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In the present note we describe a family of H * -algebra structures on the set L 2 (X) of square integrable functions on a rank-one para-Hermitian symmetric space X.

Introduction

Let X be a para-Hermitian symmetric space of rank one. It is well-known that X is isomorphic (up to a covering) to the quotient space SL(n, R)/GL(n -1, R), see [START_REF] Kaneyuki | Paracomplex structures and affine symmetric spaces[END_REF] for more details. We shall thus assume throughout this note that X = G/H, where G = SL(n, R) and H = GL(n -1, R).

The space X allows the definition of a covariant symbolic calculus that generalizes the so-called convolution-first calculus on R 2 , see ([2, 7, 8]) for instance. Such a calculus, or quantization map Op σ , from the set of functions on X, called symbols, onto the set of linear operators acting on the representation space of the maximal degenerate series π -n 2 +iσ of the group G, induces a non-commutative algebra structure on the set of symbols, that we suppose to be square integrable. On the other hand, the taking of the adjoint of an operator in such a calculus defines an involution on symbols. It turns out that these two data give rise to a H * -algebra structure on L 2 (X).

According to the general theory, ( [START_REF] Ambrose | Structure theorem for a special class of Banach algebras[END_REF][START_REF] Loomis | An introduction to Abstract Harmonic Analysis D[END_REF][START_REF] Naimark | [END_REF]), every H * -algebra is the direct orthogonal sum of its closed minimal two-sided ideals which are simple H * -algebras. The main result of this note is the explicit description of such a decomposition for the Hilbert algebra L 2 (X) and its commutative subalgebra of SO(n, R)-invariants.

Definitions and basic facts

1.1. H * -algebras. Definition 1.1. A set R is called a H * -algebra (or Hilbert algebra) if
(1) R is a Banach algebra with involution;

(2) R is a Hilbert space;

(3) the norm on the algebra R coincides with the norm on the Hilbert space R; (4) For all x, y, z ∈ R one has (xy, z) = (y, x * z);

(5) For all x ∈ R one has x * = x ; (6) xx * = 0 for x = 0.

An example of a Hilbert algebra is the set of Hilbert-Schmidt operators HS(I) that one can identify with the set of all matrices (a αβ ), where α, β belong to a fixed set of indices I, satisfying the condition

I |a αβ | 2 < ∞.
Theorem 1.2. [START_REF] Naimark | [END_REF], p. 331. Every Hilbert algebra is the direct orthogonal sum of its closed minimal two-sided ideals, which are simple Hilbert algebras.

Every simple Hilbert algebra is isomorphic to some algebra HS(I) of Hilbert-Schmidt operators.

Definition 1.3. [START_REF] Loomis | An introduction to Abstract Harmonic Analysis D[END_REF], p. 101 An idempotent e ∈ R is said to be irreducible if it cannot be expressed as a sum e = e 1 + e 2 with e 1 , e 2 idempotents which annihilate each other: e 1 e 2 = e 2 e 1 = 0. Lemma 1.4. [START_REF] Loomis | An introduction to Abstract Harmonic Analysis D[END_REF], p. 102. A subset I of a Hilbert algebra R is a minimal left (right) ideal if and only if it is of the form

I = R • e (I = e • R)
, where e is an irreducible self-adjoint idempotent. Moreover e • R • e is isomorphic to the set of complex numbers and R is spanned by its minimal left ideals.

Observe that any minimal left ideal is closed, since it is of the form R • e.

Corollary 1.5. If R is a commutative Hilbert algebra, then any minimal left (or right) ideal is one-dimensional.

1.2. An algebra structure on L 2 (X). Let G = SL(n, R), H = GL(n -1, R), K = SO(n)
and M = SO(n -1). We consider H as a subgroup of G, consisting of the matrices of the form (det h) -1 0 0 h with h ∈ GL(n -1, R).

Let P -be the parabolic subgroup of G consisting of 1 × (n -1) lower block matrices

P = a 0 c A , a ∈ R * , c ∈ R n-1 and A ∈ GL(n -1, R) such that a • det A = 1.
Similarly, let P + be the group of upper block matrices

P = a b 0 A a ∈ R * , b ∈ R n-1 and A ∈ GL(n -1, R) such that a • det A = 1.
The group G acts on the sphere S = {s ∈ R n , s 2 = 1} and acts transitively on the set S = S/ ∼, where s ∼ s ′ if and only if s = ±s ′ , by g.s = g(s) g(s)

, where g(s) denotes the linear action of G on R n . Clearly the stabilizer of the equivalence class of the first basis vector e 1 is the group P + , thus S ≃ G/P + . If ds is the usual normalized surface measure on S, then d(g.s) = g(s) -n ds.

For µ ∈ C, define the character ω µ of P ± by ω µ (P ) = |a| µ . Consider the induced representations π ± µ = Ind G P ± ω ∓µ . Both π + µ and π - µ can be realized on C ∞ ( S), the space of even smooth functions φ on S. This action is given by

π + µ (g)φ(s) = φ(g -1 .s) • g -1 (s) µ . Let θ be the Cartan involution of G given by θ(g) = t g -1 . Then π - µ (g)φ(s) = φ(θ(g -1 ).s) • θ(g -1 )(s) µ . Let ( , ) denote the usual inner product on L 2 (S) : (φ, ψ) = S φ(s) ψ(s)ds. Then this sesqui-linear form is invariant with respect to the pairs of representations (π + µ , π + -µ-n ) and (π - µ , π - -µ-n ). Therefore the representations π ± µ are unitary for Re µ = -n 2 .
The group G acts also on S × S by ( 1)

g(u, v) = (g.u, θ(g)v).
This action is not transitive: the orbit (

S × S) o = G.( e 1 , e 1 ) = {(u, v) : u, v = 0}/ ∼ is dense (here , denotes the canonical inner product on R n ). Moreover ( S × S) o ≃ X. The map f → f (u, v)| u, v | -n 2 +iσ , with σ ∈ R is a unitary G-isomorphism between L 2 (X) and π + -n 2 +iσ ⊕ 2 π - -n
2 +iσ acting on L 2 ( S × S). The latter space is provided with the usual inner product.

Define the operator A µ on C ∞ ( S) by the formula :

A µ φ(s) = S | s, t | -µ-n φ(t)dt.
This integral converges absolutely for Re µ < -1 and can be analytically extended to the whole complex plane as a meromorphic function of µ. It is easily checked that A µ is an intertwining operator, that is,

A µ π ± µ (g) = π ∓ -µ-n (g)A µ . The operator A -µ-n • A µ intertwines the representation π ±
µ with itself and is therefore a scalar c(µ)Id depending only on µ. It can be computed using K-types.

Let e(µ)

= S | s, t | -µ-n dt, then c(µ) = e(µ)e(-µ -n).
But on the other hand side

e(µ) = Γ( n 2 ) √ π Γ( -µ-n+1 2 ) Γ(-µ 2 )
. One also shows that A * µ = A μ. So that, for µ = -n 2 + iσ we get (by abuse of notations):

c(σ) = Γ n 2 2 π • Γ -n/2-iσ+1 2 Γ -n/2+iσ+1 2 Γ n/2+iσ 2 Γ -n/2-iσ 2 ,
and moreover

A -n 2 +iσ • A * -n 2 +iσ = c(σ)Id, so that the operator d(σ)A -n 2 +iσ , where d(σ) = √ π Γ( n 2 ) Γ( n/2+iσ 2 ) Γ( -n/2+iσ+1 2 ) is a unitary intertwiner between π - -n 2 +iσ and π + -n 2 -iσ . We thus get a π + -n 2 +iσ ⊕ 2 π+ -n 2 +iσ invariant map from L 2 (X) onto L 2 ( S × S) given by f → d(σ) S f (u, w)| u, w | -n 2 +iσ | v, w | -n 2 -iσ dw =: (T σ f )(u, v), ∀σ = 0.
This integral does not converge absolutely, it must be considered as obtained by analytic continuation.

Definition 1.6. A symbolic calculus on X is a linear map Op σ : L 2 (X) → L(L 2 ( S)) such that for every f ∈ L 2 (X) the function (T σ f )(u, v) is the kernel of the Hilbert-Schmidt operator Op σ (f ) acting on L 2 ( S).

Definition 1.7. The product # σ on L 2 (X) is defined by

Op σ (f ♯ σ g) = Op σ (f ) • Op σ (g), ∀f, g ∈ L 2 (X).
We thus have

• The product ♯ σ is associative. • f ♯ σ g 2 ≤ f 2 • g 2 , for all f, g ∈ L 2 (X). • Op σ (L x f ) = π + -n 2 +iσ (x) Op σ (f ) π + -n 2 +iσ (x -1 ), so L x (f ♯ σ g) = (L x f )♯ σ (L x g
), for all x ∈ G, where L x denotes the left translation by x ∈ G on L 2 (X). This non-commutative product can be described explicitly:

(2) (f ♯ σ g)(u, v) = d(σ) S S f (u, x)g(y, v)|[u, y, x, v]| -n 2 +iσ dµ(x, y),
where dµ(x, y) = | x, y | -n dxdy is a G-invariant measure on S × S for the G-action (1), and [u, y, x, v] = u, x y, v u, v x, y .

On the space L 2 (X) there exists an (family of) involution f → f * given by : Op σ (f * ) =: Op σ (f ) * . Notice that the correspondance f → Op σ ( f * ) is what one calls in pseudodifferential analysis "anti-standard symbolic calculus". The link between symbols of standard and anti-standard calculus in the setting of the para-Hermitian symmetric space X has been made explicit in [START_REF] Pevzner | Projective pseudodifferential analysis and harmonic analysis[END_REF] Corollary 1.4, see also Section 3.

Obviously we have (f ♯ σ g) * = g * ♯ σ f * and with the above product and involution, the Hilbert space L 2 (X) becomes a Hilbert algebra.

2. The structure of the subalgebra of K-invariant functions in L 2 (X)

Let A be the subspace of all K-invariant functions in L 2 (X).

Theorem 2.1. The subset A is a closed subalgebra of L 2 (X) with respect to the product ♯ σ .

This statement clearly follows from the covariance of the symbolic calculus Op σ , namely:

L x (f ♯ σ g) = (L x f )♯ σ (L x g), for all x ∈ G, f, g ∈ L 2 (X). Theorem 2.2. Let n > 2, then the subalgebra A is commutative. Proof. For a function f ∈ L 2 (X) we set f (u, v) = f (v, u). The map f → f is a linear involution. Indeed, (f ♯ σ g)(u, v) = d(σ) S S f (x, u)ǧ(v, y)|[u, y, x, v]| -n 2 +iσ dµ(x, y).
Permuting x and y and u and v respectively, we get

(f ♯ σ g)(v, u) = d(σ) S S ǧ(u, x) f (y, v)|[v, x, y, u]| -n 2 +iσ dµ(x, y). But |[v, x, y, u]| = |[u, y, x, v]|, therefore (f ♯ σ g)ˇ= ǧ ♯ σ f .
On the other hand, given a couple (u, v) ∈ S × S there exists an element k ∈ K such that k.(u, v) = (v, u). Geometrically k can be seen as a rotation of angle π[2π] around the axis defined by the bisectrix of vectors u and v in the plane they generate. Of course, such a k exists for an arbitrary couple (u, v) only if n > 2.

Hence for every f ∈ A we have f = f and therefore f ♯ σ g = g ♯ σ f , for f, g ∈ A.

Irreducible self-adjoint idempotents of A

We begin with a reduction theorem for the multiplication and involution in L 2 (X).

As usual, we shall identify 

L 2 (X) with L 2 ( S × S; | x, y | -n dxdy). If φ ∈ L 2 (X) we shall write φ(u, v) = | u, v | n/2-iσ φ o (u, v). Then φ o ∈ L 2 ( S × S; dsdt) = L 2 ( S × S),
φ o # σ ψ o (u, v) = d(σ) S S φ o (u, x) ψ o (y, v) | x, y | -n/2-iσ dxdy
and the involution becomes:

φ * 0 (u, v) = d(σ) 2 S S φ0 (x, y) (| x, v || u, y |) -n/2+iσ dxdy.
The proof is straightforward. So we have translated the algebra structure of L 2 (X) to L 2 ( S × S).

Let φ be an irreducible self-adjoint idempotent in A. We shall give an explicit formula for the φ o -component of φ.

Consider the decomposition of the space L 2 ( S) = ⊕ ℓ∈2N V ℓ , where V ℓ is the space of harmonic polynomials on R n , homogeneous of even degree ℓ.

Then the space L 2 ( S × S) decomposes into a direct sum of tensor products ⊕ ℓ,m∈2N V ℓ ⊗ Vm and consequently

L 2 K ( S × S) = ⊕ ℓ∈2N (V ℓ ⊗ Vℓ ) K
, where the sub(super-)script K means: "the K-invariants in".

Let dim V ℓ = d and f 1 , . . . , f d be an orthonormal basis of V ℓ . Then the function

θ ℓ (u, v) = d i=1 f i (u) fi (v), that is the reproducing kernel of V ℓ , is, up to a constant, the K-invariant element of V ℓ ⊗ Vℓ . Theorem 3.2. Let φ(u, v) = | u, v | n/2-iσ φ o (u, v
) be an irreducible self-adjoint idempotent in A. Then there exist complex numbers c(σ, ℓ) such that for any ℓ ∈ 2N one has

φ o (u, v) = c(σ, ℓ) θ ℓ (u, v).
For different ℓ and ℓ ′ the idempotents annihilate each other. Moreover they span A.

Proof. Firstly we shall show that θ ℓ satisfies the condition

θ ℓ # σ θ ℓ = a(σ, ℓ) θ ℓ
for some constant a(σ, ℓ). Indeed, Observe that θ ℓ (e 1 , x) θ ℓ (e 1 , e 1 ) is a spherical function on S with respect to M of the form

a ℓ C n-2 2 ℓ (|x 1 |) where C n-2 2 ℓ
(u) is a Gegenbauer polynomial and

a -1 ℓ = C n-2 2 ℓ (1) = 2 ℓ Γ( n-2 2 + ℓ) Γ( n-2
2 )ℓ! .

See for instance [START_REF] Ya | Special functions and the theory of group representations[END_REF], Chapter IX, §3. Notice that θ ℓ (e 1 , e 1 ) = dim

V ℓ = (n + ℓ -1)! (n -1)!ℓ! = 0.
The integral defining e ℓ (σ) does not converge absolutely, but has to be considered as the meromorphic extension of an analytic function. Poles only occur in half-integer points on the real axis. So we have to restrict (and we do) to σ = 0. So we have θ ℓ # σ θ ℓ = d(σ) e ℓ (σ) θ ℓ and hence

ϕ ℓ = [d(σ) e ℓ (σ)] -1 θ ℓ is the φ o -component of an idempotent in A. Furthermore θ ℓ # σ θ ℓ ′ = 0 if ℓ = ℓ ′ . Clearly ϕ ℓ is self-adjoint, since |d(σ)| -2 = |e ℓ (σ)| 2 ,
being equal to the constant c(σ) from Section 1.

So the ϕ ℓ are mutually orthogonal idempotents in the algebra L 2 K (( S × S); dsdt) and span this space. The theorem now follows easily.

Remark

The constant e ℓ (σ) can of course be computed. Apply e.g. [START_REF] Gradshteyn | Table of Integrals, Series and Products[END_REF], Section 7.31, we get, by meromorphic continuation:

e ℓ (σ) = a ℓ S C n-2 2 ℓ (|x 1 |) |x 1 | -n 2 -iσ dx = 2 a ℓ Γ( n 2 ) Γ( n-1 2 ) √ π 1 0 u -n 2 -iσ (1 -u 2 ) n-2 2 C n-2 2 ℓ (u) du = 2 -2ℓ Γ( n 2 ) √ π • Γ(n -2 + ℓ) Γ(n -2) • Γ( n-2 2 ) Γ( n-2 2 + ℓ) • Γ(-n 2 -iσ + 1)Γ( -n 2 -iσ-ℓ+1 2 ) Γ(-n 2 -iσ -ℓ + 1)Γ( n 2 -iσ+ℓ 2 
) .

4. The strucure of the Hilbert algebra L 2 (X)

We now turn to the full algebra L 2 (X). We again reduce the computations to L 2 ( S × S). In a similar way as for A we get:

Lemma 4.1. If φ o ∈ V ℓ ⊗ V m , ψ o ∈ V ℓ ′ ⊗ V ′ then φ o # σ ψ o = 0 if m = ℓ ′ in V ℓ ⊗ V m ′ if m = ℓ ′ .
More precisely we have the following result. Let (f i ), (g j ), (k l ) be orthonormal bases of V ℓ , V m and V m ′ respectively, and

φ o (u, v) = f i (u)g j (v), ψ o (u, v) = g j ′ (u)k l (v), then φ o # σ ψ o = 0 if j = j ′ d(σ) e m (σ) f i (u)k l (v) if j = j ′ .
The proof is again straightforward and uses the intertwining relation: S | x, y | -n/2-iσ g j ′ (y)dy = e m (σ) g j ′ (x).

Theorem 4.2. The irreducible self-adjoint idempotents of L 2 ( S × S) are given by e ℓ f (u, v) = {d(σ) e ℓ (σ)} -1 • f (u) f (v) with f ∈ V ℓ , f L 2 ( S) = 1 and ℓ even. The left ideal generated by e ℓ f is equal to L 2 ( S) ⊗ f . The proof is by application of Lemma (4.1)

Remarks

(1) The minimal right ideals are obtained in a similar way.

(2) The minimal two-sided ideal generated by L 2 ( S × S)•e ℓ f is the full algebra L 2 ( S × S).

(3) The closure of ℓ∈2N V ℓ ⊗ V ℓ is a H * -subalgebra of L 2 ( S × S). The minimal left ideals are here V ℓ ⊗ f (f ∈ V ℓ , f L 2 ( S) = 1); they are generated by the e ℓ f as above. The minimal two-sided ideal generated by V ℓ ⊗ f is equal to V ℓ ⊗ V ℓ .

The case of a general para-hermitian space

It is not necessary to assume rank X = 1 in order to show that A is commutative. Theorem 3.2 is also valid mutatis mutandis in the general case since (K, K ∩ H) is a Gelfand pair, and it clearly implies the commutativity of A. To the general construction of the product and the involution we shall return in another paper.

Theorem 3 . 1 .

 31 and therefore the map φ → φ o is an isomorphism. Under the isomorphism φ → φ o the product # σ translates into

  ℓ (u, x) θ ℓ (y, v) | x, y | -n 2 -iσ dxdy = d(σ) e ℓ (σ) S θ ℓ (u, y) θ ℓ (y, v) dy = d(σ) e ℓ (σ) θ ℓ (u, v)by the intertwining relation (apply A -n 2 +iσ to θ ℓ (., x)):S θ ℓ (u, x) | x, y | -n 2 -iσ dx = e ℓ (σ) θ ℓ (u, y)where e ℓ (σ) = S θ ℓ (e 1 , x) θ ℓ (e 1 , e 1 ) |x 1 | -n 2 -iσ dx.