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Applications of the q-Fourier Analysis to the Symmetric Moment Problem

Sufficient condition for the symmetric moment problem to be determinate is given using standards methods of q-Fourier analysis. This condition it cannot be a particular case of Carleman's criterion.

Introduction

For a positive measure µ on R, the nth moment is defined as

s n = x n dµ(x),
provided the integral exists. Let M * (R) be the set of positive measures on R with moment of any order and with infinite support. Given µ ∈ M * (R), then we consider V µ the set of all ν ∈ M * (R) such that s n = x n dµ(x) = x n dν(x) for n ≥ 0.

We say that µ is determinate if V µ = {µ}, otherwise µ is indeterminate. For more detail to this subject, the reader can consult the references [START_REF] Berg | Moment problems and polynomial approximation, Annales de la facultè des sciences de Toulouse 6 e série, tome spécial ≪ 100 ans après Th[END_REF] and [START_REF] Berg | Density questions in the classical theory of moments[END_REF], and the references theine. We recall that a moment problem is said to be symmetric if all moments of odd order are 0. It is desirable to be able to tell whether the moment problem is determinate or indeterminate just by looking at the moment sequence (s n ) n≥0 . We have the following classical sufficient condition for determinacy:

The Perron's criterion lim sup n→∞ s 2n (2n)! 1/2n < ∞ (1) 
The Riesz's criterion

lim inf n→∞ s n n! 1/n < ∞ (2) 
The Carleman's criterion

∞ n=1 1 2n √ s 2n = ∞ (3) 
It follows easily that we have

(1) ⇒ (2) ⇒ (3).
So by Carlemans theorem (see [START_REF] Carleman | Sur les Problèmes des moments[END_REF]), if µ satisfy (3) then µ is determinate. In the end we have the following equivalent form of the Perron condition ∞ 0 e α|x| dµ(x) < ∞, for some α > 0.

For µ ∈ M * (R) let (P n ) be the corresponding orthonormal polynomials determined by

P n (x) = k n x n + ...., k n > 0; P n (x)P m (x)dµ(x) = δ nm .
For an indeterminate µ ∈ M * (R), it is known that the series

|P n (z)| 2 and
|Q n (z)| 2 converge uniformly on compact subsets of C, where (Q n ) the polynomials of the second kind

Q n (x) = P n (x) -P n (y) x -y dµ(y), x ∈ C.
Therefore, the series

A(z) = z ∞ n=0 Q n (0)Q n (z) B(z) = -1 + z ∞ n=0 Q n (0)P n (z) C(z) = 1 + z ∞ n=0 P n (0)Q n (z) D(z) = z ∞ n=0
P n (0)P n (z) determine entire functions. For t ∈ R∪{∞}, we introduce the special discrete measures so called N-extremal of the form

ν t = λ∈Λt m λ δ λ , Λ t = {z ∈ C B(z)t -D(z) = 0}, m λ = A(λ)t -C(λ) B ′ (λ)t -D ′ (λ) = ∞ n=0 P 2 n (λ) -1 , for λ ∈ Λ t , with Λ ∞ = {z ∈ C B(z) = 0}.
We recall the following result of M. Riesz [START_REF] Riesz | Sur le problème des moments et le théorème de Parseval correspondant[END_REF]:

Let µ ∈ M * (R) 1. If µ is indeterminate and ν ∈ V µ then (P n ) form an orthonormal basis of L 2 (ν) if and only if ν is N-extremal.
2. If µ is determinate then (P n ) form an orthonormal basis of L 2 (µ).

Main Results

We consider 0 < q < 1 and we design by µ the positive measure defined by

dµ(x) = ω(x) 2 dσ(x) = ω(x) 2 |x| 2v+1 d q x, v > -1,
where d q x a discrete measure defined by

d q x = (1 -q) n∈Z q n δ q n .
and ω an even real function satisfies ω(q n ) = 0 for all n ∈ Z.

Let (P n ) be the corresponding orthonormal polynomials for µ, and we consider R + q the support of µ

R + q = {q n , n ∈ Z}.
Theorem 1 The sequence (P n ) form an orthonormal basis of L 2 (µ) if and only if µ is determinate.

Proof. If the sequence (P n ) form an orthonormal basis of L 2 (µ) then µ is determinate or N-extremal. Suppose that µ is N-extremal, then there exist

t ∈ R ∪ {∞} such that µ = ν t = λ∈Λt m λ δ λ .
This implies Λ t = R + q . In the other hand Λ t is the set of zero of entire function and {0} is an accumulation point of Λ t , then Λ t = C, which is absurd.

Proposition 1

The sequence (P n ) form an orthonormal basis of L 2 (µ) if and only if

ψ n (x) = ω(x)P n (x),
form an orthonormal basis of L 2 (σ).

Proof. It is clear that

P n (x)P m (x)dµ(x) = δ nm ⇔ ψ n (x)ψ m (x)dσ(x) = δ nm .
Now, let f be a function belongs to L 2 (σ) and put g(x) = f (x) ω(x) , then g ∈ L 2 (µ) and we have g(x)P n (x)dµ(x) = 0 ⇔ f (x)ψ n (x)dσ(x) = 0, which lead to the result. Theorem 2 Let s n be the nth moment of σ. If

lim n→∞ q n/4 2n √ s 2n = 0, ( 4 
)
then µ is determinate.

Proof. Using theorem 2, it suffice to prove that (P n ) form an orthonormal basis of L 2 (µ) and by the proposition 1, this is equivalent to prove that (ψ n ) form an orthonormal basis of L 2 (σ). Let f be a function belongs to L 2 (σ) such that f (x)ψ n (x)dσ(x) = 0, ∀n ∈ N.

We can write f = f + + f -, where f + is even and f -is odd. This implies

f + (x)x 2n ω(x)dσ(x) = f -(x)x 2n+1 ω(x)dσ(x) = 0, ∀n ∈ N. Then f + (x)ω(x)j v (λx, q 2 )dσ(x) = xf -(x)ω(x)j v (λx, q 2 )dσ(x) = 0, ∀λ ∈ R + q ,
where j v (x, q 2 ) is the the normalized q-Bessel function of third kind defined by

j v (x, q 2 ) = ∞ n=0
(-1) n q n(n+1) (q 2 , q 2 ) n (q 2v+2 , q 2 ) n x 2n .

We can exchange integral and sum because

∞ n=0 q n(n+1) (q 2 , q 2 ) n (q 2v+2 , q 2 ) n λ 2n |f + (x)|x 2n ω(x)dσ(x) ≤ f + 2 ∞ n=0 q n(n+1) (q 2 , q 2 ) n (q 2v+2 , q 2 ) n λ 2n x 4n ω 2 (x)dσ(x) 1/2 ≤ f + 2 ∞ n=0 q n(n+1) (q 2 , q 2 ) n (q 2v+2 , q 2 ) n √ s 4n λ 2n < ∞. and ∞ n=0 q n(n+1) (q 2 , q 2 ) n (q 2v+2 , q 2 ) n λ 2n |xf -(x)|x 2n ω(x)dσ(x) ≤ f - 2 ∞ n=0
q n(n+1) (q 2 , q 2 ) n (q 2v+2 , q 2 ) n λ 2n

x 2(2n+1) ω 2 (x)dσ(x)

1/2 ≤ f - 2 ∞ n=0 q n(n+1) (q 2 , q 2 ) n (q 2v+2 , q 2 ) n √ s 2(2n+1) λ 2n < ∞.
The convergence of the above series is a simple consequence of the Cauchy root test (4).

In [START_REF] Dhaouadi | Inequalities in q-Fourier Analysis[END_REF] the authors introduce the q-Bessel Fourier transform as follows

F q,v f (λ) = c q,v ∞ 0 f (x)j v (λx, q 2 )x 2v+1 d q x, ∀λ ∈ R q ,
where f is an even function belongs to L 1 (σ) and he have proved that if F q,v f = 0 then f = 0. Using the Cauchy-Schwartz inequality we prove that f + ω and xf -ω belongs to L 1 (σ), which implies that f + = f -= 0.

Application

In [START_REF] Ismail | A simple proof of Ramanujan's 1 ψ 1 sum[END_REF], the Ramanujan identity was proved k∈Z z k (bq k , q) ∞ = (bz, q/bz, q, q) ∞ (b, z, q/b, q) ∞ , where

(x, q) ∞ = ∞ i=0 (1 -q i x).
Let α > 0 and replace in the above sum b → -1, z → q α z, we obtain k∈Z q αk z k (-q k , q) ∞ = (-q α z, -q -α q/z, q, q) ∞ (-1, q α z, -q, q) ∞ = (-q α z, q, q) ∞ (-1, q α z, -q, q) ∞ (-q -α q/z, q) ∞ .

On the other hand (-q -α q/z, q) ∞ = ∞ i=0

(1 + q i-α q/z) =

[α] i=0

(1 + q i-α q/z)

∞ i=[α]+1
(1 + q i-α q/z)

= q z α [α] i=0 q i-α [α] i=0 (1 + q α-i z/q) ∞ i=[α]+1 (1 + q i-α z/q) = q z α [α] i=0 (1 + q i q α-[α] z/q) ∞ i=[α]+1 (1 + q i-α z/q)q ( [α] 2 -α)([α]+1) .
This gives

k∈Z q αk z k (-q k , q) ∞ =   (-q α z, q, q) ∞ (-1, q α z, -q, q) ∞ [α] i=0 (1 + q i q α-[α] z/q) ∞ i=[α]+1 (1 + q i-α z/q)   q z α q ( [α] 2 -α)([α]+1) . Put C(α, q, z) =   (-q α z, q, q) ∞ (-1, q α z, -q, q) ∞ [α] i=0 (1 + q i q α-[α] z/q) ∞ i=0 (1 + q i+[α]-α z)   q z α , and 
σ(α) = [α] 2 -α ([α] + 1)
Now, let p > 0 and replace

α → n p , q → q 2p , z → q 2v+2 , we get (1 -q) k∈Z q 2nk q 2k(v+1) (-q 2pk , q 2p ) ∞ = (1 -q)C n p , q 2p , q 2v+2 q 2pσ( n p ) ,
We recall the definition of the q-exponential function

e(x, q) = 1 (x, q) ∞ = ∞ i=0 1 1 -q i x ,
and we can write

s 2n = ∞ 0
x 2n e(-x 2p , q 2p )x 2v+1 d q x = (1 -q)C n p , q 2p , q 2v+2 q 2pσ( n p ) , and then 2n √ s 2n = (1 -q)C n p , q 2p , q 2v+1 1 2n q p n σ( n p ) .

It is easy to prove that lim n→∞ (1 -q)C n p , q 2p , q 2v+2 1 2n

= 1.

For the particular case p = 3, we have lim In the end, if we denote by dµ(x) = e(-x 6 , q 6 )x 2v+1 d q x, then by the Theorem 2 we see that µ is determinate, but not satisfying the Carleman's criterion.

  4 2n √ s 2n = 0 and there exist n 0 > 0 such that for all n > n 0