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The dynamics of receding contact lines is investigated experimentally through controlled
perturbations of a meniscus in a dip coating experiment. We first characterize stationary
menisci and their breakdown at the coating transition. It is then shown that the dynamics
of both liquid deposition and long-wavelength perturbations adiabatically follow these
stationary states. This provides a first experimental access to the entire bifurcation
diagram of dynamical wetting, confirming the hydrodynamic theory developed in Part
1. In contrast to quasi-static theories based on a dynamic contact angle, we demonstrate
that the transition strongly depends on the large scale flow geometry. We then establish
the dispersion relation for large wavenumbers, for which we find that σ is linear in q.
The speed dependence of σ is well described by hydrodynamic theory, in particular the
absence of diverging time-scales at the critical point. Finally, we highlight some open
problems related to contact angle hysteresis that lead beyond the current description.

1. Introduction
Moving contact lines have been studied for more than thirty years but constitute still

an open problem in fluid mechanics. The difficulty comes from the existence of six
decades of length scale separating the macroscopic scale from the molecular scale that
become active as soon as a contact line moves, due to viscous diffusion. This effect may
be seen in the classical hydrodynamics description, where the no-slip boundary condi-
tion leads to a divergence of viscous stresses at the contact line (Huh & Scriven 1971,
Dussan et al. 1974). Of course, this singularity can be avoided by considering molecular
physics that goes beyond hydrodynamics, such as the description of diffuse interfaces
(Pismen & Pomeau 2000), Van der Waals interactions (Teletzke & al. 1988), or a slip
at the solid substrate (Thompson & Robbins 1989). The latter mechanism has recently
been accessed experimentally (Schmatko et al. 2005, Cottin-Bizonne et al. 2005), show-
ing that slip really occurs and is not an ad hoc quantity to save the hydrodynamic de-
scription. Over a large range of shear rates, the velocity vs of the last layer of molecules
was found proportional to the velocity gradient γ̇,

vs = lsγ̇ , (1.1)

where ls is the slip length. According to these experiments and molecular dynamics
simulations (Thompson & Troian 1997 , Barrat & Bocquet 1999), large slip lengths are
associated to a hydrophobic behaviour. For moderately large contact angles, the slip
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length is of the order of a few molecule sizes. Even though, the difficulty of the moving
contact line problem arises from the very large interface curvatures near the contact line,
required to balance the viscous stresses (Voinov 1976, Cox 1986). This strongly curved
region has to be matched to the macroscopic flow, which is particularly challenging in
the dewetting case (Eggers 2004, Eggers 2005).

On the experimental side, this problem is essentially studied by examining the macro-
scopic interface shape as a function of the properly rescaled contact line speed U , (e.g. see
Hoffman 1975, Dussan et al. 1991, Le Grand et al. 2005), called the capillary number:

Ca =
ηU

γ
, (1.2)

where η and γ are viscosity and surface tensions respectively. However, macroscopically
observable parameters, such as the dynamic contact angle, are not very sensitive to dis-
tinguish the microscopic contact line models. Golestanian & Raphael proposed that, by
studying perturbations of contact lines, one could discriminate between different dissipa-
tion models at the contact line. Their analysis is based on the elastic-like description for
static contact lines (Joanny & de Gennes 1984, de Gennes 1986a): a small perturbation
of the contact line position with wavector q involves the deformation of the free surface
over a distance 1/q resulting in an elastic capillary energy proportional to |q|. The con-
tact line returns to its equilibrium straight configuration with a characteristic time σ−1

such that, in the limit of small contact angles θ,

σ ∝ γ

η
θ3|q|. (1.3)

The θ3 dependence reflects the visco-capillary balance within the wedge of liquid bounded
by the solid substrate and the free surface. Ondarçuhu & Veyssié 1991 were the first to
experimentally study this dispersion relation for a static contact line and they confirmed
in particular the |q| dependence in the limit of large q. Marsh & Cazabat 1993 examined
the relaxation of a very slowly moving contact line, distorted by an isolated chemical
defect. They showed that the relaxing line profiles can be described by functions of
the form ln(y2 + c2t2), where y is the coordinate along the contact line and c is the
characteristic speed ∝ γθ3/η. This logarithmic shape is also a direct consequence of the
peculiar contact line elasticity (de Gennes 1986a).

In the case of receding contact lines, the quasi-static theory by Golestanian & Raphael
predicts that the relaxation time σ−1 should increase with contact line speed and diverge
at the dynamic entrainment transition, i.e. when a steady meniscus can no longer be
sustained. An intriguing consequence of this is that perturbations due to small-scale
inhomogeneities of the substrate are no longer damped at the critical point, leading to
a roughening of the contact line (Golestanian & Raphael 2003). This scenario contrasts
the dispersion relation obtained from the full-scale hydrodynamic calculation presented
in our preceding paper (Part 1, Snoeijer et al. 2007), predicting a finite relaxation time
for perturbations smaller than the capillary length. This hydrodynamic calculation ex-
plicitly accounts for viscous dissipation at all lengths and is thus expected to be more
accurate than a quasi-static approach, in which dissipative effects enter through an ef-
fective boundary condition.

In this paper we experimentally study the global stability and relaxation times of a
contact line in the context of a simple dip-coating experiment (figure 1). When a vertical
plate is withdrawn from a liquid bath at velocities below the coating transition, the
contact line equilibrates and we study the relaxation of well-controlled perturbations.
It is found that the relaxation times indeed increase as the entrainment transition is
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Figure 1. Experimental set-up. (a) A vertical plate is withdrawn at velocity Up from a bath of
liquid that does not wet spontaneously on it. (b) Definition of meniscus rise zcl and the apparent
contact angle θapp.

approached. However, as we have shown previously (Snoeijer et al. 2006), the transition
is not critical because relaxation times remain finite at threshold. The full dispersion
relation is established and compared quantitatively to hydrodynamic results. Above the
transition it is found that transients evolve adiabatically through a succession of quasi-
steady states. We can thus, for the first time, experimentally access the full bifurcation
structure of the wetting transition, using these transient states. Our experiments confirm
the nontrivial bifurcation scenario proposed in Part 1.

The paper is organized as follows. In Sec. 2 we describe briefly the experimental
set-up and the physico-chemical properties of the system used. The framework of the
hydrodynamic theory developped in Part 1 is briefly recalled in Sec. 3. In Sec. 4, we then
examine the global shape of the meniscus, essentially characterized by its height above the
liquid bath. We determine the critical velocity for meniscus stability and investigate the
bifurcation diagram from transients evolution to liquid deposition. Section 5 is devoted
to the analysis of the contact line relaxation. We first examine periodic pertubations
created by rows of defects moving through the contact line. These perturbations are
shown to decay with a rate σ proportional to the wavevector q, as for a static contact
line. We also examine the q = 0 mode, i.e. the relaxation of the average meniscus height
to its stationary position. In Sec. 6 we show that the variation of σ with respect to
the capillary number and its behavior near the entrainment transition are well described
by the hydrodynamic theory. We complete this discussion of contact line relaxation,
in Sec. 7, by presenting experiments on localized perturbations. In the conclusion we
finally address several open problems in contact line dynamics, particularly, the possible
influence of hysteresis which has not yet been studied properly.

2. Experimental set-up
The experiment simply consists of withdrawing a non-wetting plate from a vessel filled

with viscous liquid (figure 1). The plate is a 5 cm wide strip, cut from a silicon wafer
(Siltronix). A thin layer of fluorinated material is deposited on the wafer by dip coating
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in a solution of FC 725 (3M) in ethyl acetate. The liquids used are polydimethylsiloxanes
(PDMS, Rhodorsil 47V series) with dynamic viscosities η ranging from 1 to 5 Pa.s (the
corresponding average molecular weights range from 21000 to 40000), surface tension
γ = 21 mN/m and density ρ = 980 kg/m3. The corresponding capillary length is
lγ =

√
γ/ρg = 1.46 mm. This particular physico-chemical system was chosen because

high molecular weight PDMS is non volatile and its low surface tension inhibits rapid
contamination of the free surface. In addition, this allows a direct comparison with other
experiments performed with the same system in a different geometry.

PDMS is a molten polymer and it exhibits an entanglement transition at a molecular
weight around 20000 (Rahalker et al. 1984). The flow behavior is Newtonian up to a
critical shear rate γ̇c which decreases with the molecular weight. For the fluids used in
this study, γ̇c ≈ 104 s−1 (Lee et al. 1970). This critical value, above which shear thinning
is observed, should be compared to the experimental shear rates at the macroscopic and
microscopic scales. At the macroscopic scale γ̇ ≈ Up/lγ , which never exceeds 0.1 s−1.
Thus we expect a purely newtonian behavior of the liquid at the scale of the capillary
length. At the microscopic scale γ̇ ≈ Up/a, where a is a molecular size of the order of 10
nm. The shear rate can thus reach 104 s−1 very close to the contact line and a moderate
decrease of the viscosity might take place (Lee et al. 1970).

We were not able to measure directly the slip length of our system, but it can be
estimated as follows. Starting from the length of the Si-Si binding (around 0.3 nm)
and from the number of monomers (around 252 for the high viscosity oil of η = 4.95
Pa.s), we obtain the size a ' 7.5 nm of a molecule (Le Grand et al. 2005). It is known
from molecular dynamics simulations that contact angles lower than 90◦, for which the
interaction between the liquid and the substrate is attractive, give rise to a slip length of
the order of 2 molecular lengths (Thompson & Troian 1997 ). Throughout the paper we
therefore use the value ls ' 2a ' 15 nm' 10−5 lγ when comparing to theoretical results.

PDMS partially wets the fluorinated coating with a static contact angle that can vary
from one plate to another by 5◦. The data presented here have been obtained for a
receding contact angle of θr = 51.5◦ and an advancing contact angle of θa = 57.1◦.
Like all the plates prepared for this study, the contact angle hysteresis is thus very low
(θa − θr < 7◦), as previously obtained (Rio et al. 2005).

To induce controlled perturbations of the contact line we create wetting defects on the
plate using two techniques:
• controlled deposition of ink droplets on the fluorinated coating. When dried, ink has

a much higher surface energy than the fluorinated coating, and it is completely wetted
by the silicone oils.
• spin-coating a layer of photo-sensitive resin (SU-8 Microchem) on the surface of

a silicon wafer. After UV exposure through a mask the resin is developed, leaving
cylindrical posts ( 200 µm wide, 100 µm high) on the wafer. The whole surface is then
coated with FC-725, as described above. With this technique, the surface wettability is
uniform and the defects are only physical.
Both fabrication techniques produce surface defects that are able to significantly distort
the contact line as they move through the meniscus.

The size of the vessel containing the liquid is chosen sufficiently large (10 × 10 cm2) to
avoid any capillary interaction between the meniscus on the plate and the menisci formed
on the rim of the vessel. Also, the cross section of the silicon wafer is 10−3 times the
cross section of the vessel, so that the liquid displacement by the wafer hardly affects the
vertical position of the free surface. When the plate moves at its typical high velocity,
100 µm/s, the reference level in the bath is displaced only at 0.1 µm/s.

The motion of the plate is controlled within 1 µm by a motorized linear stage (New-
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port Corp., linear stage M-UTM50, controller ESP300). The image of the meniscus is
recorded with a CCD camera (Basler A602f, 656x492 pixels, pixel size: 9.9 µm x 9.9 µm,
100 frames/s) fitted with a macrophotography bellows and a Nikon 2.8/60 mm lens. We
can thus obtain a magnification ratio of 5, in which case 1 pixel in the image corresponds
to 2 µm on the object plane.

The location of the contact line is precisely determined by a cross-correlation proce-
dure. The gray level profile corresponding to the unperturbed contact line is recorded
for each experiment. This reference profile is then correlated with each vertical line of
the image. The contact line position corresponds to the location of the correlation max-
imum. The location of this maximum is subsequently refined with subpixel resolution
by interpolation around the correlation peak. This procedure is implemented as a plugin
for the ImageJ software (http://rsb.info.nih.gov/ij/).

3. Hydrodynamic framework

Let us briefly describe the hydrodynamic theory to which the experimental results
will be compared. We basically follow the analysis of the accompanying paper, Part 1,
Snoeijer et al. 2007, which is based upon the lubrication approximation for noninertial
free surface flows (Oron et al. 1997, Hocking 2001, Eggers 2004). However, to enable
a quantitative comparison involving large contact angles, typically around 45◦, we in-
clude corrections to the standard lubrication theory as proposed by Snoeijer 2006. The
governing equations for the interface profile h(z, y, t) then become

∂th+∇ · (hU) = 0 , (3.1)

∇κ− ez +
3(Ca ez −U)
h(h+ 3ls)

F (θ) = 0 , (3.2)

representing mass conservation and force balance respectively. Here, U is the depth-
averaged velocity, while κ is twice the mean curvature of the interface. The equations
have been made dimensionless using the capillary length lγ and the capillary time ηlγ/γ.
The equations differ from the standard lubrication approach through a correction factor

F (θ) =
2
3

tan θ sin2 θ

θ − cos θ sin θ
, (3.3)

where tan θ is the local slope of the interface (Snoeijer 2006). Indeed, F (θ) ' 1 for
θ � 1. We refer to Part 1 for details on boundary conditions and the numerics of the
linear stability analysis.

The theory requires two input parameters characterizing the contact line: the slip
length ls, preventing a stress divergence, and a microscopic contact angle θcl. As argued
in Sec. 2, we can use a value ls = 10−5 lγ estimated from the molecular size. Macroscopic
results depend only logarithmically on the precise value of ls (Voinov 1976, Cox 1986).
The microscopic contact angle is unknown a priori, but it is generally assumed to be
equal to the equilibrium angle. For hysteretic systems, the static angle can take any
value between θr and θa. Since the results are quite sensitive to this parameter, we have
produced numerical curves using three different values of θcl: receding angle θr = 51.5◦,
advancing angle θa = 57.1◦ and average static angle (θa + θr)/2 = 54.3◦.

http://rsb.info.nih.gov/ij/
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Figure 2. (a) Meniscus rise zcl normalized by capillary length lγ as a function of the plate
capillary number Ca. Symbols (•): steady solutions, determined experimentally as a function
of Ca. Symbols (◦): rescaled meniscus rise zcl(t) function of the contact line relative capillary

number fCa(t) = η(Up − żcl(t))/γ, for Ca = 9.8 10−3 (see text). Lines: predictions from hydro-
dynamics theory, with microscopic contact angle θcl = θr (dotted), θcl = (θa + θr)/2 (solid),
θcl = θa (dashed). (b) Rescaled contact line velocity at long time ż∞, as a function of the
capillary number Ca. Each point corresponds to an average over several experiments. The error
bars indicate the typical variation of the measured quantity from one experiment to the other.
The solid line is a phenomenological fit of the form: ηż∞/γ = c1 +c2(Ca−Ca∗)3. c1 is a residual
ascending velocity present even below the threshold.

4. Steady menisci
4.1. Contact line position as a function of capillary number

When the vertical plate is at rest, the liquid rises above the bath up to a height zcl,
figure 1, determined by the capillary length and the contact angle, according to the
classical relation (Landau & Lifschitz 1959),

zcl = lγ
√

2(1− sin θ) , (4.1)

where θ is the equilibrium contact angle (receding or advancing). This relation implies
that a perfectly wetting liquid can achieve a maximum rise of

√
2 times the capillary

length lγ .
When the plate is set withdrawn with a velocity Up, so that the contact line recedes

with respect to the plate, the meniscus height increases to a new equilibrium value. The
closed circles on figure 2a represent experimentally observed zcl for various Ca = ηUp/γ,
showing an increase of the meniscus rise with Ca. However, beyond a critical velocity,
corresponding to a capillary number Ca∗, the meniscus no longer equilibrates but rises
indefinitely. This is the signature of the entrainment transition: in our experiments,
steady menisci cannot exist beyond Ca∗ ≈ 9.1× 10−3.

The dependence of zcl on Ca can be compared to the predictions of hydrodynamic
theory. As mentioned in Sec. 3, the numerical curves are quite sensitive to the bound-
ary condition of the microscopic contact angle, θcl. In figures 2a we therefore present
numerical curves obtained using θcl = θr, θcl = θa and θcl = (θa + θr)/2. The experi-
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Figure 3. (a) Symbols (�): apparent contact angle θapp, defined from Eq (4.2) as a function
of capillary number for PDMS on fluorinated glass or silicon. Symbols (◦, �, 4): data from
Rio et al. 2005 obtained for drops sliding on an inclined plane. Vertical lines indicate threshold
capillary numbers Cad for the drop experiment, Ca> ”corner” dewetting flow on vertical plate
(see text), Ca∗ for the entrainment transition in the plate geometry. The solid line is the result
of the hydrodynamic theory for (θa + θr)/2, shifted down by 2.8◦. It is mostly used as a guide
eye but shows that the prediction is within the experimental error on the absolute position of
the contact line. (b) Triangular liquid film observed when the dewetting lines originating at the
wafer edges meet. (c) Overall shape of the liquid film well above the entrainment transition.
Most of the analysis pertains to the horizontal contact line at the top of the film.

mental points for zcl(Ca) lie between the curves obtained with θr and the average static
angle. It should be noted that, while we can measure the relative contact line motion
with a precision of a few microns, it is much more difficult to get the reference level
of the liquid bath, inducing incertainty in the static angles. There is, however, an im-
portant discrepancy on the precise location of the transition: for all model parameters,
the hydrodynamic theory predicts that the transition occurs when the meniscus reaches
zcl =

√
2lγ , the height attained by a perfectly wetting liquid (Part 1, Eggers 2004). We

denote this theoretical maximum velocity as the critical point, with a critical capillary
number Cac. In the experiments, entrainment already occurs at zcl ≈ 1.1lγ , from which
we infer that Ca∗ < Cac. Below we discuss how the experimental Ca∗ is related to
transient film solutions.

These results can be represented in terms of the apparent contact angle, θapp, defined
from zcl using Eq. (4.1),

θapp = arcsin

(
1− 1

2

[
zcl

lγ

]2
)
. (4.2)

As expected, this apparent contact angle decreases when the plate velocity is increased
(squares, figure 3a). However, θapp is far from zero at the entrainment transition, since zcl

remains well below the theoretical maximum of
√

2lγ . Interestingly, our data for θapp can
be directly compared with dynamic angle measurements for the same physico-chemical
system, but for a different geometry, namely droplets sliding down an inclined plane
(Rio et al. 2005). Figure 3 shows that the two sets of data for a receding contact line
are very similar, suggesting that the dynamic contact angle has some universal features.
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Figure 4. (a) Meniscus height zcl rescaled par the capillary length as a function of time,
rescaled by the capillary time for Ca = 9.7×10−3 (4), Ca = 10.2×10−3 (�), Ca = 10.7×10−3

(�), Ca = 11.2 × 10−3 (•) and Ca = 11.5 × 10−3 (◦). (b) Same data plotted as zcl(t) as a

function of the contact line relative capillary number fCa = η(Up − żcl(t))/γ. Solid line: Steady
solutions of the multi-scale hydrodynamic model.

One should be careful, however, since Rio et al. 2005 measure the actual slope of the
interface at a fixed distance from the contact line, while definition (4.2) represents an
apparent slope when extrapolating static profiles.

While the behavior of the dynamic contact angle appears to be robust with respect
to the large scale geometry, the threshold Ca for the entrainment transition is far from
universal. In the experiments on sliding drops performed with the same substrate and
liquids, the rear of the drop assumes a conical shape such that receding contact lines
move at a constant normal velocity (Podgorski et al. 2001, Rio et al. 2005). The corre-
sponding critical capillary number is Cad = 5.7×10−3, which is substantially lower than
Ca∗ = 9.1 × 10−3. Yet another geometry gives a third different value: when the plate
is pulled out at Ca > Ca∗ a liquid film is entrained except at the edges. As a result, a
triangular (figure 3b) or trapezoidal (figure 3c) film is created. The receding speed of
the lateral lines is constant and corresponds to Ca> = 7.5 × 10−3. This shows that the
threshold for contact line stability is not universal but depends on the details of the large
scale geometry of the flow.

4.2. Experimental determination of Ca∗

The dynamical evolution from the steady meniscus to the ridge solution provides crucial
information on the wetting transition. Figure 4a shows the time evolution of the meniscus
height zcl(t) after setting the plate velocity at a constant value at t = 0. When Ca < Ca∗,
zcl relaxes exponentially to a nearly flat plateau. Note that we systematically observe a
very slow upwards drift at a rescaled velocity ηż∞/γ ∼ 2 · 10−5, which is three orders of
magnitude smaller than typical capillary numbers. Above Ca∗, the exponential relaxation
is followed by a moderate steady rise and finally a much steeper rise corresponding to the
development of the capillary ridge. Indeed, figure 2b shows that there is a well-defined
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point at which the contact line velocity exceeds the ”noise” level, which allows to identify
the entrainment transition.

For Ca > Ca∗, liquid is entrained by the plate. As can be seen from the photograph
of figure 3c, the interface dynamics is not trivial: immediately behind the contact line
we observe the formation of a capillary ridge. We have found experimentally that this
structure travels exactly at a speed Ca∗, suggesting that the threshold of entrainment is
determined by properties of the ridge (Snoeijer et al. 2006). In fact, the ridge consists
of two flat films that are connected through a capillary shock. On the one hand the
boundary conditions at the contact line select a film thickness h ∝ lγCa∗1/2, which is
much thicker than the film connected to the bath, obeying the classical Landau-Levich
scaling h ∝ lγCa2/3 (Landau & Levich 1942). This mismatch then gives rise to the shock.

The picture that emerges is thus that, experimentally, entrainment occurs whenever
the ridge can nucleate, even though stationary, linearly stable meniscus solutions in
principle exist between Ca∗ and Cac. We believe that this avoided critical behavior is
due to intrinsic noise in the experiment: contact angle hysteresis is a manifestation of
microscopic inhomogeneity, an effect that is not treated in the model. The observation
that Cac is sensitive to minor changes in the microscopic θcl, and the presence of contact
line drift even below the transition support this interpretation.

4.3. Quasi-steady transients: bifurcation diagram
Let us now show how transient states during entrainment provide access to the full
bifurcation structure of the wetting transition. The dynamical evolution towards a ridge
can be recast in the plane (zcl, C̃a), where C̃a is the capillary number based on the
relative velocity between plate and contact line, Up− żcl. Figure 4b represents parametric
plots of zcl(t) and C̃a(t), for different plate velocities. Surprisingly, all data points for
various Ca follow a single master curve. In addition, these points accurately follow the
hydrodynamic prediction for the equilibrated values of zcl versus Ca (solid line). Let us
stress that this correspondence is far from trivial, since the theory considers stationary
rather than dynamical interface profiles. Roughly speaking, one can identify (i) a stable
branch (dzcl/dCa > 0) on which all the steady menisci are located, (ii) an unstable branch
(dzcl/dCa < 0) where no steady menisci can exist, but where the we observe transients,
and (iii) a vertical branch at Ca = Ca∗ corresponding to the velocity of the capillary
ridge. The hydrodynamic theory predicts a slightly more complex structure with small
oscillations around the vertical asymptote, which can not be resolved experimentally.

In addition to this correspondence, the data from the transient menisci can be com-
pared to the values of zcl for steady menisci obtained at Ca < Ca∗ (open circles, figure 2a).
Indeed, the two data sets coincide, providing further evidence that transients states are
similar in nature to the steady interface profiles.

These experimental findings strongly suggest that entrainment proceeds through a
succession of steady states, which we refer to as a quasi-steady dynamics. Experimen-
tally, the critical point (with a vertical tangent on the zcl(Ca) curve) is never reached
through stationary menisci. However, during the transient the meniscus shapes follow
the complete bifurcation curve, and therefore provides an indirect measurement of Cac.
The critical capillary number is found here to be 11.1×10−3, a slightly larger value than
predicted by the hydrodynamic theory.

5. Dispersion relation
Having discussed the dynamics of unperturbed menisci we can address perturbations of

the contact line. As originally suggested by Golestanian & Raphael, these should provide
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Figure 5. (a) Pictures showing the evolution of the contact line initially perturbed at
wavelength λ = 400 µm by chemical defects on the plate. ∆t = 0.4 s. (b) Extracted profiles.

a sensitive experimental probe of small scale dynamics. In this section we consider two
types of perturbations on the contact line: i) spatially periodic perturbations with rows
of equally spaced defects (finite wavenumber q), ii) a global vertical shift of the meniscus
(q = 0). We first describe the experimental protocols, while the experimental findings
results are discussed in the following section.

5.1. Periodic defects
To assess the dispersion relation, σ versus q, as a function of the contact line speed,
we performed systematic experiments with periodically spaced defects. A horizontal
row of defects is created on the solid plate, as described in Sec. 2. When this row of
defects moves through the meniscus, it entrains drops of silicone oil out of the bath.
As the defects move away from the meniscus, the threads connecting the drops to the
bath pinch off leaving a few satellite droplets (figure 5a). Immediately after the release
from the defects, the contact line has a spatially periodic perturbation with sharp peaks,
which decay quickly leaving a smoother almost sinusoidal perturbation. The spacing
between defects is well below the capillary length, λ = 400µm or 600µm, corresponding
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Figure 6. (a) Fit of the contact line profile (◦) by a single mode of wavelength λ = 400 µm
(dotted line) and by the sum of three modes, λ = 400 µm, λ = 200 µm and λ = 133 µm (solid
line). (b) Corresponding residual (z − zfit) curves

to qlγ ≈ 23 and 15 respectively. As a consequence, the gravitational energy involved in
the meniscus deformation is much smaller than the interfacial energy.

The precise location of the contact line is determined as described in Sec. 2 and the
relaxation is analyzed over a horizontal range spanning two defects (see figure 5b). Even
if the defects are identical and evenly spaced, the liquid thread pinch-off generically do
not occur simultaneously on all defects. For example, figure 5a shows the pinch-off from
four defects: on the top photograph, the rightmost liquid thread is clearly wider than
the middle ones. It will then break slightly later. In the middle photograph, the corre-
sponding peak is sharper and higher. Even after the decay of the highest spatial modes,
there is still a small difference between peak amplitudes (figure 5a, bottom photograph).
For this reason it is impossible to fit the whole experimental curve with a single function
and we choose to fit the curve by parts, considering only two defects at the same time
(figure 5b).

To analyze the relaxation, the experimental profiles are fitted by the sum of three
modes: zfit = a0 + a1 cos(q0(y − ϕ)) + a2 cos(2q0(y − ϕ)) + a3 cos(3q0(y − ϕ)) where
q0 = 2π/λ is the wavector corresponding to the spacing λ between defects. It can
be seen on figures 6 that a single cosine function does not fit the experimental curves
correctly while the three mode fit gives an accurate description: for a total amplitude of
15 µm, the difference between the experimental points and the three mode fit is less than
0.5µm. We thus obtain the dynamics of three different wavevectors in a single experiment.
This procedure allows a very precise determination of the amplitude (figure 7a), with a
resolution exceeding the camera resolution. This is due to the averaging procedure which
is implied by the fit over hundreds of data points.

For the three modes used in the fitting function, the amplitude decays exponentially
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Figure 7. (a) Amplitude of contact line deformation as a function of time for periodic perturba-
tions. Open circles λ = 400µm, filled circles λ = 200µm. The dotted lines are exponentials. (b)
Dimensionless relaxation rate as a function of capillary number at different wavelengths (defects
with 600 µm spacing: (◦)λ = 600µ, (�)λ = 300µ, (M)λ = 200µ ; defects with 400 µm spacing:
(•)λ = 400µ, (�)λ = 200µ, (N)λ = 133µ ). The solid line is the prediction of the multiscale
hydrodynamic model with θcl = (θa + θr)/2.

as e−σt (figure 7a), with a decay rate σ proportional to the wavevector (mode 2 decays
twice as fast as mode 1 and mode 3 three times faster than mode 1). As we will show
below (figure 9a), the data derived from the relaxation of multiple defects perturbation
indeed display the linear relation between the relaxation rate σ and the wavevector q,
within experimental error, as anticipated in Eq. (1.3).

5.2. ”Zero mode” relaxation
The experiments with regularly spaced defects provide data only in the long wavevector
limit qlγ � 1. But, we can get information on the small wavector limit q → 0 simply by
considering the relaxation of the meniscus height zcl towards its steady value. Again, the
amplitude of perturbation decays exponentially with time (figure 8a). We fit the curves
zcl(t) for Ca < Ca∗ (as shown on figure 4a) by a function: zfit = (zcl + ż∞t) [1− e−σt],
in which we account for the long term drift of the contact line through the term ż∞t.
We thus obtain the relaxation rate σ of the q = 0 mode as a function of the capillary
number.

6. Dimensionless relaxation rates and their evolution with Ca
We now analyze the experimentally measured relaxation rate, σ, as a function of q and

Ca. In order to compare the obtained this experimental dispersion relation to theoretical
predictions, we define dimensionless relaxation rates with different scalings in the limits
qlγ � 1 and qlγ � 1.

6.1. Short wavelengths: qlγ � 1
Gravity plays no role in the large wavevector limit, so the only length scale in the problem
is provided by the wavelength of the perturbation. Hence, we expect the relaxation rate
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Figure 8. (a) Amplitude of contact line perturbation as a function of time for the ”zero” mode
λ→∞. (b) Dimensionless relaxation rate for the zero mode as a function of capillary number.
The data have been obtained with the same plate. The error bars indicate the typical variation
from one experiment to the other. The lines are the prediction of the multiscale hydrodynamic
model for θcl = θr (dotted line), (θr + θa)/2 (solid line), θa (dashed line).

to scale with the imposed deformation |q| and the characteristic capillary velocity γ/η
(de Gennes 1986a). We therefore introduce the dimensionless relaxation rate σ∞(Ca):

σ =
γ

η
|q|σ∞(Ca) , (6.1)

where the subscript ∞ refers to the limit qlγ →∞ (see also Part 1).
The quasi-static theory for contact lines predicts σ∞ in terms of the apparent contact

angle θapp and its dependence on Ca (Golestanian & Raphael 2003)

σ∞ = −θ
(
dθapp

dCa

)−1

, (6.2)

which is the small angle limit of a more general expression. For all models of θapp(Ca)
(such as Cox 1986, Voinov 1976, de Gennes 1986b, Blake et al. 1995), σ∞ is found to
decay almost linearly with Ca, down to a zero value at the critical capillary number for
entrainment. This implies a diverging relaxation time σ−1, a direct consequence of the
diverging slope dθapp/dCa at the critical point. The slope of the curve σ∞(Ca) varies
from to -2 to -4, depending on the model used (Golestanian & Raphael 2001a).

If we examine our experimental data (figure 7b), we can see that σ∞ indeed decreases
almost linearly from Ca = 0 to Ca = Ca∗, the location of the entrainment transition.
But, this decreasing trend persists beyond Ca∗ when we consider the data points obtained
during the transition. As we have shown in Sec. 4, the transient meniscus adiabatically
follows the bifurcation curve so we can effectively probe the contact line dynamics up
to the critical point Cac. The experiments clearly show that σ∞ does not go to zero
between Ca∗ and Cac. This experimental result is in disagreement with the quasi-static
theories.

If, however, the viscous dissipation is accounted for in the full-scale hydrodynamic
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calculation, one indeed recovers a non-zero value of σ∞ at the critical point (Part 1,
Snoeijer et al. 2007). The prediction of hydrodynamic theory is represented by the solid
line in figure 7b, where we took the microscopic contact angle as θcl = (θa + θr)/2.
It correctly describes the variation of σ∞ over the whole range of capillary numbers,
including the nonzero value at the critical point. Note that the solid line displays a
sudden divergence near Cac, which is due to a breakdown of the linear scaling σq ∝ |q|
at criticality. This subtle effect is not observed within the experiments, for which the
scaling with |q| holds within experimental error.

6.2. Long wavelengths: qlγ � 1
In the small wavector limit, the energy of deformation is dominated by gravity and the
relevant length scale is no longer provided by the wavelength, but the capillary length
lγ (Nikolayev & Beysens 2003). We therefore define the dimensionless relaxation rate
σ0(Ca) as

σ =
γ

ηlγ
σ0(Ca) . (6.3)

The quasi-static theory predicts a dependence with Ca of the form

σ0 = lγ

(
dzcl

dCa

)−1

, (6.4)

which was found in excellent agreement with the hydrodynamic calculation of Part 1.
This relaxation is based on the idea that all transients with q = 0 effectively obey a quasi-
steady dynamics governed by a universal curve zcl(Ca), a concept that we discussed
already in Sec. 4. The critical point is again associated to a divergence of the slope
dzcl/dCa, leading to a zero value of σ0 at Cac. In our experiments, we can only measure
the relaxation towards a steady meniscus, i.e. when Ca remains smaller than Ca∗. Within
this limit, the model accounts reasonably well for the variation of σ0.

To close this section, let us compare the values of σ∞ and σ0, by plotting their ratio in
figure 9b as a function of Ca. We find a very good agreement with hydrodynamic theory
(solid line). The ratio diverges at Cac since σ0 → 0 at Cac, not accessible experimentally,
while σ∞ remains finite.

7. Localized perturbation and Green’s function
Having confirmed the scaling σ ∝ |q| for short wavelengths, we can further inves-

tigate this ”anomalous elasticity” of moving contact lines (Joanny & de Gennes 1984,
de Gennes 1986a, Golestanian & Raphael 2001). An interesting consequence of this dis-
persion relation is that the corresponding Green’s function is a Lorentzian: a localized
perturbation of the contact line, created by a single defect passing accross the interface,
should thus decay self-similarly according to a Lorentzian profile. The width (amplitude)
is supposed to increase (decrease) linearly in time.

Suppose that, at time 0, the contact line deformation is described by a Lorentzian of
width w0 and area A:

z(y, 0) =
A

πw0

1
1 + y2/w2

0

, (7.1)

with a peak amplitude A/πw0. Its Fourier transform is

ẑq(0) =
A√
2π

exp(−|q|w0) . (7.2)
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Figure 9. (a) Normalized relaxation rate as a function of the wavenumber rescaled by the
capillary length. (b) Ratio of the relaxation rate of large wavenumber modes to zero mode
rescaled by qlγ , i.e. σ∞/σ0. Each point corresponds to an average over several measurements.
The error bars indicate the variance around the average. The hydrodynamic theory is presented
by a solid line (θcl = (θa + θr)/2).

Using Eq. (6.1), we get the Fourier transform after relaxation during a time t as

ẑq(t) = e−σt ẑq(0) =
A√
2π

exp
(
−|q|

[
w0 +

γσ∞
η

t

])
, (7.3)

which can be inverted to

z(y, t) =
A

πw(t)
1

1 + y2/w(t)2
, (7.4)

where the width increasing linearly in time:

w(t) = w0 +
γσ∞
η

t . (7.5)

Experimentally, we thus create a very localized perturbation that should quickly evolve
into a Lorentzian shape. The time evolution of the perturbation created by a single
defect is shown on figure 10. In this experiment, the contact line speed is slightly below
the critical speed. Immediately after depinning from the defect, the contact line is
sharply peaked and cannot be fitted accurately by a Lorentzian (figure 10b). After a few
seconds, the modes corresponding to large wavenumbers are damped and the deformation
is indeed very well approximated by a Lorentzian (for comparison we show a Gaussian fit
in figure 10c, dotted line). It is also worth noting that a logarithmic shape resulting from
a localized force applied on the contact line (de Gennes 1986a) cannot describe properly
the experimental profiles.

The convergence to a fixed Lorentzian shape is further evidenced by the rescaling of
the experimental profiles z(y, t), since Eq. (7.4) predicts z(y, t)w(t)π/A(t) = f [y/w(t)].
As expected, the shape of the rescaled curves nicely collapse onto a master curve, shown
on figure 11a. Moreover, after the first few seconds during which the shape evolves into a
Lorentzian, the computed width increases linearly with time (figure 11b). The spreading
velocity of Eq. (7.5), σ∞γ/η, was found to be 17µm/s in this example, corresponding to
a dimensionless rate σ∞ ≈ 8.4 × 10−4. This value was obtained at U = 140µm/s with
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Figure 10. (a) Time evolution of the contact line initially perturbed by a single chemical defect
∆t = 2.5 s, at Ca = 7 × 10−3. (b) Residual of the fit of the contact line by a Lorentzian, just
after depinning (t = 0.625 s). (c) Residual of the fit of the contact line by a Lorentzian (solid
line) and by a Gaussian (dotted line) at time t = 5 s.

1 Pa.s oil, i.e. at Ca = 7 × 10−3, very near the entrainment transition. The relaxation
rate is indeed close to the lowest values observed with the periodic defects when Ca is
between Ca∗ and Cac. Finally, the area under the fitting curve A is found to be constant,
again after the initial decay of the transient modes (figure 11c).

8. Conclusion
We have measured the relaxation of a receding contact line, by considering pertur-

bations in the limit of both small and large wavelengths with respect to the capillary
length lγ . This provides crucial information on the dynamics of contact lines and the
nature of the dynamical wetting transition. As expected from the quasi-static theory by
Golestanian & Raphael, the moving contact line retains the peculiar elasticity already
found for static lines, namely a relaxation rate proportional to the wavevector q, in the
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Figure 11. (a) Rescaled contact line profiles (from figure 10a) showing the self-similar behavior.
(b) Time evolution of the width derived from the fit. (c) Time evolution of the area A under
each curve.

limit qlγ � 1. However, their crucial prediction of diverging timescales at the entrain-
ment transition is not confirmed experimentally. The initial interpretation for this was
that the critical point is completely avoided through the nucleation of a capillary ridge
(Snoeijer et al. 2006). However, the present experiments do explore the critical point
through transients during liquid deposition: the interface profiles adiabatically proceed
through stationary states, including the critical point. Even though, there is no evidence
of a divergent relaxation time for perturbations of qlγ � 1, which were found to decay
on a very rapid time scale even at criticality (figure 7b).

These findings are consistent with the hydrodynamic calculation put forward in Part
1, in which we explicitly treat viscous effects at all length scales. There we showed that
the critical point is described by a standard saddle-node bifurcation, for which σ = 0
only for q = 0, but not for finite wave perturbations. This demonstrates that a true
hydrodynamic description is crucial to unravel the dynamics of contact lines. Another
conclusion of Part 1 was that stationary menisci obey a rather surprising bifurcation
diagram, that is characterized by two distinct capillary numbers, Ca∗ and Cac. The
experimentally observed transients towards liquid deposition were indeed found to exhibit
the same structure (figure 4b).



18 G. Delon, M. Fermigier, J.H. Snoeijer and B. Andreotti

There is, however, an important feature missing in the hydrodynamic description.
Experimentally, the entrainment transition occurs at Ca∗, while in theory solutions are
linearly stable up to Cac. Sedev & Petrov 1991 studied the entrainment transition for
small siliconized glass rods pulled out of a bath of water-glycerin mixture. Within their
experimental uncertainty, they found that entrainment occurs when the meniscus height
is very close to its maximum value, with corresponding values of θapp ranging from 2 to
13◦ and this is in contradiction with our results. It should be noted that their substrates
exhibit a large variation of static contact angle (from 70 to 86◦) and the magnitude of
hysteresis is not reported. It is thus not clear if the discrepancy with our results is due
to the strong interface curvature in the third dimension or to hysteresis effects.

A crucial step would be to incorporate substrate inhomogeneities into the theory.
Golestanian & Raphael 2003 discussed the influence of fluctuations of surface energy (di-
rectly correlated to hysteresis) on the stability diagram for the wetting transition. They
also predict, consistent with their quasi-static theory for smooth substrates, a roughen-
ing of the contact line at the coating transition since perturbations imposed by substrate
heterogeneities should no longer relax. Our experimental and theoretical findings sug-
gest a rather different scenario at the wetting transition, and underline the need for a
hydrodynamic description incorporating hysteresis.

Experimentally, it is extremely difficult to get rid of hysteresis on solid substrates.
There have been attempts to use nanostructured surfaces: for example, Semal et al. 2000
used mixed alkanethiol monolayers to create composite surfaces with an hysteresis for
alcane droplets varying from 2 to 7◦. They interpreted their results of droplet spreading
(measuring an apparent contact angle as a function of time) in terms of the molecular
kinetic theory of Blake (Blake & Haynes 1969). They obtained a friction coefficient for
the contact line which was correlated to the average composition of the thiol monolayer.
As we have shown, dynamic characteristics near transitions are much more sensitive
tests than quantities like apparent contact angles which are furthermore ambiguously
defined. It will thus be interesting to perform experiments similar to those presented
here, on substrates of viscous liquids to try to eliminate the hysteresis completely, or on
nano-patterned solid substrates to try to vary the hysteresis continuously.

We wish to thank Elie Raphael who initially suggested this experiment. We also thank
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