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In the present note we discuss two different ring structures on the set of holomorphic discrete series of a causal symmetric space of Cayley type G/H and we suggest a new interpretation of Rankin-Cohen brackets in terms of intertwining operators arising in the decomposition of tensor products of holomorphic discrete series representations.

Introduction

When studying L-functions of quadratic characters H. Cohen [START_REF] Cohen | Sums involving the values at negative integers of L-functions of quadratic characters[END_REF] described in 1975 a particular family of bi-differential operators acting on smooth functions on the Poincaré upper half-plane Π. The initial interest in these operators, called henceforth the Rankin-Cohen brackets (RCB), is due to the fact that they give a powerful tool for producing new modular forms of higher weight.

More precisely, fix a positive integer k and define for every f ∈ C ∞ (Π) :

(f |k γ)(z) := (cz + d) -k f az + b cz + d , ∀γ = a b c d ∈ SL(2, R).
One says that a function f holomorphic on Π is a modular form of weight k with respect to some arithmetic subgroup Γ ⊂ G if it satisfies the identity (f |k γ) = f for all γ ∈ Γ. Let k 1 , k 2 , j be three positive integers and f, g ∈ C ∞ (Π). One sets ℓ) , where

(1.1) F j (f, g) = j ℓ=0 (-1) ℓ C ℓ k 1 +j-1 C j-ℓ k 2 +j-1 f (j-ℓ) g (
f (ℓ) = ∂ ∂z ℓ f,
and C ℓ k denote the binomial coefficient k! (k-ℓ)!ℓ! . H. Cohen showed that the following identity holds:

F j (f |k 1 γ, g |k 2 γ) = F j (f, g) |k 1 +k 2 +2j γ, γ ∈ SL(2, R).
Therefore if f and g are modular of weight k 1 and k 2 respectively F j (f, g) is again a modular form of weight k 1 + k 2 + 2j for every j ∈ N. Notice that in case when Γ = SL(2, Z) the only non trivial modular forms are of even weight.

This construction was generalized in the setting of Sp(n, Z)-modular forms on the Siegel half plane, i.e. the symmetric space of positive definite symmetric matrices, by W.Eholzer and T.Ibukiyama [START_REF] Eholzer | Rankin-Cohen type differential operators for Siegel modular forms[END_REF]. An algebraic approach to RCB and their possible generalizations via the commutation relations that they should satisfy was developed by D. Zagier [START_REF] Zagier | Modular forms and differential operators[END_REF]. See also [START_REF] Zagier | Introduction to modular forms[END_REF] for an overview of this subject from the number theoretic point of view.

From the other side, in 1996 A and J. Unterberger [START_REF] Unterberger | Algebras of symbols and modular forms[END_REF] showed that this family of bi-differential operators arises in an astonishing way in the context of the covariant quantization of one of the coadjoint orbits of the Lie group G = SL(2, R). By developing a covariant symbolic calculus on the one-sheeted hyperboloid realized as the symmetric space G/H = SL(2, R)/SO(1, 1) they proved that the composition f # s g of two symbols f and g satisfying some regularity conditions (they are images by the inverse Laplace transform of holomorphic functions, square integrable with respect to some particular measure on the upper half plane) is again a symbol of the same kind and moreover it decomposes into a convergent sum f # s g = j h j where every summand h j is related to the Rankin-Cohen bracket F j (f, g).

This result implies that the set of holomorphic discrete series representations with even parameter of the group SL(2, R) is endowed with a graded noncommutative ring structure given by the so-called standard (or convolutionfirst) covariant symbolic calculus on SL(2, R)/SO [START_REF] Cohen | Sums involving the values at negative integers of L-functions of quadratic characters[END_REF][START_REF] Cohen | Sums involving the values at negative integers of L-functions of quadratic characters[END_REF].

The group of unimodular real matrices G = SL(2, R) acts on the set of functions defined on Π and the modular forms are the invariants of this action restricted to SL(2, Z) ⊂ G.

The fact that RCB's produce new modular forms from known ones fits with the standard techniques of transvectants developed in the classical invariant theory. This method allows us to construct new invariant analytic functions in two complex variables starting with a couple of known analytic functions invariant for the simultaneous linear action of GL(2, C). This procedure involves some differential operators such that once restricted to homogeneous functions they coincide with the RCB's given by (1.1). P. Olver gives a very detailed overview of this construction in chapter 5 of his book [START_REF] Olver | Classical Invariant Theory[END_REF] as well as in [START_REF] Olver | Transvectants, modular forms, and the Heisenberg algebra[END_REF]. Notice that the basic lemma underlying the link between transvectants ant the Rankin-Cohen brackets was proved by S. Gundelfinger [START_REF] Gundelfinger | Zur der binären Formen[END_REF] already in 1886.

Inspired by this observation we shall gather in the present note these two different approaches to the RCB's using the representation theory of the group SL(2, R). These techniques will make clear the way to generalize the notion of RCB's in the setting of para-Hermitian symmetric spaces of Hermitian type (some times called also causal symmetric spaces of Cayley type). The choice of this particular class of symplectic symmetric spaces is explained in the next section. We shall see that RCB's are related to the decomposition of tensor products of two holomorphic discrete series representations into irreducible components. Recent results by Peetre [START_REF] Peetre | Hankel forms of arbitrary weight over a symmetric domain via the transvectant[END_REF] and Peng and Zhang [START_REF] Peng | Tensor products of holomorphic representations and bilinear differential operators[END_REF] give an explicit formula for the RCB in this case. The description of the Clebsh-Gordan coefficients of the group G is an important problem even from the physical point of view and we hope that this note will give a better understanding of what one calls now the Rankin-Cohen quantization [START_REF] Connes | Rankin-Cohen brackets and the Hopf algebra of transverse geometry[END_REF]. M.P. is grateful to J. Alev, A. Unterberger and G. Zhang for fruitful discussions and thanks the E. Schrödinger International Institute for Mathematical Physics in Vienna for its hospitality and support.

Geometric settings

Let G be a connected real semi-simple Lie group with finite center and K be a maximal compact subgroup. We assume that the Harish-Chandra condition rank G = rank K holds what guarantees the existence of discrete series representations (i.e. unitary irreducible representations whose matrix coefficients are square integrable on G). Furthermore, we assume that G/K is a Hermitian symmetric space of tube type and thus G has holomorphic discrete series, i.e. discrete series realizable in holomorphic sections of holomorphic vector bundles over G/K. Equivalently the last condition means that the Harish-Chandra modules underlying these discrete series representations are highest weight modules.

Among such Lie groups we shall restrict our considerations to those which can be seen as automorphism groups of some semi-simple para-Hermitian symmetric space. More precisely, let σ be an involutive automorphism of G and H an open connected subgroup of the group of fixed points of σ. The coset space G/H (which is actually a coadjoint orbit of G and therefore is a symplectic manifold) is called para-Hermitian if its tangent bundle T (G/H) splits into the sum of two G-invariant isomorphic sub-bundles (see [START_REF] Kaneyuki | Paracomplex structures and affine symmetric spaces[END_REF] for a detailed study of such spaces).

This splitting induces a G-invariant polarization on T (G/H) which is necessary in order to define a symbolic calculus. Indeed, this polarization will allow us to distinguish position and momenta variables on G/H which plays the role of the phase space, while the symmetric space G/K will be seen as the configuration space.

It turns out that the Lie groups G satisfying both conditions : G/K is Hermitian of tube type and G/H is para-Hermitian, have a nice description in terms of Euclidean Jordan algebras.

We shall briefly recall the link between Jordan algebras and the semi-simple Lie groups considered above.

An algebra V over R or C is said to be a Jordan algebra if for all elements x and y in V , one has x•y = y•x and x•(x 2 •y) = x 2 •(x•y). For an element x ∈ V let L(x) be the linear map of V defined by L(x)y := x•y and P (x) = 2L(x) 2 -L(x 2 ) be the quadratic representation of V . For x and y in V one also defines an endomorphism D(x, y) of V given by D(x, y) = L(xy) -[L(x), L(y)].

We denote by β(x, y) the symmetric bilinear form on V defined by β(x, y) = TrL(x • y).

Let r and n denote respectively the rank and the dimension of the Jordan algebra V . The integer d determined by n = r + d 2 r(r -1) is called Peirce multiplicity. For a regular element x, the minimal polynomial

f x is of degree r, f x (λ) = λ r -a 1 (x)λ r-1 + • • • + (-1) r a r (x).
The coefficient a j is a homogeneous polynomial of degree j, ∆(x) := a r (x) is the Jordan determinant, and tr (x) := a 1 (x) is the Jordan trace of x.

A Jordan algebra V is semi-simple if the form β is non-degenerate on V . A semi-simple Jordan algebra is unital, we denote by e its identity element.

A Jordan algebra V o over R is said to be Euclidean if the bilinear form β(x, y) is positive definite on V o .

Let V o be an Euclidean Jordan algebra (EJA) from now one. The set

Ω := {x 2 | x invertible in V o }
is an open, convex, self-dual cone in V o . Those properties of Ω actually characterize V o as an EJA. The automorphism group of G(Ω) of the cone Ω is defined by

G(Ω) = {g ∈ GL(V o ) | gΩ = Ω},
and it is a reductive Lie group. Let V be the complexification of V o . Consider the tube T Ω = V o +iΩ ⊂ V and the Lie group G = Aut(T Ω ) of holomorphic automorphisms of T Ω . According to general theory [START_REF] Faraut | Analysis on Symmetric Cones[END_REF] Ch. X. §5, the group G(Ω) can be seen as a subgroup of G as well as the Jordan algebra V o it-self. Indeed, for every u ∈ V o , the translation τ u : z → z + u is a holomorphic automorphism of the tube T Ω and the group of all real translations τ u is an Abelian subgroup N of G isomorphic to the vector space V o .

The subgroup of all affine linear transformations of the tube P = G(Ω) ⋉ N is a maximal parabolic subgroup of G.

The subgroups G(Ω) and N together with the inversion map j : x -→ -x -1 , generate the group G.

Let σ be the involution of G given by σ(g) = j • g • j, g ∈ G. In the case when V o is a Euclidean Jordan algebra this is a Cartan involution. Let K be a maximal compact subgroup of G. Then the symmetric space G/K ≃ T Ω is an Hermitian symmetric space of tube type.

For w ∈ V the endomorphism D(w, w) is Hermitian and one defines an invariant spectral norm |w| = D(w, w) 1/2 . Let

D = {w ∈ V : |w| < 1},
be the open unit ball for the spectral norm. Then the Cayley transform p : z → (z -ie)(z + ie) -1 is a holomorphic isomorphism from the tube T Ω onto the domain D. Thus the group of holomorphic automorphisms of D that one denotes G(D) = Aut(D) is conjugate to G : G(D) = pGp -1 . We shall refer to the domain D as to the Harish-Chandra bounded realization of the symmetric space G/K.

We denote N = σ(N) and P := G(Ω) ⋉ N.

From the geometric point of view the subgroup P can be characterized in the following way:

P = {g ∈ G ′ | g(0) = 0}, where G ′ is the subset of G of all transformations well defined at 0 ∈ V o . It is open and dense in G. Moreover G ′ = NG(Ω)N . The map N ×G(Ω) ×N → G ′ is a diffeomorphism.
We shall refer to this decomposition as to the Gelfand-Naimark decomposition of the group G. Furthermore, for every transformation g ∈ G which is well defined at x ∈ V o , the transformation gn x belongs to G ′ and its Gelfand-Naimark decomposition is given by : (2.1)

gn x = n g.x (Dg) x n′ ,
where (Dg) x ∈ G(Ω) is the differential of the conformal map x → g.x at x and n′ ∈ N (see [START_REF] Pevzner | Analyse conforme sur les algèbres de Jordan[END_REF] Prop. 1.4).

The flag variety M = G/P , which is compact, is the conformal compactification of V o . In fact the map x -→ (n x • j)P gives rise to an embedding of V o into M as an open dense subset, and every transformation in G extends to M.

Let g be the Lie algebra of the automorphism group G. Euclidean Jordan algebras, corresponding Lie algebras of infinitesimal automorphisms of tube domains, and their maximal compact subalgebras are given by the first table.

g k V V o su(n, n) su(n) ⊕ su(n) ⊕ R M(n, C) Herm(n, C) sp(n, R) su(n) ⊕ R Sym(n, C) Sym(n, R) so * (4n) su(2n) ⊕ R Skew(2n, C) Herm(n, H) o(n, 2) o(n) ⊕ R C n-1 × C R n-1 × R e 7(-25) e 6 ⊕ R Herm(3, O) ⊗ C Herm(3, O)
Let us consider the involution η of the complex Jordan algebra V given by η(x+iy) = -x+iy (x, y ∈ V ) and define the corresponding fix point sub-group in G by H = {g ∈ G | ηgη = g}. Clearly H = G(Ω). The involutions η and σ commute.

Notice that the involution we introduced is a particular case of a conjugation of V satisfying the following properties.

• η

(V 0 ) = V 0 , • η (ie) = ie,
• -η is a real Jordan algebra automorphism of V . The factor space G/H is a para-Hermitian symmetric space. It means that its tangent bundle splits into two G-invariant sub-bundles both isomorphic to the underlying Jordan algebra V o .

We restricted all considerations to Euclidean Jordan algebras therefore the para-Hermitian spaces G/H that we get are of a particular type, one calls them causal symmetric spaces of Cayley type [START_REF] Faraut | Causal semisimple symmetric spaces, the geometry and harmonic analysis[END_REF]. Their infinitesimal classification is given in the second table.

g h V V 0 su(n, n) sl(n, C) ⊕ R M(n, C) Herm(n, C) sp(n, R) sl(n, R) ⊕ R Sym(n, C) Sym(n, R) so * (4n) su * (2n) ⊕ R Skew(2n, C) Herm(n, H) so(n, 2) so(n -1, 1) × R C n-1 × C R n-1 × R e 7(-25) e 6(-26) ⊕ R Herm(3, O) ⊗ C Herm(3, O)
3. Two series of representations of G 3.1. Holomorphic discrete series. Holomorphic induction from a maximal compact subgroup leads to a series of unitary representations of G, called holomorphic discrete series representations, that one usually realizes on holomorphic sections of holomorphic vector bundles over G/K. According to our convenience and easiness of presentation we shall use both bounded and unbounded realizations of the symmetric space G/K. We start with the simplest case of scalar holomorphic discrete series.

For a real parameter ν consider the weighted Bergman spaces

H 2 ν (T Ω ) of complex valued holomorphic functions f ∈ O(T Ω ) such that f 2 ν = T Ω |f (z)| 2 ∆ ν-2 n r (y)dxdy < ∞,
where z = x + iy ∈ T Ω . Note that the measure ∆ -2 n r (y)dxdy on T Ω is invariant under the action of the group G. For ν > 1 + d(r -1) these spaces are non empty Hilbert spaces with reproducing kernels. More precisely, the space H 2 ν (T Ω ) has a reproducing kernel K ν which is given by

(3.1) K ν (z, w) = c ν ∆ z - w 2i -ν
, where c ν is some expression involving Gindikin's conical Γ-functions (see [START_REF] Faraut | Analysis on Symmetric Cones[END_REF] p.261).

The action of G on H 2 ν (T Ω ) given for every integer

ν > 1 + d(r -1) by (3.2) π ν (g)f (z) = Det ν (D g -1 (z))f (g -1 .z)
is called a scalar holomorphic discrete series representation. 1In the above formula D g (z) denotes the differential of the conformal transformation z → g.z of the tube.

On the other hand side the corresponding action of the group G(D) can be realized as follows. Let B(z, w) = 1 -D(z, w) + P (z)P (w), be the Bergman operator on V . Its determinant detB(z, w) is of the form h(z, w) 2n/r where h(z, w) is the so-called canonical polynomial (see [START_REF] Faraut | Analysis on Symmetric Cones[END_REF] p.262). Notice that it is the pull back of K 1 (z, w) by the Cayley transform.

Then the group G(D) acts on the space H 2 ν (D) of holomorphic functions f on D such that

f 2 ν,D = c ′ ν D |f (z)| 2 h(z, z) ν-2 n r dxdy < ∞ by the similar formula π ν (g)f (z) = Det ν (D g -1 (z))f (g -1 .z).
More generally let g be the Lie algebra of the automorphisms group G(D) with complexification g c . Let g = k ⊕ p be a Cartan decomposition of g. Let z be the center of k. In our case the centralizer of z in g is equal to k and the center of k is one-dimensional. There is an element

Z 0 ∈ z such that (adZ 0 ) 2 = -1 on p. Fixing i a square root of -1, one has p c = p + ip = p + + p - where adZ 0 | p + = i, adZ 0 | p -= -i. Then (3.3) g c = p + ⊕ k c ⊕ p -. and [p ± , p ± ] = 0, [p + , p -] = k c and [k c , p ± ] = p ± .
The vector space p + is isomorphic to V and furthermore it inherits its Jordan algebra structure. Let G c be a connected, simply connected Lie group with Lie algebra g c and K c , P + , P -, G, K, Z the analytic subgroups corresponding to k c , p + , p -, g, k and z respectively. Then K c P -(and

K c P + ) is a maximal parabolic subgroup of G c with split component A = exp iRZ 0 . So the group G = G(D) o is closed in G c .
Moreover, the exponential mapping is a diffeomorphism of p -onto P -and of p + onto P + ([9] Ch.VIII, Lemma 7.8). Furthermore:

Lemma 3.1. a.The mapping (q, k, p) → qkp is a diffeomorphism of P + × K c × P -onto an open dense submanifold of G c containing G. b. The set GK c P -is open in P + K c P -and G ∩ K c P -= K.
(see [START_REF] Helgason | Differential geometry, Lie groups and symmetric spaces[END_REF], Ch VIII, Lemmae 7.9 and 7.10). Thus G/K is mapped on an open, bounded domain D in p + This is an alternative description of the Harish-Chandra bounded realization of G/K. The group G acts on D via holomorphic transformations.

Everywhere in this section we shall denote ḡ the complex conjugate of g ∈ G c with respect to G (do not confuse with the involution σ). Notice that P + is conjugate to P -.

For g ∈ P + K c P -we shall write g = (g) + (g) 0 (g) -, where (g)

± ∈ P ± , (g) 0 ∈ K c . For g ∈ G c , z ∈ p + such that g. exp z ∈ P + K c P -we define exp g(z) = (g. exp z) + (3.4) J(g, z) = (g. exp z) 0 . (3.5) J(g, z) ∈ K c is called the canonical automorphic factor of G c (terminology of Satake). Lemma 3.2. [23] Ch.II, Lemma 5.1. The map J satisfies (i) J(g, o) = (g) 0 , for g ∈ P + K c P -, (ii) J(k, z) = k for k ∈ K c , z ∈ p + . If for g 1 , g 2 ∈ G c and z ∈ p + , g 1 (g 2 (z)) and g 2 (z) are defined, then (g 1 g 2 )(z) is also defined and (iii) J(g 1 g 2 , z) = J(g 1 , g 2 (z)) J(g 2 , z).
For z, w ∈ p + satisfying (exp w) -1 . exp z ∈ P + K c P -we define

K(z, w) = J((exp w) -1 , z) -1 (3.6) = ((exp w) -1 . exp z) -1 0 . (3.7)
This expression is always defined for z, w ∈ D, for then 

(exp w) -1 . exp z ∈ (GK c P -) -1 GK c P -= P + K c GK c P -= P + K c P -. K(z,
(i) K(z, w) = K(w, z) -1 if K(z, w) is defined, (ii)K(o, w) = K(z, o) = 1 for z, w ∈ p + . If g(z)
, ḡ(w) and K(z, w) are defined, then K(g(z), ḡ(w)) is also defined and one has:

(iii) K(g(z), ḡ(w)) = J(g, z) K(z, w) J(ḡ, w) -1 , Lemma 3.4. [START_REF] Satake | Algebraic structures of symmetric domains[END_REF], Ch.II, Lemma 5.3. For g ∈ G c the Jacobian of the holomorphic mapping z → g(z), when it is defined, is given by

Jac (z → g(z)) = Ad p + (J(g, z)).
For any holomorphic character χ : K c → C we define:

j χ (g, z) = χ(J(g, z)), (3.8) k χ (z, w) = χ(K(z, w)). (3.9) Since χ( k) = χ(k)
-1 we have :

k χ (z, w) = k χ (w, z), (3.10) k χ (g(z), ḡ(w)) = j χ (g, z)k χ (z, w)j χ (ḡ, w) (3.11)
in place of Lemma (3.3) (i) and (iii).

The character χ 1 (k) = det Ad p + (k), (k ∈ K c ) is of particular importance. We call the corresponding j χ 1 , k χ 1 : j 1 and k 1 . Notice that (3.12) j 1 (g, z) = det(Jac (z → g(z))).

Because of (3.12), |k 1 (z, z)| -1 dµ(z), where dµ(z) is the Euclidean measure on p + , is a G-invariant measure on D. Indeed:

dµ(g(z)) = |j 1 (g, z)| 2 dµ(z), k 1 (g(z), g(z)) = j 1 (g, z) k 1 (z, z) j 1 (g, z), for g ∈ G.
One can actually show that k 1 (z, z) > 0 on D. ( [START_REF] Satake | Algebraic structures of symmetric domains[END_REF], Ch.II, Lemma 5.8).

Let τ be an irreducible holomorphic representation of K c on a finite dimensional complex vector space W with scalar product | , such that τ | K is unitary. andd ġ is an invariant measure on G/K. Let us identify G/K with D and d ġ with d * z = k 1 (z, z) -1 dµ(z). Then W τ can be identified with a space of maps on D, setting

Lemma 3.5. For every k ∈ K c one has the identity τ * (k) = τ ( k) -1 .

This follows easily by writing

k = k o • exp iX with k o ∈ K, X ∈ k and using that τ | K is unitary. Call π τ = Ind G K τ and set W τ for the representation space of π τ . Then W τ consists of maps f : G → W satisfying (i) f measurable, (ii) f (gk) = τ -1 (k)f (g) for g ∈ G, k ∈ K, (iii) G/K f (g) 2 d ġ < ∞, where f (g) 2 = f (g)|f (g)
(3.13) ϕ(z) = τ (J(g, o))f (g), if z = g(o), f ∈ W τ .
Indeed, the right-hand side of (3.13) is clearly right K-invariant. The inner product becomes

(ϕ|ψ) = D τ -1 (J(g, o))ϕ(z)|τ -1 (J(g, o))ψ(z) d * z. Since τ -1 (J(g, o)) * τ -1 (J(g, o)) = τ -1 (J(g, o)J(g, o) -1 ) = τ -1 (K(z, z)) by Lemma (3.
3), we may also write

(3.14) (ϕ|ψ) = D τ -1 (K(z, z))ϕ(z)|ψ(z) d * z.
The G-action on the new space is given by

(3.15) π τ (g)ϕ(z) = τ -1 (J(g -1 , z))ϕ(g -1 (z)), (g ∈ G, z ∈ D).
Now we restrict to the closed sub-space of holomorphic maps and call the resulting Hilbert space H τ . The space H τ is π τ (G)-invariant. We assume that H τ = {0}.

The pair (π τ , H τ ) is called a vector-valued holomorphic discrete series of G.

In a similar way we can define the anti-holomorphic discrete series. We therefore start with τ instead of τ and take anti-holomorphic maps. Then (3.16) π τ (g)ψ(z) = τ -1 (J(g -1 , z))ψ(g -1 (z)).

for ψ ∈ H τ . One easily sees that H τ = Hτ and π τ = πτ in the usual sense. Notice that when the representation τ is one dimensional we recover scalar holomorphic discrete series representations introduced above.

The Hilbert space H τ is known to have a reproducing (or Bergman) kernel K τ (z, w). Its definition is as follows. Set

E z : ϕ → ϕ(z) (ϕ ∈ H τ )
for z ∈ D. Then E z : H τ → W is a continuous linear operator, and K τ (z, w) = E z E * w , being a End(W )-valued kernel, holomorphic in z, anti-holomorphic in w. In more detail :

(3.17) ϕ(w)| ξ = D τ -1 (K(z, z))ϕ(z)| K τ (z, w)ξ d * z
for any ϕ ∈ H τ , ξ ∈ W and w ∈ D.

Since H τ is a G-module, one easily gets the following transformation property for K τ (z, w) :

(3.18) K τ (g(z), g(w)) = τ (J(g, z))K τ (z, w)τ (J(g, w)) -1 (g ∈ G, z, w ∈ D). Now consider H(z, w) = K τ (z, w) • τ -1 (K(z, w)).
Clearly H(g(z), g(w)) = τ (J(g, z))H(z, w)τ -1 (J(g, z)) for all z, w ∈ D. So, setting z = w = o, g ∈ K we see that H(o, o) is a scalar operator, and hence

H(z, z) = H(o, o) is so. But then H(z, w) = H(o, o). So, we get (3.19) K τ (z, w) = c • τ (K(z, w)),
where c is a scalar. The same reasoning yields that π τ is irreducible. Indeed, if H ⊂ H τ is a closed invariant subspace, then H has a reproducing kernel, say K H and it follows that K H = cK τ , so either

H = {0} or H = H τ .
Let us briefly recall the analytic realization of (some of) vector-valued holomorphic discrete series representations of G. We start with the irreducible representations of the maximal compact subgroup K which can be realized on the space of polynomials P(V ) and which are parameterized by the weights

m = (m 1 , . . . , m r ) ∈ Z r with m 1 ≥ • • • ≥ m r ≥ 0 and m 1 +• • •+m r = m = |m|.
These representations do not exhaust all irreducible representations of K but they will produce all necessary components for our further discussion.

Let V ′ be the dual vector space of V ≃ p + . Consider the m -th symmetric tensor power of V ′ . It is naturally identified with the space P m (V ) of polynomials of degree m on V . It is well known (see for instance [START_REF] Faraut | Function spaces and reproducing kernels on bounded symmetric domains[END_REF][START_REF] Schmid | Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen[END_REF]) that under the K-action this space decomposes multiplicity free into a direct sum of irreducible sub-representations :

P m (V ) = ⊕ |m|=m P m (V ),
where P m (V ) are irreducible representations of K of highest weight m. This decomposition is often called the Kostant-Hua-Schmid formula and we refer the reader to the paper [START_REF] Faraut | Function spaces and reproducing kernels on bounded symmetric domains[END_REF] for a precise description of spaces P m (V ) and the corresponding highest weight vectors ∆ m . We denote by P m the orthogonal projection of P m (V ) onto P m (V ).

Let h(z, w) be as before the canonical polynomial on V × V , then according to [START_REF] Faraut | Function spaces and reproducing kernels on bounded symmetric domains[END_REF], for a real ν one has

h -ν (z, w) = m (ν) m K m (z, w),
where K m (z, w) is the reproducing kernel of the space P m (V ), and (ν) m stands for the generalized Pochhammer symbol:

(ν) m = r j=1 ν - d 2 (j -1) m j = r j=1 m j k=1 ν - d 2 (j -1) + k -1 .
Denote H ν (P m (V )) the Hilbert space of holomorphic functions on D with values in P m (V ) admitting the reproducing kernel

h -ν (z, w) ⊗ m K t (z, w).
Then, for an integer ν > 1 + d(r -1) and a given weight m the group G acts on its unitarily and irreducibly by

(3.20) π ν,m (g)f (z) = Det(Dg -1 (z)) ν ⊗ m (dg -1 ) t • f (g -1 .z),
where ⊗ m (dg -1 ) t on P m (V ) denotes the induced action of (dg -1 ) t on V .

3.2. Maximal degenerate series. Let Det(g) be the determinant of a linear transform g ∈ G(Ω) ⊂ GL(V o ). We denote by χ(g) a particular character of this reductive Lie group given by χ(g) := Det(g) r n . This character can be trivially extended to the whole parabolic subgroup P by χ(hn) := χ(h) for every h ∈ G(Ω), n ∈ N.

For every µ ∈ C we define a character χ µ of P by χ µ (p) := |χ(p)| µ . The induced representation π - µ = Ind G P (χ µ ) of the group G acts on the space

I µ := {f ∈ C ∞ (G) | f (g p) = χ µ (p)f (g), ∀g ∈ G, p ∈ P },
by left translations. A pre-Hilbert structure on I µ is given by f

2 = K |f (k)| 2 dk,
where K is the maximal compact subgroup of G associated with the Cartan involution σ, and dk is the normalized Haar measure of K.

According to the Gelfand-Naimark decomposition a function f ∈ I µ is determined by its restriction f Vo (x) = f (n x ) on N ≃ V o . Let I µ be the subspace of C ∞ (V o ) of functions f Vo with f ∈ I µ . The group G acts on I µ by:

(3.21) π - µ (g)f (x) = |A(g, x)| µ f (g -1 .x), g ∈ G, x ∈ V o , where A(g, x) := χ µ (Dg -1 )
x . These representations are usually called the maximal degenerate series representations of G.

One shows that the norm of a function f (n x ) = f Vo (x) ∈ I µ is given by:

(3.22) f 2 = Vo |f Vo (x)| 2 h(x, -x) 2ℜµ+ n r dx,
where h(z, w) is the canonical polynomial introduced above. Formula (3.22) implies that for ℜµ = -n 2r the space I µ is contained in L 2 (V o ) and the representation π - µ extends as a unitary representation on L 2 (V o ).

Analogously the character χ can be extended to the subgroup P and one defines in a similar way the representation π + µ = Ind G P (χ -µ ). Following the standard procedure we introduce an intertwiner between π - µ and π + µ-n r . Consider the map A µ defined on I µ by

(3.23) f -→ ( A µ f )(g) := N f (gn)dn, ∀g ∈ G,
where dn is a left invariant Haar measure on N. One shows that this integral converges for ℜµ > n 2r 0 .

Proposition 3.6. For every f ∈ I µ the function A µ f belongs to I -µ and the map A µ given by (3.23) intertwines the corresponding representations of G:

(3.24) π + µ-n r (g)( A µ f ) = A µ ( π - µ (g)f ), ∀f ∈ I µ , g ∈ G.

Ring structures on the holomorphic discrete series

In this section we discuss two different ring structures that one can endow on the set of holomorphic discrete series.

4.1.

Laplace transform and the point-wise product. We start with a generalization of a result on the usual point-wise product due to A. and J. Unterberger (cf. [START_REF] Unterberger | Algebras of symbols and modular forms[END_REF] Lemma 3.1) in the case when G = SL(2, R).

Theorem 4.1. Let V 0 be a Euclidean Jordan algebra and T Ω be the corresponding tube domain V 0 + iΩ. Consider two real numbers ν 1 and ν 2 such that ν 1 , ν 2 > 1 + d(r -1) = 2 n r -1 and two functions

F 1 ∈ H 2 ν 1 (T Ω ) and F 2 ∈ H 2 ν 2 (T Ω ).
Then their point-wise product F 1 • F 2 belongs to H 2 ν 1 +ν 2 (T Ω ). In order to prove this statement recall the following result ( [START_REF] Faraut | Analysis on Symmetric Cones[END_REF], Theorem XIII 1.1 ). Let Γ Ω denote the Gindikin conical Γ-function.

Lemma 4.2. Let ν be a real number, ν > 2n r -1. Let L 2 ν (Ω) be the space L 2 (Ω, ∆(2u) -ν+ n r du). For any f ∈ L 2 ν (Ω), set (4.1) 
F (z) = (2π) -n/2 Ω f (u)e (z|u) du. Then F ∈ H 2 ν (T Ω ) and f → F is a linear isomorphism from L 2 ν (Ω) onto H 2 ν (T Ω ). Moreover F 2 ν = Γ Ω ν - n r f 2 ν . Let now F 1 ∈ H 2 ν 1 (T Ω ), F 2 ∈ H 2 ν 2 (T Ω
) and let u and v correspond to F 1 and F 2 respectively by the lemma, so u ∈ L 2 ν 1 (Ω), v ∈ L 2 ν 2 (Ω). Then we shall show:

u * v ν 1 +ν 2 ≤ C(ν 1 , ν 2 ) u ν 1 v ν 2 ,
where C(ν 1 , ν 2 ) is a constant. This is sufficient to prove the theorem since the map f → F sends convolutions to point-wise products. Observe that f is extended to V by setting it zero outside Ω. More precisely we have

Lemma 4.3. Let ν 1 , ν 2 > 2n r -1, u ν 1 < ∞, v ν 2 < ∞ for the measurable functions u and v on Ω. Set (u * v)(τ ) = Ω∩(τ -Ω) u(τ -η) v(η)dη (τ ∈ Ω).
Then (u * v)(τ ) exists for almost all τ , is measurable and

u * v ν 1 +ν 2 ≤ C(ν 1 , ν 2 ) u ν 1 v ν 2 .
We only prove the estimate, since the rest of this lemma follows from the same proof, applying Fubini's theorem at each step.

We have to give an estimate for the integral

I = Ω (u * v)(τ ) ∆(2τ ) n r -ν 1 -ν 2 w(τ )dτ = Ω Ω ∆(2(ξ + η)) n r -ν 1 -ν 2 v(η)u(ξ)w(ξ + η) dξdη
under the assumption that w ν 1 +ν 2 < ∞ (w ∈ L 2 ν 1 +ν 2 (Ω)). For any t > 0, using the inequality

2|u(ξ)v(η)| ≤ t ∆(2(ξ + η)) 1 2 (ν 2 -ν 1 ) |u(ξ)| 2 + t -1 ∆(2(ξ + η)) 1 2 (ν 1 -ν 2 ) |v(η)| 2 we get 2|I| ≤ t Ω |u(ξ)| 2 dξ ξ+Ω ∆(2τ ) n r -ν 1 -ν 2 + 1 2 (ν 2 -ν 1 ) |w(τ )| dτ + t -1 Ω |v(η)| 2 dη η+Ω ∆(2τ ) n r -ν 1 -ν 2 + 1 2 (ν 1 -ν 2 ) |w(τ )| dτ ≤ w ν 1 +ν 2 t Ω |u(ξ)| 2 dξ ( ξ+Ω ∆(2τ ) n r -2ν 1 dτ ) 1/2 + t -1 Ω |v(η)| 2 dη ( η+Ω ∆(2τ ) n r -2ν 2 dτ ) 1/2 .

Let us compute the expression

ξ+Ω ∆(2τ ) n r -2ν 2 dτ for ξ ∈ Ω. Set ξ = g • e for g ∈ G(Ω). The G(Ω)-invariant measure on Ω is equal to ∆(τ ) -n r dτ , so that we get ξ+Ω ∆(2τ ) n r -2ν 1 dτ = 2 n-2ν 1 r ξ+Ω ∆(τ ) 2n r -2ν 1 ∆(τ ) -n r dτ (4.2) = 2 n-2ν 1 r e+Ω ∆(g • τ ) 2n r -2ν 1 ∆(τ ) -n r dτ Now ∆(g • τ ) = (Det g) r/n ∆(τ ) = ∆(g • τ ) ∆(τ )
, so we obtain for the latter expression

= e+Ω ∆(2τ ) n r -2ν 1 dτ ∆(ξ) 2n r -2ν 1 .
The term e+Ω ∆(2τ ) n r -2ν 1 dτ has finally to be computed. We make the change of variable τ → τ -1 . Observe that (e + Ω) -1 = (e -Ω)∩Ω. The differential of τ → τ -1 is -P (τ ) -1 and |Det (-P (τ )

) -1 | = ∆(τ ) 2n r , see ([5],Prop. II 3.3 and Prop. III 4.2). So e+Ω ∆(2τ ) n r -2ν 1 dτ = 2 n-2ν 1 r (e-Ω)∩Ω ∆(τ ) -n r +2ν 1 ∆(τ ) -2n r dτ = 2 n-2ν 1 r (e-Ω)∩Ω ∆(τ ) -2n r +2ν 1 dτ = 2 n-2ν 1 r B Ω (- 2n r + 2ν 1 , n r ) = 2 n-2ν 1 r Γ Ω (-2n r + 2ν 1 ) Γ Ω ( n r ) Γ Ω (-n r + 2ν 1 )
.

So we obtain

|I| = t u 2 ν 1 2 n-2ν 1 r Γ Ω (-2n r + 2ν 1 ) Γ Ω ( n r ) Γ Ω (-n r + 2ν 1 ) 1/2 + t -1 v 2 ν 2 2 n-2ν 2 r Γ Ω (-2n r + 2ν 2 ) Γ Ω ( n r ) Γ Ω (-n r + 2ν 2 ) 1/2 w ν 1 +ν 2 .
Taking the minimum for t > 0, we get

u * v ν 1 +ν 2 ≤ 2 n r -(ν 1 +ν 2 ) r 2 Γ Ω (-2n r + 2ν 1 ) Γ Ω ( n r ) Γ Ω (-n r + 2ν 1 ) 1/4 • Γ Ω (-2n r + 2ν 2 ) Γ Ω ( n r ) Γ Ω (-n r + 2ν 2 ) 1/4 u ν 1 v ν 2 . Remark 4.4. If G = SL(2, R), then T Ω = Π and for every f ∈ H 2 ν (Π) df dz ∈ H 2 ν+2 (Π).

Product structure on L 2 (G/H

). There exists a G-equivariant embedding of square-integrable functions on the causal symmetric space G/H into the composition algebra of Hilbert-Schmidt operators by means of the following diagram:

L 2 (G/H) ֒→ π + µ ⊗ π - µ ֒→ π + µ ⊗ π + µ ≃ HS(L 2 (V o ), dx), where dx is the usual Lebesgue measure on V o .
The first arrow is of geometric nature and it is given by the fact that the symmetric space G/H is an open dense subset of G/P ∩ G/ P . The last isomorphism is given by

L 2 (V 0 , dx) ⊗ L 2 (V 0 , dx) ≃ HS(L 2 (V 0 , dx).
This embedding gives rise to a covariant symbolic calculus on G/H. In order to introduce the covariant symbolic calculus on G/H we start with the case of G = SL(2, R) and H = a 0 0 a -1 , a ∈ R * . Let P -be the parabolic subgroup of G consisting of the lower triangular matrices

P -: a 0 c a -1 ,
with c ∈ R, a ∈ R * and let P + be the group of upper triangular matrices

P + : a b 0 a -1 , with b ∈ R, a ∈ R * .
The group G acts on the sphere S = s ∈ R 2 : s 2 = 1 and acts transitively on S = S/ ∼, where s ∼ s ′ if and only if s = ±s ′ , by

g.s = g (s) g(s) 
.

Clearly Stab( 0, 1) = P -. So S ≃ G/P -. Similarly S ≃ G/P + : S = G.( 1, 0). If ds is the usual normalized surface measure on S, then

d(g.s) = g(s) -2 ds.
For µ ∈ C, define the character ω µ of P ± by

ω µ (p) = |a| µ . Consider π ± µ = Ind G P ± ω ∓µ . Both π +
µ and π - µ can be realized on C ∞ ( S), the space of smooth functions φ on S satisfying φ(-s) = φ(s), (s ∈ S).

The formula for π - µ is π - µ (g)φ(s) = φ(g -1 .s) g -1 (s) µ . Let θ be the Cartan involution of G given by θ(g) = t g -1 . Then

π + µ (g)φ(s) = φ(θ(g -1 ).s) θ(g -1 )(s) µ . Since here θ a b c d = w a b c d w -1 with w = 0 1 -1 0 , one has that π - µ ∼ π + µ . Let ( , ) denote the standard inner product on L 2 (S): (φ, ψ) = S φ(s)ψ(s)ds.
Then this form is invariant with respect to the pairs (π - µ , π - -μ-2 ), and (π + µ , π + -μ-2 ). Therefore if ℜµ = -1, then the representations π ± µ are unitary, the inner product being ( , ).

G acts also on S × S by

(4.3) g.(u, v) = (g.u, θ(g)v).
This action is not transitive: the orbit

( S × S) # s = {(u, v) : u, v = 0} = G.(( 0, 1), ( 0, 1)) is dense. Moreover ( S × S) # s ≃ G/H. The map f → f (u, v)| u, v | -1+is , (s ∈ R), is a unitary G-isomorphism between L 2 (G/H) and π - -1+is ⊗2 π + -1+is
acting on L 2 ( S × S). The latter space is provided with the usual inner product. Define the operator A µ on C ∞ ( S) by the formula

A µ φ(s) = S | s, t | -µ-2 φ(t)dt.
This integral is absolutely convergent for ℜµ < -1, and can be analytically extended to the whole complex plane as a meromorphic function. It is easily checked that A µ is an intertwining operator

A µ π ± µ (g) = π ∓ -µ-2 (g)A µ .
The operator A -µ-2 • A µ intertwines π ± µ with itself, and is therefore a scalar c(µ). It can be computed using K-types:

c(µ) = π Γ µ+1 2 Γ -µ+1 2 Γ -µ 2 Γ 1 + µ 2 .
One also shows that : A * µ = A μ. So that for µ = -1 + is we get (by abuse of notation):

c(s) = π Γ is 2 Γ -is 2 Γ 1-is 2 Γ 1+is 2 ,
and moreover 1+is) is a unitary intertwiner between

A (-1+is) • A * (-1+is) = c(s)I, so that π -1 2 Γ( 1+is 2 ) Γ( is 2 ) A (-1+is) = d(s)A (-
π + -1+is and π - -1-is . We thus get a π - -1+is ⊗2 π- -1+is invariant map from L 2 (G/H) onto L 2 ( S × S) given by f → d(s) S f (u, w)| u, w | -1+is | v, w | -1-is dw = (T s f )(u, v), s = 0.
This integral does not converge: it has to be considered as obtained by analytic continuation.

Define the product f # s g for f, g ∈ L 2 (G/H) as follows: (T s f )(u, v) is the kernel of a Hilbert-Schmidt operator Op(f ) on L 2 ( S). Then we set:

Op(f # s g) = Op(f ) • Op(g).
We then have:

• f ♯ s g 2 ≤ f 2 • g 2 . • Op(L x f ) = π - -1+is (x)Op(f )π - -1+is (x -1 ), so L x (f # s g) = (L x f )# s (L x g), for x ∈ G.
Let us write down a formula for f # s g; we have:

d -2 (s)(f # s g)(u, v) (4.4) = S S f (u, x)g(y, v)|[u, y, x, v]| -1+is dµ(x, y), (4.5) 
where dµ(x, y) = | x, y | -2 dxdy is a G-invariant measure on S × S for the G-action (4.3). Here [u, y, x, v] = u, x y, v u, v y, x .

For a generic causal symmetric space of Cayley type G/H the composition formula of two symbols f, g ∈ L 2 (G/H) is defined in a similar way. In order to keep a reasonable size of this note we just indicate the flavor of the explicit formula. Recall that G/H is para-Hermitian, T eH (G/H) ≃ V 0 ⊕ V 0 , and hence functions on it can be seen as functions on V 0 × V 0 . Therefore f ♯ s g is given by a double integral on V 0 , of f and g against an appropriate power of the quotient of four functions that are integral kernels of the intertwining operator (3.23), exactly as in (4.4). 4.3. Product structure on L 2 (G/H) hol . One says that a symmetric space G/H has discrete series representations if the set of representations of G on minimal closed invariant subspaces of L 2 (G/H) is nonempty. According to a fundamental result of Flensted-Jensen [START_REF] Flensted-Jensen | Discrete series for semisimple symmetric spaces[END_REF] the discrete series for G/H is nonempty and infinite if

rank(G/H) = rank(K/K ∩ H).
For a causal symmetric space of Cayley type G/H this condition is fulfilled and on can realize part of its discrete series as holomorphic discrete series representations of the group G.

More precisely assume that π is a scalar holomorphic discrete series representation of G, i.e. it acts on H π ⊂ O(D) ∩ L 2 (D, dm π ) where D is some symmetric domain (the image of the tube T Ω by the Cayley transform) and where dm π (w) is a measure on D associated to π. In such a case the Hilbert space H π has a reproducing kernel K π (z, w).

Assume that the representation π occurs as a multiplicity free closed subspace in the Plancherel formula for L 2 (G/H) (actually this is the case in our setting, see [START_REF] Òlafsson | The holomorphic discrete series for affine symmetric spaces[END_REF] Theorem 5.9).

Consider ξ π ∈ H -∞ π the unique up to scalars H-fixed distribution vector associated to π (see [START_REF] Òlafsson | The holomorphic discrete series for affine symmetric spaces[END_REF] p. 142 for the definition of ξ π = φ λ (z)). It gives rise to a continuous embedding map

J π : H π ֒→ L 2 (G/H) ⊂ D ′ (G/H) given for any analytic vector v ∈ H ∞ π by (4.6) (J π v)(x) = v, π(x)ξ π , x ∈ G/H,
where by abusing notations we write π(x) instead of π(g) with x = g.H ∈ G/H. For any fixed w ∈ D let us define the function v w := K π (•, w) which is actually a real analytic vector in H π .

Consider now the following function :

g w (x) := (J v w )(x), x ∈ G/H, w ∈ D.
Because of the reproducing property of the Hilbert space H π for every f ∈ H π one can write

f (z) = D K π (z, w)f (w)dm π (w).
Furthermore, if such a function f is an analytic vector for the representation π : f ∈ H ∞ π , then

(J π f )(x) = D f (w)g w (x)dm π (w).
Choosing an appropriate normalization in (4.6) one can get the embedding J π isometric. Therefore the subspace generated by g w (x), w ∈ D is a closed subspace of L 2 (G/H) isometric to some holomorphic discrete series representation of G. ( see [START_REF] Òlafsson | The holomorphic discrete series for affine symmetric spaces[END_REF] Theorem 5.4 for the precise statement).

The dual map J * π : D(G/H) → H π is defined by

J * π φ, f = φ, J π f = G/H D φ(x)f (w)g w (x)dm(w)dν(x), ∀φ ∈ D(G/H),
where dν(x) denotes the invariant measure on G/H. Therefore we have,

(J * π φ)(w) = G/H φ(x)g w (x)dν(x).
Similar observations are valid for vector-valued holomorphic discrete series representations as well. Define the set

L 2 (G/H) hol = π∈ Ĝ′ hol J π (H π )
where Ĝ′ hol denotes the set of equivalence classes of unitary irreducible holomorphic discrete series representations of G with corresponding character τ trivial on H ∩ Z. Notice that the space L 2 (G/H) hol decomposes multiplicity free into irreducible subspaces ( [START_REF] Oshima | Discrete series for symmetric spaces[END_REF]).

According to [START_REF] Òlafsson | The holomorphic discrete series for affine symmetric spaces[END_REF] the H-fixed distribution vector ξ k = ξ πν , associated with the scalar holomorphic discrete series representation π ν (see (3.2)) is given up to a constant by (4.7)

ξ k (z) = ∆ η(z) - z 2i -ν 2 , z ∈ V 0 + iΩ.
Example. If G = SL(2, R) the holomorphic discrete series of G are only scalar and according to (3.2) act on

H 2 k (Π) (k ≥ 2, k ∈ N) by π k (g)f (z) = (cz + d) -k f az + b cz + d , g -1 = a b c d .
The involution η is given here by η(z) = -z, the subgroup H is isomorphic to SO(1, 1) and according to (4. 

g z (s, t) = s -t (s -z)(t -z)
, evaluated at the base point (0, ∞) of the orbit G/H. In this case it is well known [START_REF] Òlafsson | The holomorphic discrete series for affine symmetric spaces[END_REF] that only π k with k even can be uniquely realized on L 2 (G/H). Therefore we have

L 2 (G/H) hol = k even J k (H 2 k (Π)),
In [START_REF] Unterberger | Algebras of symbols and modular forms[END_REF] Theorem 3.6 the authors showed that the set L 2 (G/H) hol is closed under the non commutative product # s (4.4). They give an explicit formula for the components of f # s g for f ∈ J k (H 2 k (Π)) and g ∈ J ℓ (H 2 ℓ (Π)) in terms of Rankin-Cohen brackets (1.1). The method they developed is elegant but technical and from our point of view not well adapted for generalization.

To get more insight in the product structure of L 2 (G/H) hol , we rely on some recent results by T. Kobayashi ([11],Theorem 7.4),

We are going to show that L 2 (G/H) hol is closed under the product # s . It is, because of the continuity of the product, sufficient to show the following theorem.

Theorem 4.5. Let H π and H π ′ be two irreducible closed subspaces of L 2 (G/H) hol . Then

J π (f )# s J π ′ (g) ∈ L 2 (G/H) hol . for every f ∈ H π and g ∈ H π ′ .
Even in the case of G = SL(2, R) this result reduces the computations of [START_REF] Unterberger | Algebras of symbols and modular forms[END_REF] in an interesting way. The proof of this theorem follows from a fairly recent result by Kobayashi saying: Theorem 4.6. (Kobayashi). Let π and π ′ be holomorphic discrete series representations of G. Then the representation π ⊗2 π ′ decomposes discretely into holomorphic discrete series representations of G with finite multiplicities. Moreover, π ⊗2 π ′ is K-admissible, i.e. every irreducible representation of K occurs in it with finite multiplicity.

In general we do not have a multiplicity free decomposition. Now let us show our theorem. The map f ⊗g → J π (f )# s J π ′ (g) clearly gives rise to a K-and U(g)-equivariant linear map

(H π ⊗2 H π ′ ) K = H K π ⊗ H K π ′ → L 2 (G/H
), and thus the result follows for f and g K-finite, and then, by continuity of the product, for all f and g.

Example The decomposition of the tensor product of two holomorphic discrete series for SL(2, R) was obtained by J. Repka ([22]) in full generality using the Harish-Chandra-modules techniques, and it is given by

π n ⊗2 π m = ∞ k=0 π m+n+2k ,
so that this reduces the computations in [START_REF] Unterberger | Algebras of symbols and modular forms[END_REF] even more.

At the same time V.F.Molchanov obtained the same result (decomposition of all possible tensor products of unitary irreducible representations of SO(2, 1)) in [START_REF] Molchanov | Tensor products of unitary representations of the threedimensional Lorentz group[END_REF]. He realized such tensor products on functions defined on the onesheeted hyperboloid and gave all the Fourier coefficients of the positive-definite kernel that defines the Hilbert structure of these unitary representations.

In the general situation we have to consider also vector-valued holomorphic discrete series representations. Indeed, according to the theorem (4.6) and particularly to the result stated in the theorem 3.3 in [START_REF] Peng | Tensor products of holomorphic representations and bilinear differential operators[END_REF] the tensor product of two scalar holomorphic discrete series representations decomposes multiplicity free in the direct sum of unitary irreducible vector-valued holomorphic discrete series representations:

H ν 1 ⊗ H ν 2 = m≥0 H ν 1 +ν 2 (P m (V ′ )), in the case when ν 1 ≥ ν 2 > 1 + d(r -1).
In order to understand the previous decomposition we have to identify its different ingredients.

First, we see an element of the tensor product H ν 1 ⊗ H ν 2 as a holomorphic function F (z, w) on D × D. Therefore, according to [START_REF] Range | Holomorphic functions and integral representations in several complex variables[END_REF] Coroll. 6.26, p. 269 for any positive integer m one can write a Taylor expansion formula:

F (z, w) = m j=0 (F (j) (z), ⊗ j (w -z)) + (F (m+1) (z, w), ⊗ m+1 (z -w)),
where F (j) (z) are P j (V ′ )-valued holomorphic functions on D, F (m+1) (z, w) is a P m+1 (V ′ )-valued holomorphic function on D × D uniquely determined by the data of F (z, w), and ( , ) denotes the standard pairing of corresponding vector spaces.

Second, according to Peetre [START_REF] Peetre | Hankel forms of arbitrary weight over a symmetric domain via the transvectant[END_REF] consider an End(V )-valued holomorphic differential form on D defined for every fixed w 1 , w 2 ∈ V and z ∈ D by Ω(z; , w 1 , w 2 ) = d z B(z, w 1 )B(z, w 1 ) -1 -d z B(z, w 2 )B(z, w 2 ) -1 , and denote by ω(z; w 1 , w 2 ) it trace -r 2n trΩ(z; w 1 , w 2 ). The former differential form plays a crucial role in the construction of intertwining operators for tensor products.

Namely, for fixed w 1 and w 2 the expression h(z, w 1 ) -ν 1 h(z, w 2 ) -ν 2 P m ⊗ |m| ω(z; w 1 , w 2 ) can be seen as an element of the space H ν 1 ⊗ H ν 2 dual of H ν 1 ⊗ H ν 2 . Let , stand for the corresponding pairing. Then the operator I m given by (4.8)

I m (f ⊗ g)(z) = h(z, •) -ν 1 h(z, •) -ν 2 P m ⊗ |m| ω(z; •, •), f ⊗ g , is a G-equivariant map from (π ν 1 ⊗ π ν 2 , H ν 1 ⊗ H ν 2 )
to the space of P m (V )valued holomorphic functions on D seen as the representation space of π ν 1 +ν 2 ,m (see (3.20). Theorem 4.4 in [START_REF] Peng | Tensor products of holomorphic representations and bilinear differential operators[END_REF] which is an extended version of the main theorem in [START_REF] Peetre | Hankel forms of arbitrary weight over a symmetric domain via the transvectant[END_REF] gives a description of this map. Summarizing and using Theorem (4.5), we get where c m,s are fundamental constants given by the # s product of the reproducing kernels of the corresponding Bergman spaces H ν 1 and H ν 2 and B m,ν 1 ,ν 2 is such a bi-differential operator on H ν 1 ⊗ H ν 2 that (4.9)

I m (B m,ν 1 ,ν 2 (f, g)) = |n|+|n ′ |=m C |n| |m| • (-1) |n| (ν 1 ) n (ν 2 ) n ′ • P m P n ∂ |n| f ⊗ P n ′ ∂ |n ′ | g ,
with n and n ′ being all possible weights such that |n| + |n ′ | = |m|.

In case when the group under consideration is SU(1, 1) formula (4.9) reduces to the Rankin-Cohen brackets initially introduced for the SL(2, R)action. The fact that the expression remains the same in both compact and non-compact realizations of the Riemannian symmetric space G/K, is due to the fact that the groups SU(1, 1) and SL(2, R) are real forms of the same complex Lie group SL(2, C) and therefore covariant differential operators on SU(1, 1)/S(U(1) × U(1)) and SL(2, R)/SO(2, R) are isomorphic via the analytic continuation in the complexification of these symmetric spaces. This phenomenon holds in general for covariant differential operators on D and on T Ω and for transvectants in particular as was noticed by Peetre [START_REF] Peetre | Hankel forms of arbitrary weight over a symmetric domain via the transvectant[END_REF] p. 1076.

For this reason it would be natural to call the bi-differential operators occurring in (4.9) generalized Rankin-Cohen brackets.

Open questions • The construction we described is valid for holomorphic discrete series representations with spectral parameter ν > 1 + d(r -1). However it would be interesting to understand whether this can be extended to the whole Wallach set. • A possible relationship with Vertex algebras, already mentioned in [START_REF] Peetre | Hankel forms of arbitrary weight over a symmetric domain via the transvectant[END_REF] and [START_REF] Zagier | Modular forms and differential operators[END_REF], were pointed out to us by I.Cherednik. It is a challenge to investigate this link. • We have seen that the ring structure on L 2 (G/H) hol is related to the tensor product of holomorphic discrete series representations. Does it reflect, via the Tannaka-Krein duality, the existence of a certain Hopf algebra that would govern the non-commutative product ♯ s ? • According to the Beilinson-Bernstein classification of (g, K)-modules one can study representations of semi-simple Lie groups in terms of D-modules on associated flag varieties. Can the ring structure on the set of holomorphic discrete series be interpreted as a cup-product on the sheaves associated with closed H-orbits on the flag variety?

  7) ξ k (z) = (-z) -k 2 what corresponds precisely to k 2 -th power of the Unterbergers generating function ([25] Prop 3.3.)

Proposition 4 . 7 . 1 H

 471 Let ν 1 ≥ ν 2 > 1 + d(r -1) and f ∈ H ν 1 , g ∈ H ν 2 . Assume that H -∞ ν and H -∞

ν 2 H

 2 are not reduced to {0}. ThenJ πν 1 (f )# s J πν 2 (g) = m≥0 c m,s J π ν 1 +ν 2 (B m,ν 1 ,ν 2 (f, g)),

Notice that in general one shows, by use of analytic continuation, that the reproducing kernel (3.1) is positive-definite for a larger set of spectral parameters, namely for every ν in the so-called Wallach set W (T Ω ) = 0, d

, . . . , (r -1) d 2 ∪](r -1) d 2 , ∞[. However we restrict our considerations only to the subset of W (T Ω ) consisting of integer ν > 1 + d(r -1) in order to deal with spaces of holomorphic functions.