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Piazza delle Scienze 3, 20126, Milano, Italia

(received ; accepted )

PACS. 05.50.+q– Lattice theory and statistics; Ising problems.
PACS. 75.10 – General theory and models of magnetic ordering.

Abstract. – Monte Carlo (MC) and series expansion (SE) data for the energy, specific heat,
magnetization and susceptibility of the two-dimensional 4-state Potts model in the vicinity of
the critical point are analysed. The role of logarithmic corrections is discussed and an approach
is proposed in order to account numerically for these corrections in the determination of critical
amplitudes. Accurate estimates of universal amplitude ratios A+/A−, Γ+/Γ−, ΓT /Γ− and R±

C

are given, which arouse new questions with respect to previous works.

Introduction. The concept of universality is of fundamental importance in the theory of
phase transitions. Critical exponents and critical amplitudes describe the leading singularities
of physical quantities in the vicinity of the critical point,

M−(τ) ≈ B(−τ)β , χ±(τ) ≈ Γ±|τ |−γ , C±(τ) ≈ A±
α

|τ |−α, (1)

(τ is the reduced temperature τ = (T − Tc)/T and the labels ± refer to the high-temperature
and low-temperature sides of the critical temperature Tc) and universal combinations of critical
amplitudes [1], as well as critical exponents characterize the universality class of the model.
For the Potts models with q > 2, in addition to the above mentioned quantities, a transverse
susceptibility can be defined in the low-temperature phase, χT (τ) ≈ ΓT |τ |−γ and χ− is also
usually referred to as longitudinal susceptibility χL.

Analytical results for the critical amplitudes for the q-state Potts models with q = 1, 2,
3, and 4 were obtained by Delfino and Cardy [2], using the two-dimensional scattering field
theory of Chim and Zamolodchikov [3]. In the case of the 4-state Potts model, the approach
of Ref. [2] leads for example to the universal susceptibility amplitude ratios Γ+/Γ− = 4.013
and ΓT /Γ− = 0.129. Monte Carlo (MC) simulations were also reported in [4] but the authors
found that the results were not fully conclusive. Another study due to Caselle et al. [5] leads
to the estimate Γ+/Γ− = 3.14(70), which is far below the theoretical prediction of Delfino
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and Cardy. More recently Enting and Guttmann analysed new (longer) series expansions for
q = 3 and q = 4 obtained by the finite lattice method [6]. Their estimates Γ+/Γ− = 3.5(4)
and ΓT /Γ− = 0.11(4) for q = 4 are in slightly better agreement with the results of [2] and [4].
An analysis of the series by differential approximants however is successful only in the q = 3
case in which the corrections to scaling are represented by pure powers, but meets with some
difficulty in the q = 4 case, in which logarithmic corrections are expected. Therefore they had
to resort to a slowly convergent direct analysis of the asymptotic behaviour of the expansion
coefficients with respect to their order.

In this letter we present accurate Monte Carlo data supplemented by a re-analysis of the
extended series derived by Enting and Guttmann [6]. We are essentially concerned with the
following universal combinations

A+

A−
,

Γ+

Γ−
,

ΓT
Γ−

, R+
C =

A+Γ+

B2
, R−

C =
A−Γ−
B2

. (2)

For all these quantities, effective ratios are defined which exhibit smoother behaviours in the
vicinity of the critical temperature than the quantities themselves. This procedure would even

eliminate logarithmic corrections from the fit in the case of 4-state Potts model in absence
of regular contributions, which unfortunately do exist! We also use the self-duality relation
to check explicitly the cancellation of the dominant corrections to scaling in the case of the
energy density evaluated at dual temperatures.

Model and observables. The Hamiltonian of the Potts model reads as H = −∑

〈ij〉 δsisj ,
where si is a variable taking integer values between 0 and q − 1, and the sum is restricted
to the nearest-neighbor sites 〈ij〉 on the lattice. The partition function Z is defined by
Z =

∑

conf e−βH with β = 1/kBT , and kB the Boltzmann constant (fixed to unity). On the

square lattice, in zero field, the model is self-dual. The duality relation
(

eβ − 1
) (

eβ
∗ − 1

)

= q
determines the critical value of the inverse temperature βc = ln(1 +

√
q). Dual reduced

temperatures τ and τ∗ can be defined by β = βc(1 − τ) and β∗ = βc(1 + τ∗).
We use the Wolff algorithm [7] and work with square lattices of linear size L with periodic

boundary conditions. Starting from an ordered state, we let the system equilibrate in 105 steps
measured by the number of flipped Wolff clusters. The averages are computed over 106—107

steps. We have simulated the model on square lattices with linear sizes L = 20, 40, 60, 80,
100 and 200. The data are measured in a range of reduced temperatures called the “critical
window” and defined as follows: the lower limit is reached when |τ |−ν reaches the size L of the
system, and the upper limit of the critical window is fixed for convenience when the corrections
to scaling in the Wegner asymptotic expansion [8] do not exceed a few percent, say 2− 3%, of
the leading critical behaviour Eq. (1) (forgetting about the logs).

The order parameter of a microstate M(t) is evaluated at the time t of the simulation as

M = qNm/N−1
q−1 , where Nm is the number of sites i with si = m and m ∈ [0, ..., q − 1] is the

spin value of the majority state. N = L2 is the total number of spins. The thermal average
is denoted M = 〈M〉. Thus, the longitudinal susceptibility in the low-temperature phase is
measured by the fluctuation of the majority spin orientation kBTχ− = 〈N2

m〉 − 〈Nm〉2 and
the transverse susceptibility is defined in the low-temperature phase as the fluctuations of the
minority of the spins kBTχT = 1

(q−1)

∑

µ6=m(〈N2
µ〉 − 〈Nµ〉2), while in the high-temperature

phase χ+ is given by the fluctuations in all q states, kBTχ+ = 1
q

∑q−1
µ=0(〈N2

µ〉 − 〈Nµ〉2), where
Nµ is the number of sites with the spin in the state µ. Properly allowing for the finite-size
effects, this definition of the susceptibility is, in both phases, completely consistent with the
available series expansion data [9]. The internal energy density of a microstate is calculated
as E = − 1

N

∑

〈ij〉 δsisj , and its ensemble average is denoted as E = 〈E〉. The specific heat
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measures the energy fluctuations, β−2C = −∂E
∂β =

(

〈E2〉 − 〈E〉2
)

.
Our MC study of the critical amplitudes will be supplemented by a reanalysis of the

high-temperature (HT) and low-temperature (LT) expansions recently calculated through
remarkably high orders by Enting, Guttmann and coworkers [10, 6]. In terms of these series, we
can compute the effective critical amplitudes for the susceptibilities, the specific heat and the
magnetization and extrapolate them by the current resummation techniques, namely simple
Padé approximants (PA) and differential approximants (DA) properly biased with the exactly
known critical temperatures and critical exponents. The LT expansion, expressed in terms of
the variable z = exp(−β), extends through z43 in the case of the energy. The expansion of
the longitudinal susceptibility extends through z59 (z47 for the transverse susceptibility) and
the magnetization expansion extends through z43. The HT expansions, computed in terms of
the variable v = (1− z)/(1+ (q− 1)z), extend to v43 in the case of the energy, and v24 for the
susceptibility. As a general remark on our series analysis, we may point out that the accuracy
of the amplitude estimates is questionable, since the mentioned resummation methods cannot
reproduce the expected logarithmic corrections to scaling and therefore the extrapolations to
the critical point are uncertain. In this case we have also tested a somewhat unconventional
use of DA’s: in computing the effective amplitudes, we only retain DA estimates outside
some small vicinity of the critical point, where they appear to be stable and reliable. Finally
we perform the extrapolations by fitting these data to an asymptotic form which includes
logarithmic corrections.

Logarithmic corrections. In the usual parametrization cos(πy/2) = 1
2

√
q in terms of which

the scaling dimensions are known, we have y = 0 at q = 4 and the second thermal expo-
nent [11, 12] yφ2

= −4y/3(1 − y) vanishes. Accordingly, the leading power-behaviour of the
magnetization (and of other physical quantities) is modified [13] by a logarithmic factor

M−(−|τ |) = B|τ |1/12(− ln |τ |)−1/8Fcorr(− ln |τ |), (3)

and a correction function Fcorr(− ln |τ |) contains terms with integer powers of (− ln |τ |), and
(− ln |τ |)−1 ln(− ln |τ |),. . . Non-integer power corrections may also occur due to the higher
(irrelevant) thermal exponents [11, 12, 14, 15] yφn or to other irrelevant fields, but let us first
discuss the form of the logarithmic terms. Extending the pioneering works of Cardy, Nauenberg
and Scalapino (CNS) [13, 16], Salas and Sokal (SS) [17] obtained a slowly convergent expansion
of Fcorr(− ln |τ |) in logs, e.g. for the magnetization:

M−(−|τ |) = B|τ |1/12(− ln |τ |)−1/8

[

1 − 3

16

ln(− ln |τ |)
− ln |τ | +O

(

1

ln |τ |

)]

. (4)

We provide below a re-examination of this and similar quantities. The non-linear RG equa-
tion for the relevant thermal and magnetic fields φ and h, with corresponding RG eigenvalues
yφ and yh, and the marginal dilution field ψ, are given by

dφ

d ln b
= (yφ + yφψψ)φ, (5)

dh

d ln b
= (yh + yhψψ)h, (6)

dψ

d ln b
= g(ψ) (7)

where b is the length rescaling factor and l = ln b. The function g(ψ) may be Taylor expanded,
g(ψ) = yψ2ψ2(1 +

y
ψ3

y
ψ2
ψ + . . .). Accounting for marginality of the dilution field, there is no

linear term at q = 4. The first term has been considered by Nauenberg and Scalapino [16],
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and later by Cardy, Nauenberg and Scalapino [13]. The second term was introduced by Salas
and Sokal [17]. For convenience, we slightly change the notations of Salas and Sokal, denoting
by yij the coupling coefficients between the scaling fields i and j. These parameters take the
values yφψ = 3/(4π), yhψ = 1/(16π), yψ2 = 1/π and yψ3 = −1/(2π2) [17], while the relevant
scaling dimensions are yφ = 3/2 and yh = 15/8.

The fixed point is at φ = h = 0. Starting from initial conditions φ0, h0, the relevant
fields grow exponentially with l. The field φ is analytically related to the temperature, so
the temperature behaviour follows from the renormalization flow from φ0 ∼ |τ | up to some
φ = O(1) outside the critical region. Notice also that the marginal field ψ remains of order
O(ψ0) and ψ0 is negative, |ψ0| = O(1). In zero magnetic field, under a change of length scale,
the singular part of the free energy density transforms according to

f(ψ0, φ0) = e−Dlf(ψ, φ), (8)

where D = 2 is the space dimension. Solving Eq. (5) leads to ln(φ/φ0) = yφl+yφψ
∫

ψdl where

the last integral is obtained from Eq. (7) rewritten as
∫ l

0 ψdl = 1
y
ψ2

ln(ψ/ψ0)+ 1
y
ψ2

lnG(ψ0, ψ).

Note that G(ψ0, ψ) takes the value 1 at the level of the approximation of Ref. [13] and the

value
y
ψ2+y

ψ3ψ0

y
ψ2+y

ψ3ψ
in Ref. [17]. Since this term appears always in the same combination, we

write z = ψ0

ψ
1

G(ψ0,ψ) and in the same way we set x = φ0/φ. We thus obtain

l = − 1

yφ
lnx+

yφψ
yφyψ2

ln z, (9)

(for brevity we will denote ν = 1/yφ = 2
3 , µ =

yφψ
yφyψ2

= 1
2 ) and we deduce the following

behaviour for the free energy density in zero magnetic field in terms of the thermal and
dilution fields,

f(φ0, ψ0) = xDν z−Dµf(φ, ψ). (10)

The other thermodynamic properties follow from derivatives with respect to the scaling fields,
e.g. E(φ0, ψ0) = ∂

∂φ0
f(ψ0, φ0) = xDν−1 z−DµE(φ, ψ). What appears extremely useful is that

the dependence on the quantity z cancels (due to the scaling relations among the critical
exponents) in appropriate effective ratios(1). This quantity z is precisely the only one where
the log terms are hidden in the 4-state Potts model, and thus we may infer that not only the

leading log terms, but all the log terms hidden in the dependence on the marginal dilution field

disappear in the conveniently defined effective ratios. Now we proceed by iterations of Eq. (9).
The asymptotic solution of Eq. (7) is

ψ

ψ0
=

1

1 − ψ0yψ2 l

(

1 +
yψ3

(yψ2)2
ln l

l
+O(1/l)

)

, (11)

and eventually one gets for the full correction to scaling variable the heavy expression z =
const × (− ln |τ |) E(− ln |τ |)F(− ln |τ |), where E(− ln |τ |) is a universal function

E(− ln |τ |) =

(

1 +
3

4

ln(− ln |τ |)
− ln |τ |

) (

1 − 3

4

ln(− ln |τ |)
− ln |τ |

)−1 (

1 +
3

4

1

(− ln |τ |)

)

(12)

while F(− ln |τ |) is a function of the variable (− ln |τ |) only, where non universality enters

through the constant ψ0. Remember here that x ≃ |τ |.

(1) i.e. effective ratios which eventually tend towards universal limits when τ → 0
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In a given range of values of the reduced temperature, the function F(− ln |τ |) should be
fixed and the only freedom that we have is to include background terms and possibly additive

corrections to scaling coming from irrelevant scaling fields. Among the additive correction
terms, we may have those coming from the thermal sector ∆φn = −νyφn , where the RG
eigenvalues are yφn = D − 1

2n
2, n = 1, 2, 3, . . . [12]. The first dimension yφ1

= yφ = 3/2 is
the temperature RG eigenvalue. The next one is yφ2

= 0 and this leads to the appearance of
the logarithmic corrections, such that the first Wegner irrelevant correction to scaling in the
thermal sector is ∆φ3

= −νyφ3
= 5/3. One can also imagine a coupling to the scaling fields of

the magnetic sector. The magnetic RG eigenvalues are given by yhn = D − 1
8 (2n − 1)2.

The first dimension yh1
= yh = 15/8 is the magnetic field RG eigenvalue. The second

one is still relevant, yh2
= 7/8, and it could lead, if admissible by symmetry, to corrections

generically governed by the difference of relevant eigenvalues (yh1
− yh2

)/yφ = 2/3. The next
contribution comes from yh3

= −9/8 and leads to a Wegner correction-to-scaling exponent
∆h3

= −νyh3
= 3/4. Eventually, corrections coming from spatial inhomogeneities of primary

fields (higher order derivatives) bring the extra possibility of integer correction exponents
yn = −n in the conformal tower of the identity. The first one of these irrelevant terms
corresponds to a Wegner exponent ∆1 = −ν(−1) = 2/3 and it is always present. We may thus
possibly include the following corrections: |τ |2/3, |τ |3/4, |τ |4/3, |τ |5/3, . . . , the first and third
ones being always present, while the other corrections depend on the symmetry properties of
the observables. Linear terms in |τ | due to non linear relevant fields [1] could also be necessary.

In fact, the inclusion of the most dominant correction in |τ |2/3 appears to be sufficient.
In the Baxter-Wu model, which belongs to the Potts q = 4 model universality class (2), the
magnetization was shown to obey the asymptotic form [19, 20] M−(−|τ |) = B|τ |1/12(1 +
const× |τ |2/3 + const′ × |τ |4/3), and Caselle et al. [5] also considered in the q = 4 case a |τ |2/3
term to fit the magnetization.

Numerical results. We eventually deduce the behaviour of the magnetization

M−(−|τ |) = B|τ |1/12(− ln |τ |)−1/8

[(

1 +
3

4

ln(− ln |τ |)
− ln |τ |

)

(

1 − 3

4

ln(− ln |τ |)
− ln |τ |

)−1 (

1 +
3

4

1

− ln |τ |

)

F(− ln |τ |)
]−1/8

(1 + a|τ |2/3 + . . .). (13)

Note that the whole bracket corresponds to the correction function of Eq. (3). Since all these
log expressions are “lazy functions”, it is unsafe (for numerical purposes) to expand such terms,

e.g.
(

1 − 3
4

ln(− ln |τ |)
− ln |τ |

)−1

≃ 1 + 3
4

ln(− ln |τ |)
− ln |τ | , since the correction term is not small enough in

the accessible temperature range |τ | ≃ 0.05 − 0.25. We have thus to extract an effective
function Feff (− ln |τ |) which mimics the real one F(− ln |τ |) in the convenient temperature
range. Defining various effective magnetization amplitudes at different levels of accuracy,

namely B
(1)
eff (−|τ |) = M−× |τ |−1/12(− ln |τ |)1/8 with the CNS leading log term, B

(2)
eff (−|τ |) =

M− × |τ |−1/12(− ln |τ |)1/8
(

1 − 3
16

ln(− ln |τ |)
− ln |τ |

)−1

with the SS correction or B
(3)
eff (−|τ |) = M− ×

|τ |−1/12[− ln |τ |E(− ln |τ |)]1/8 with our universal corrections, we are unable to recover a sensible
B(1+a|τ |2/3 +b|τ |4/3) behaviour. Of course, it is possible to fit the data to such an expression
in a given range of temperatures, but the coefficients a and b thus obtained strongly depend
on the temperature window and this is not acceptable. Improvement is only achieved through

(2) It was proposed in Ref. [16] that ψ0 = 0 in the Baxter-Wu model and there are no log-corrections.
Later Kinzel et al. [18] gave supporting considerations.
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the following type of fit

B
(3)
eff (−|τ |) = B

(

1 +
C1

− ln |τ | +
C2 ln(− ln |τ |)

(− ln |τ |)2
)1/8

(1 + a|τ |2/3). (14)

The function F(− ln |τ |) now takes the approximate expression

F(− ln |τ |) ≃
(

1 +
C1

− ln |τ | +
C2 ln(− ln |τ |)

(− ln |τ |)2
)−1

. (15)

What is remarkable is the stability of the fit to Eq. (14). Analysing MC data, we obtain (fit
a) C1 = −0.757(1) and C2 = −0.522(11) which yields an amplitude B = 1.1570(1). It is
also possible to try a simpler choice in the narrow temperature window, fixing C2 = 0 and
approximating the whole series by the C1−term only (now C1 = −0.88(5), called fit b), which
then leads to a very close magnetization amplitude B = 1.1559(12). An analysis of SE data
gives very similar results. By the way, the coefficient b is found to be almost zero and we did
not include it in Eq. (14). Note that these estimates follow from a coherent analysis of both
MC data and SE extrapolations [21].

We thus obtain a closed expression for the dominant logarithmic corrections which is more
suitable than previously proposed forms to describe the temperature range accessible in a
numerical study:

Obs.(±|τ |) ≃ Ampl. × |τ |⊳ × [E(− ln |τ |)F(− ln |τ |)]2

×(1 + Corr. terms) + Backgr. terms, (16)

Corr. terms = a|τ |2/3 + . . . , (17)

Backgr. terms = D0 +D1|τ | + . . . (18)

where ⊳ and 2 are exponents which depend on the observable considered, and take the values
1/12 and −1/8, respectively, in the case of the magnetization. The dots represent higher order
terms which theoretically do exist, but practically do not need to be included in the fits.

The susceptibility and the energy density can also be fitted to the expression above. Our
results are summarized in table I. The fits are generally very stable, with high confidence
levels. This shows that the asymptotic form of Eq. (16) we have chosen, works well and
moreover in our opinion is based on sufficiently safe theoretical grounds. The validity of
Eq. (16) can furthermore easily be checked (indirectly) through the computation of convenient
effective amplitude ratios (e.g. χT /χ−) for which all logarithmic corrections have to cancel. A
direct test of the cancellation of these logarithmic terms is also demonstrated by the leading
behaviour of the energy density ratio. The values E(β) and E(β∗) of the internal energy at
dual temperatures are related through

(

1 − e−β
)

E(β)+
(

1 − e−β
∗
)

E(β∗) = −2. Defining the

quantity A+(τ)
A−(τ∗) = E(β)−E0

E0−E(β∗) , the constant E0 being the value of the energy at the transition

temperature [22], E0 = E(βc) = −1 − 1/
√
q, we may expand close to the transition point:

A+(τ)
A−(τ∗) = 1 + 2αqτ + O(τ1+α) with αq = −E0βce

−βc =
ln(1+

√
q)√

q . This relation, checked

numerically, shows that the leading corrections to scaling vanish.

The universal combinations of amplitudes follow from the results listed in table I and are
summarized in table II. Fits a and b in these tables refer to the two possible choices for the
constants C1 and C2 in Eq. (15) as explained above, and the figures quoted are obtained from
the average of MC and SE estimates.

Conclusion. The main outcome of this work is the surprisingly high values of the ratios
Γ+/Γ−, ΓT /Γ− and R+

C , clearly far above the predictions of Delfino and Cardy.



L.N. SHCHUR, B. BERCHE and P. BUTERA: AMPLITUDE RATIOS IN POTTS MODELS 7

Table I. – Critical amplitudes in the 4-state Potts model. The amplitudes reported correspond to an
average between the estimates which follow from the analysis of MC data and of SE data.

fit # B A+ A− Γ+ Γ− ΓT

a 1.1580(1) 1.338(3) 1.338(3) 0.03081(8) 0.00460(2) 0.00074(1)
b 1.1571(10) 1.316(9) 1.316(9) 0.03095(15) 0.00478(2) 0.00073(1)

Table II. – Universal combinations of the critical amplitudes in the 4-state Potts model.

A+/A− Γ+/Γ− ΓT /Γ− R+

C
R−

C
source

1. 4.013 0.129 0.0204 − [2, 4]
− 3.14(70) − 0.021(5) 0.0068(9) [5]
− 3.5(4) 0.11(4) − − [6]
1.00(1) 6.7(4) 0.161(3) 0.0307(2) 0.00459(3) fit a
1.00(1) 6.5(1) 0.153(3) 0.0304(4) 0.00470(6) fit b

We believe that our fitting procedure is reliable, and since the disagreement with theoretical
calculations can hardly be resolved, we suspect that the discrepancy might be attributed to
the assumptions made in Ref. [2] in order to predict the susceptibility ratios.

Even more puzzling is the fact that Delfino and Cardy argue in favour of a higher robustness
(reported in Ref. [6]) of their results for ΓT /Γ− than for Γ+/Γ−, but the disagreement is
indisptable in both cases.

Finally, in favour of our results, one may mention a work in progress on the amplitude ratios
in the Baxter-Wu model (in the 4-state Potts model universality class), according to which
Γ+/Γ− ≃ 6.9 and R−

C ≃ 0.0044 [23]. These results show a similar discrepancy with Delfino
and Cardy’s results and a further analysis still seems to be necessary.

***
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