation in the Taylor Green flow
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3 Service de Physique de l’Etat Condensé, CNRS URA 2464, CEA Saclay, 91191 Gif-sur-Yvette, France

4 Laboratoire de Physique, de l’École Normale Supérieure de Lyon,
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We report direct numerical simulations of dynamo generation for flow generated using a Taylor-
Green forcing. We find that the bifurcation is subcritical, and show its bifurcation diagram. We
connect the associated hysteretic behavior with hydrodynamics changes induced by the action of
the Lorentz force. We show the geometry of the dynamo magnetic field and discuss how the dynamo
transition can be induced when an external field is applied to the flow.
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Larmor [1] is generally credited for suggesting that the
magnetic field of the Sun (and, by extension, that of
planets and other celestial bodies) could be due to dy-
namo action – i.e. self-generation from the motions of an
electrically conducting fluid. This principle has received
much theoretical support [2] since then and has recently
been validated by experimental observations [3, 4, 5, 6].
Dynamo action results from an instability: when the flow
magnetic Reynolds number RM exceeds a critical value
Rc

M , the null magnetic field state looses its stability to a
non-zero magnetic field state. Because of the low value
the magnetic Prandtl number of the considered fluids,
this instability usually happens on a turbulent (noisy)
basic state and the choice of an order parameter can be
ambiguous [7]. However, we can assume that the usual
concepts of stability theory apply (cf. later) and study if
the transition is supercritical or subcritical [8]. In most
models and in all experiments, this bifurcation is super-
critical: Rc

M is a unique number, albeit flow dependant.
For instance Rc

M ∼ 14 and Rc
M ∼ 18 for the constrained

Karlsruhe and Riga experiments, while Rc
M ∼ 32 for the

fully turbulent VKS dynamo [5]. On the other hand,
the dynamo bifurcation may also be subcritical partic-
ularly because the action of a growing magnetic field is
supposed to reduce hydrodynamic turbulence and main-
tain dynamo action for lower RM values. In fact, the
transition can be globally subcritical if the basic state
experiences instability with respect to finite amplitude
perturbations [9]. A characteristic hysteretic behavior is
then associated to the bifurcation, and the dynamo op-
erates for a range of lower values Rg

M < RM < Rc
M .

Subcriticality has been discussed in MHD Alpha-Omega
dynamical systems [10, 11] and also for numerical simula-
tions of convective dynamos in spherical geometries [12]

In this Letter, we study the dynamo bifurcation using
full MHD simulations, generated in a 3D-periodical do-
main, by the Taylor Green forcing [13]. At low Reynolds
numbers, this flow has several metastable hydrodynamics
states [14]. At higher Reynolds numbers, it has a well de-

fined mean flow structure with superimposed intense tur-
bulent fluctuations. Recent studies of the linear problem
have shown that, while the dynamo thresholds may run-
away in flows generated by random forcing [15], a dynamo
is observed at all kinetic Reynolds numbers [16, 17, 18]
in the Taylor-Green flow. We study the fully nonlinear
regime and report here evidence of the subcriticality of
the bifurcation.

Using standard direct numerical simulation (DNS) pro-
cedures we integrate pseudospectrally the MHD equa-
tions in a 2π-periodic box:

∂v

∂t
+ v · ∇v = −∇P + j× B + ν∇2v + F, (1)

∂B

∂t
+ v · ∇B = B · ∇v + η∇2B , (2)

together with ∇·v = ∇·B = 0; a constant mass density
ρ = 1 is assumed. Here, v stands for the velocity field,
B the magnetic field (in units of Alfvén velocity), j =
(∇×B)/µ0 the current density, ν the kinematic viscosity,
η the magnetic diffusivity and P is the pressure. The
forcing term F is given by the TG vortex

FTG(k0) = 2f(t)





sin(k0 x) cos(k0 y) cos(k0 z)
− cos(k0 x) sin(k0 y) cos(k0 z)

0



 ,

(3)
implemented here at k0 = 1. In the sequel, we consider
two types of forcing: one in which f(t) is set to a constant
– this is the constant force forcing (f(t) = 1.5) consid-
ered in [16]. In a second one 2f(t) is set by the condi-
tion that the (1, 1, 1) Fourier components of the velocity
remains equal to the Taylor-Green vortex – this is the
constant velocity forcing considered in [17]. For the lin-
ear instability problem, both forcing yield the same value
of Rc

M [16, 17]. We now explore the non-linear regime,
as well as the response to finite amplitude perturbations.
Three control parameters drive the instability: the mag-
netic and kinetic Reynolds numbers and the amplitude
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of an external magnetic field B0 when applied.

RM =
v0
rmsπ

η
RV =

v0
rmsπ

ν
Λ =

B0

v0
rms

. (4)

In the definition of the Reynolds numbers, the charac-
teristic length scale is set to π, the size of a TG cell
when k0 = 1. The characteristic speed v0

rms is com-
puted from hydrodynamic runs in which the Navier-
Stokes equation is not coupled to the induction equa-
tion, v0

rms = 〈
√

2EV (t)〉t. Here EV is net kinetic energy

EV (t) and 〈·〉t stands for averaging in time (1/T
∫ T

· dt).
Likewise, in dynamo runs, the intensity of the magnetic
field is estimated from the net magnetic energy EM (t),
as b = 〈

√

2EM (t)〉t.

Previous works [17, 18] have explored the response of
TG flows to infinitesimal magnetic perturbations, as a
function of the kinetic Reynolds number RV . It was
found that at any RV , there exists a critical Rc

M above
which perturbations grow exponentially. This is illus-
trated in Fig. 1 for a run at RV = 563 and RM = 281
above the critical value Rc

M = 206. The initial magnetic
field perturbation – with an energy level EM = 10−17 –
first grows exponentially. At time t ∼ 300, the magnetic
field has reached sufficient amplitude so that it can react
back onto the velocity field, saturate the instability and
reach a statistically stationary state, with approximate
equipartition EM ∼ EV . Note that times are given here
in units of equation (1), for which 1 is very close to one
eddy turnover time of the flow (TNL = π/v0

rms ∼ 1.17).
This transition from infinitesimal perturbations builds
the (solid) red curve in Fig.2.

We have then quenched the system: at t = 1000, the
magnetic diffusivity η is suddenly increased by a factor of
4, lowering RM below Rc

M . After a short transient, both
EV and EM decrease and reach a second statistically sta-
tionary state, with a non zero magnetic energy – a new
dynamo state, for which equipartition is reached again
(Fig. 1). This behavior is an evidence for global sub-
criticality [9]. The different levels of fluctuations in the
two regimes suggest the possibility of different dynamo
states, depending on the magnetic field or on history of
the system.

As subcritical bifurcations are also associated with hys-
teresis cycles, we have repeated the quenching procedure
starting from the same dynamo state A (obtained at
t = 1000 at RV = 563 in Fig. 1) for increasing values of η,
i.e. for decreasing RM values. The (time-averaged) mag-
netic and kinetic energy obtained after rearrangements
are then recorded, and results summarized in Fig. 2 by
the curve in the B0 = 0 plane. Starting from point A, one
can sustain the dynamo after quenching through points
A2 to A9, until a value Rg

M substantially lower than Rc
M

(at A9, RM = 70 compared to RM = 211 in A3).

We have investigated further the system behaviour
along the cycle by monitoring the spatial structure of
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FIG. 1: After a dynamo is self-generated from infinitesimal
perturbations, the induction equation is quenched at t = 1000
by a four-fold increase of the magnetic diffusivity. It corre-
sponds to a sudden change from A to A9 – cf. Table I.

Point η RM b LB vrms LU

A 0.03 281 2.8 5.2 2.7 3.0

A2 0.035 241 2.8 5.3 2.5 3.0

A3 0.04 211 2.8 5.4 2.5 2.9

A4 0.05 169 2.7 5.5 2.3 2.9

A5 0.07 121 2.6 5.7 2.0 2.9

A6 0.08 106 2.5 5.7 1.8 2.9

A7 0.09 94 2.4 5.7 1.7 2.9

A8 0.1 84 2.0 5.5 1.7 2.9

A9 0.12 70 1.6 5.1 1.9 3.0

A10 0.15 56 0.0 0.0 2.7 2.6

TABLE I: For each regime: root mean square amplitude of
the magnetic/resp.velocity fields b = 〈

√

2Em(t)〉 , vrms =

〈
√

2Ev(t)〉, integral scale of the magnetic/resp.velocity fields
LB = 〈

∑

EB(k, t))/k〉 , LU = 〈
∑

EV (k, t))/k〉 – E(k, t) is
the uni-dimensional energy spectra.

the magnetic and kinetic energies, so as to detect possi-
ble changes in the flow structure. In a first regime, until
point A7, the kinetic energy (and hence vrms, i.e. the
turbulence intensity – see Table I) decreases and so does
the magnetic energy – equipartition being essentially pre-
served. Past A8, changes occur: EV starts to increase
abruptly, while EM continues to decrease, resulting in a
decreasing ratio EM/EV – see also Fig.4. Other global
quantities are also changing along this branch (see Table
I). It corresponds to a modification in the spatial struc-
ture of the magnetic energy. As can bee seen in Fig. 3,
the dynamo modes in A7 and A8 are different. At A7,
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the dynamo has a structure with magnetic energy ‘tubes’
in which the field line are concentrated along diagonal di-
rection (aligned with the energy structures). In A8, the
dynamo has a magnetic energy with a wavy shape and
the field line are no longer parallel to the energy struc-
tures. In fact, the geometry of the A8 and A9 dynamo
modes is reminiscent of the low kinematic mode of the
TG dynamo[18].
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FIG. 2: Bifurcation curves and hysteresis cycles when an ex-
ternal magnetic field is applied (full diamond symbols) or
without one (full circle symbols). In this case, the subcritical
quenched states (see text) form the red line. Jumps between
the two branches link A to A′ and C to C′.

FIG. 3: Volume rendering (75% of max(b)) of the magnetic
energy and magnetic field lines [19], for the normalized mag-
netic field 〈B(x, t)/B(t)〉 averaged in time during the run;
(left) point A7 and (right) point A8.

As turbulence influences the dynamo, we have re-
peated the above sequence of quenching at varying ki-
netic Reynolds numbers RV . The result is shown in
Fig. 4. We first observe that the hysteretic behavior per-
sists as RV is lowered. In addition, the hysteresis cycle
width, Rc

M −Rg
M , decreases with RV . It is interesting to

compare their locations with respect to the dynamos win-
dows evidenced in [17, 18] for the Taylor-Green forcing.
As shown in Fig. 4, Rg

M values are almost independent of
RV and lie close to the beginning of the first kinematic
dynamo mode. Of course, the onset Rc

M switches from

the kinematic low branch to the kinematic high branch
as RV increases (and turbulence develops) [17, 18]. The
width of the dynamo cycle is thus linked to the evolution
of the Rc

M (RV ) curve.
The above results were obtained with a constant force

scheme. We have also repeated the quenching procedure
using the constant velocity forcing. As can be seen in
Fig. 4 (black curve / diamonds symbols), the hysteretic
behaviour remains, but the transition towards the non-
dynamo state is more abrupt. Another difference con-
cerns the response to quenching; with a constant velocity
forcing we observed a lower magnetic saturation level b.
Those differences could be explained by a change in hy-
drodynamics properties such as the fluctuation level, at
the same Reynolds number. In addition, when the veloc-
ity is kept constant there may be less possibility for the
Lorentz force to change the flow.
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FIG. 4: Hysteresis cycle for different Reynolds numbers and
forcings – constant force (red, blue) and constant velocity
(black). The thick solid line in the b = 0 plane is the linear
instability Rc

M vs RV from dynamical runs; the kinematic
dynamo windows [18], RM ∈ [50, 110] and RM > 320, are
delimited by the thick dotted lines.

Finally, we have checked the influence of finite ampli-
tude external perturbations on the hysteresis cycle by ap-
plying an external magnetic field of amplitude B0 = 0.07
in the vertical direction. The result at RV = 563 is shown
by the blue line in Fig. 2. When comparing to the B0 = 0
case (red curve), two effects are readily observed : (i) the
hysteresis cycle is shortened and this is essentially due to
a decrease in the onset Rc

M from infinitesimal perturba-
tions; (ii) the amplitude of the magnetic energy in the dy-
namo is decreased, as lower b values are obtained. These
observations are indications that the external magnetic
field has mediated a transition towards another equilib-
rium state [14]. The transition towards this second equi-
librium state is quite robust: one can also obtain it by
switching on the vertical magnetic field starting from a
state with a well-developed dynamo (jump from A to A′

in Fig. 2). Conversely, starting from a dynamo state with
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an applied magnetic field and switching it off, one returns
to the zero-magnetic field hysteresis curve (jump from C
to C′ in Fig. 2).

A less deterministic behaviour is observed when the
system is operated in the vicinity of point D – shown
along the blue curve in Fig.2. At this point, the sys-
tem is operated at a magnetic Reynolds number slightly
smaller than the linear threshold (93.8 compared to
about 100) and one observes that the the systems sponta-
neously switches between dynamo and non-dynamo pe-
riods, as shown in Fig.5. This is reminiscent of the “on-
off” bifurcation scenario sometimes proposed for the dy-
namo [20, 21, 22, 23] at high RV . It has been observed in
models [24] and experimental [25] versions of the Bullard
dynamo [26], and possibly in turbulent fluid dynamos [6].
We note in Fig.5 that the kinetic energy has stronger fluc-
tuations during the dynamo periods.
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FIG. 5: Evolution on time of the kinetic (EV ) and magnetic
energy (EB) when the flow is operated in the immediate vicin-
ity of point D – see Fig.2.

To summarize, we have evidenced in the TG flow sev-
eral features characteristic of subcriticality of the dynamo
instability. At variance with usual dynamical system,
this behaviour is obtained in a fully turbulent system,
where fluctuations are of the same order of magnitude as
the mean flow. We may remark that in this case, the tra-
ditional concept of amplitude equation may be ill-defined
and one may have to generalize the notion of ‘subcritical
transition’ for turbulent flows. Another feature is the sen-
sitivity to perturbations of the order parameter through
the application of an external magnetic field. The pertur-
bation mainly acts through macroscopic changes in the
system configuration (perturbation of the velocity field),
allowing lower thresholds for dynamo instability. These
findings open new perspective for experimental dynamos.

For the TG flow, we observe a decrease of the dynamo
threshold by as much as 57 percent, with an external
applied field of B0 = 0.07. We have also found that
changes in the geometry of the dynamo states in the
subcritical branch are consistent with the coexistence of
several metastable hydrodynamics states [14]. Prelimi-
nary observations in the VKS experiment also point to
the existence of subcritical dynamos in the presence of
global rotation [27], a feature also noted in some numer-
ical models of the geodynamo [12].
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