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Abstract

This paper is devoted to the construction of continuous trace lifting operators compatible with

the de Rham complex on the reference hexahedral element (the unit cube). We consider three

trace operators: The standard one from H1, the tangential trace from H(curl) and the normal

trace from H(div). For each of them we construct a continuous right inverse by separation of

variables. More importantly, we consider the same trace operators acting from the polynomial

spaces forming the exact sequence corresponding to Nédélec’s hexahedron of the first type of

degree p. The core of the paper is the construction of polynomial trace liftings with operator

norms bounded independently of the polynomial degree p. This construction relies on a spec-

tral decomposition of the trace data using discrete Dirichlet and Neumann eigenvectors on the

unit interval, in combination with a result on interpolation between Sobolev norms in spaces

of polynomials.
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1 Introduction

Many Finite Element discretizations of Maxwell equations in three space dimensions rely on the

reproduction at the discrete level of the exact sequence

H1(Ω)
∇−→H(curl, Ω)

curl−→ H(div, Ω)
div−→ L2(Ω) (1.1)

General constructions of finite elements related to (1.1) are analyzed in [17], and a survey on

recent discoveries of deeper connections between finite element analysis and exact sequences can

be found in [2].
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In this paper, we address a central issue in connection with the discretization of (1.1) on an

hexahedral mesh by means of the polynomial spaces corresponding to Nédélec’s hexahedron of

the first type [20]. The discrete spaces corresponding to (1.1) are built from reference spaces

defined on the master hexahedron Ω = I × I × I with I = (−1, 1), forming the exact sequence,

Wp(Ω)
∇−→ Qp(Ω)

curl−→ V p(Ω)
div−→ Yp(Ω) (1.2)

Here p is any positive integer, Wp(Ω) = Pp(I) ⊗ Pp(I) ⊗ Pp(I), Yp(Ω) = Wp−1(Ω) and Qp(Ω),
V p(Ω) are suitably defined, see next section. Combined with suitable inter-element compatibility,

the exact polynomial sequence (1.2) mainly serves for p and hp versions of finite elements. In order

to ensure or control the inter-element compatibility, the trace operators and their right inverses play

an important role.

The present work is concerned with the construction of trace liftings at the continuous and

polynomial levels, satisfying uniform bounds independently of the degree p. At the continuous

level, the trace operators naturally associated with H1(Ω), H(curl, Ω) and H(div, Ω) are the

standard trace γ0, the tangential trace γt and the normal trace γn, respectively. The associated trace

spaces are H
1

2 (∂Ω), H− 1

2 (curl, ∂Ω) and H− 1

2 (∂Ω). It is easy to characterize these trace spaces on

a cube, see Section 2. For trace spaces defined on general polyhedra, we refer to the work of Buffa

and Ciarlet [7], and on general Lipschitz domains to the paper of Buffa, Costabel and Sheen [8].

At the polynomial level, the question is to find extension operators defined on polynomial

subspaces of these three trace spaces, which take their values in Wp(Ω), Qp(Ω) and V p(Ω), re-

spectively. The construction of such operators becomes a non-trivial task if we request the corre-

sponding norms to be bounded independently of the polynomial degree p. A more demanding task

would be to construct extension operators on the continuous spaces that are polynomial preserving,

see the work of Schoeberl, Gopalakrishnan and Demkowicz [22].

Existence of polynomial extension operators with p-independent bounds for the norms is a

crucial step in proving convergence for the p and hp Finite Element Methods. First H1-extension

operators were constructed by Babuška and Suri in two space dimensions in [4], for both triangular

and square elements. Their work was further expanded in [3] and applied to the construction of

preconditioners for the p-method. The 2D constructions remain an active area of research, see the

recent results of Ainsworth and Demkowicz [1], and Heuer and Leydecker [15]. Construction of

H(curl) extension operator in 2D follows immediately from the corresponding H1 operator. The

operator was utilized in deriving p-estimates for the H(curl)-conforming problems by Demkow-

icz and Babuška in [11].

Contrary to 2D constructions, very little has been done in three space dimensions. The only

published result, due to Munoz-Sola [19], deals with the construction of H1-operator for a tetra-

hedron. The incoming contribution of Schoeberl, Gopalakrishan and Demkowicz [22] presents an

alternative construction for the tetrahedron and all spaces forming the exact sequence.

Our construction of H1-, H(curl)- and H(div)-conforming, polynomial extension operators

for a cube mimics closely the corresponding definitions on the continuous level obtained by us-

ing the method of separation of variables, and has been stimulated by the work of Pavarino and

Widlund [21].
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By inspecting our constructions, it turns out all that the lifting operators can be characterized by

orthogonality properties or variational principles. One could have used these variational principles

to define the liftings. This simple procedure would, however, not have allowed us to obtain the

desired norm bounds independent of the polynomial degree p which we obtain from the explicit

constructions.

Organization of the paper

In Section 2 we give details of the function spaces which we use, at the continuous as well as at

the polynomial level. We define the trace operators. We also recall the Poincaré map. Section 3

deals with questions of continuous and polynomial extension in two dimensions. This serves as a

preparatory step for the 3D case. In Section 4, we address the lifting of traces in the continuous

spaces in three dimensions. In Sections 5 and 6 we construct polynomial trace liftings into H1(Ω)
and H(div, Ω), with the help of explicit formulae based on the separation of variables and expan-

sions in bases of discrete 1D Laplace eigenvectors. The Poincaré map then allows to derive from

the previous two liftings the construction of a lifting for H(curl, Ω) in Section 7. We emphasize

that the direct construction of such a lifting without the help of the Poincaré map would have been

a very difficult task. We conclude our paper in Section 8.

2 Sobolev and polynomial spaces

2.1 Sobolev spaces

We use Hörmander’s definitions for all considered Sobolev spaces, see e.g. [18]. The closure of

test functions C∞
0 (Ω) in Hs(Rn) is denoted by H̃s(Ω), and for s ≥ −1

2
can be identified with

distributions from Hs(Ω), see [18]. For Lipschitz domains, H̃s(Ω) and H−s(Ω) are dual to each

other, for any s ∈ R.

Moreover each scale
(
H̃s(Ω)

)
s∈R

and
(
Hs(Ω)

)
s∈R

is an interpolation scale.

For any s ≥ 0, the constant functions belong to Hs(Ω) and to H̃−s(Ω). Thus it makes sense to

denote by Hs
avg(Ω) and H̃−s

avg(Ω) the functions and distributions with zero average.

We will also use the tensor product form of these spaces, in particular on the square I × I =
(−1, 1)2. The space L2(I, Hs(I)) denotes the space of all L2-integrable functions on I with values

in the space Hs(I). As function space on I × I , this space is isomorphic, via an exchange of

independent variables, to the space Hs(I, L2(I)) of L2(I)-valued Hs functions on I . We will

sometimes indicate by indices the coordinates involved, so that we can write L2
(
Iy, H

s(Ix)
)

=

Hs
(
Ix, L

2(Iy)
)
. Analogous definitions are used with H̃s replacing Hs. For any s ≥ 0, there holds

Hs(I × I) = L2
(
I, Hs(I)

)
∩Hs

(
I, L2(I)

)
(2.1)

H−s(I × I) = L2
(
I, H−s(I)

)
+ H−s

(
I, L2(I)

)
(2.2)

and analogously for H̃±s spaces.
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2.2 Trace operators

We denote by γ0 the standard trace operator

γ0 : H1(Ω) −→ H
1

2 (∂Ω), U 7−→ u = U |∂Ω (2.3)

Here Ω is a Lipschitz 2D or 3D domain.

In 2D, the space H(curl, Ω) is defined as {E ∈ L2(Ω)2 : curl E ∈ L2(Ω)}, and, in 3D, as

H(curl, Ω) = {E ∈ L2(Ω)3 : curlE ∈ L2(Ω)3}

The tangential trace γt is well defined on H(curl, Ω) in 2D and H(curl, Ω) in 3D. In 2D, γt acts

continuously from H(curl, Ω) into H− 1

2 (∂Ω), and in 3D:

γt : H(curl, Ω) −→H− 1

2 (curl, ∂Ω), E 7−→ et =
(
E − (E · n)n

)
|∂Ω (2.4)

where n denotes the outward normal unit vector on boundary ∂Ω. The trace space H− 1

2 (curl, ∂Ω)

is the space of tangential fields e ∈ H− 1

2 (∂Ω) such that their surface curls curl e belong to

H− 1

2 (∂Ω).

The space H(div, Ω) is the space of vector fields H with components in L2(Ω) such that

div H ∈ L2(Ω). The normal trace γn is well defined on H(div, Ω). In 2D and 3D:

γn : H(div, Ω) −→ H− 1

2 (∂Ω), H 7−→ h = (H · n)|∂Ω (2.5)

All three trace operators γ0, γt and γn are surjective [7], and therefore there exist continuous

liftings between the spaces in (2.3), (2.4) and (2.5), respectively.

2.3 Tensor product polynomial spaces

Let I = (−1, 1) be the reference interval. For any integer p ∈ N we denote by Pp(I) the space of

polynomials of degree ≤ p on I . For p ≥ 2, let P
p
0(I) be the subspace of u ∈ Pp(I) which are zero

at ±1.

Let p, q, r ∈ N. We introduce the tensor product spaces

P
(p,q)(I2) = P

p(I)⊗ P
q(I) and P

(p,q,r)(I3) = P
p(I)⊗ P

q(I)⊗ P
r(I)

Let Ω be the reference square (−1, 1)2 in 2D or the reference cube (−1, 1)3 in 3D. The spaces

associated with H1(Ω) are

Wp(I
2) = P

(p,p)(I2) and Wp(I
3) = P

(p,p,p)(I3) (2.6)

The spaces associated with H(curl, Ω) and H(curl, Ω) are

Qp(I
2) = P

(p−1,p)(I2)× P
(p,p−1)(I2)

Qp(I
3) = P

(p−1,p,p)(I3)× P
(p,p−1,p)(I3)× P

(p,p,p−1)(I3)
(2.7)
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In 3D, the spaces associated with H(div, Ω) are

V p(I
3) = P

(p,p−1,p−1)(I3)× P
(p−1,p,p−1)(I3)× P

(p−1,p−1,p)(I3) (2.8)

Finally the spaces associated with L2(Ω) are Yp(Ω) = Wp−1(Ω).

Using these spaces, we have for all p ≥ 1 the following exact sequences

Wp(Ω)
∇−→ Qp(Ω)

curl−→ Yp(Ω) in 2D (2.9)

Wp(Ω)
∇−→ Qp(Ω)

curl−→ V p(Ω)
div−→ Yp(Ω) in 3D (2.10)

2.4 Polynomial traces

Let p ∈ N. In 2D, we denote by e1, . . . , e4 the edges of the square Ω = I2, see Fig. 1. We introduce

the following two trace spaces:

Wp(∂Ω) = {u ∈ H
1

2 (∂Ω) : u|ei
∈ P

p(ei), i = 1, . . . , 4}
Qp(∂Ω) = {e ∈ H− 1

2 (∂Ω) : e|ei
∈ P

p−1(ei), i = 1, . . . , 4}
(2.11)

Note that in Wp(∂Ω), the edge traces ui := u|ei
share common values at the corners, whereas in

Qp(∂Ω), the edge traces ei := e|ei
are independent of each other.

In 3D, we denote by f1, . . . , f6 the faces of the cube Ω = I3, see Fig. 2. We introduce the

following three trace spaces:

Wp(∂Ω) = {u ∈ H
1

2 (∂Ω) : u|fi ∈ P
(p,p)(fi), i = 1, . . . , 6}

Qp(∂Ω) = {e ∈H− 1

2 (curl, ∂Ω) : e|fi ∈ Qp(fi), i = 1, . . . , 6}
Vp(∂Ω) = {h ∈ H− 1

2 (∂Ω) : h|fi ∈ P
(p−1,p−1)(fi), i = 1, . . . , 6}

(2.12)

Note that

• In Wp(∂Ω), the face traces ui := u|fi share common values along the edges of the cube,

• In Qp(∂Ω), the face traces ei := e|fi share common values for their tangential traces along

the edges of the cube,

• In Vp(∂Ω), the face traces hi := h|fi are independent of each other.

We end this subsection by the introduction of the polynomial subspaces with zero trace,

Wp,0(Ω) = {U ∈Wp(Ω) : γ0U = 0} = Wp(Ω) ∩H1
0 (Ω)

Qp,0(Ω) = {E ∈ Qp(Ω) : γtE = 0} (2.13)
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2.5 Poincaré map

Recall the relevant Poincaré map in three space dimensions,

K : H(div, Ω)→H(curl, Ω), (KH)(x) = −x×
∫ 1

0

tH(tx) dt (2.14)

For a general definition of the Poincaré map in terms of differential forms in any space dimension,

we refer e.g. to [16] or [2]. Direct, elementary computations (see [14]) show that:

• the map is a right-inverse of the curl operator,

div H = 0 =⇒ curlKH = H (2.15)

• the map is continuous from H(div, Ω) into H(curl, Ω),

• the map preserves polynomials, i.e. it maps V p(Ω) into Qp(Ω).

Among other results, the map has been used in [11, 12] to prove that the constant in the discrete

Friedrichs’ inequality is independent of polynomial degree p.

3 Polynomial Extension Operators in 2D

In this section we work with the reference square Ω = I2.

Construction of the polynomial extension operators follows closely the corresponding con-

struction of extension operators on the continuous level by using separation of variables, and we

review the continuous case first.

3.1 Continuous extensions using separation of variables

We construct extensions on the continuous level for H1(Ω) and H(curl, Ω).

3.1.1 H1 extension operator

Consider u ∈ H
1

2 (∂Ω). The most natural, finite-energy lift of u is obtained by considering the

extension U ∈ H1(Ω) with minimum H1-seminorm. This means that U is the solution of the

Dirichlet problem for the homogeneous Laplace equation with boundary data u.

We can alternatively construct U through four successive steps involving each time one edge

only. We begin by considering restriction u3 ∈ H
1

2 (e3) of boundary data u to the third edge. The
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lift U3 of u3 is constructed by solving the mixed boundary-value problem for the Laplacian,





U ∈ H1(Ω)

−∆U = 0 in Ω

U = u3 on edge e3

U = 0 on edge e1

∂nU = 0 on edges e2, e4

(3.1)

Here ∂n is the outer normal derivative. Problem (3.1) is well-posed. Its solution can be represented

using the expansion of u3 in the basis of 1D Neumann eigenvectors: Let (Ψn, µn), n = 0, 1, . . .
denote the Neumann eigenpairs for the 1D Laplacian

−Ψ′′
n = µnΨn, Ψ′

n(−1) = 0, Ψ′
n(1) = 0 (3.2)

Eigenvectors are orthogonal in both L2 and H1-products, and we assume that Ψn has a unit L2-

norm. We write the expansion of u3 as

u3 =
∞∑

n=0

unΨn(x) with un =

∫

e3

u(x)Ψn(x) dx. (3.3)

Then we find that U = U3 is given by

U3(x, y) =

∞∑

n=0

unΨn(x)βµ
n(y) (3.4)

where the corresponding functions β = βµ
n are found by solving the two-point Dirichlet boundary-

value problem,

− β ′′ + µnβ = 0, β(−1) = 0, β(1) = 1 (3.5)

We can check that for u3 ∈ H
1

2 (e3), the solution lives in H1(Ω).

Lift U3 of boundary data u3 vanishes on the first edge but it does not vanish on the vertical

edges. Notice that the use of Neumann boundary conditions on vertical edges is essential. Solution

of a problem with homogeneous Dirichlet conditions replacing the Neumann conditions involves,

in general, discontinuous Dirichlet data and, therefore, may not live in H1(Ω).

We proceed now in a fully analogous way with the first edge and construct lift U1 of restriction

u1 = u|e1 of the boundary data to the first edge.

Next, we subtract from function u traces of lifts U3 and U1,

v = u− U1|∂Ω − U3|∂Ω (3.6)

Function v ∈ H
1

2 (∂Ω) depends continuously upon the original data u and vanishes on the first and

on the third edges. Consequently, its restrictions v2, v4 to the second and the fourth edge live in

H̃
1

2 (I) with the norm bounded by the H
1

2 -norm of the original data u.
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The fact that the boundary data vanishes at end points in a weak sense allows now for consider-

ing problems with pure Dirichlet boundary conditions. Lift U = U2 of v2 is determined by solving

the boundary-value problem,





U ∈ H1(Ω)

−∆U = 0 in Ω

U = v2 on edge e2

U = 0 on edges e1, e3, e4

(3.7)

Its solution U2 can be represented in terms of 1D Dirichlet eigenpairs (Φn, λn), n = 1, 2, . . .

− Φ′′
n = λnΦn, Φn(−1) = Φn(1) = 0 (3.8)

and of the corresponding solutions β = βλ
n of the two-point boundary value problem,

− β ′′ + λnβ = 0 β(−1) = 0, β(1) = 1 (3.9)

U2 is given by the formula,

U2(x, y) =
∞∑

n=1

vnβλ
n(x)Φn(y), un =

∫

e2

v2Φn dy (3.10)

Lift U4 is determined in a fully analogous way. The final H1-extension is computed by sum-

ming up the four lifts from the individual edges,

U =
4∑

j=1

Uj (3.11)

Finally, we record the formulas for the Neumann and Dirichlet eigenpairs,

Ψ0 =
1√
2
, µ0 = 0, Ψn = cos

(nπ

2
(x + 1)

)
, µn =

n2π2

4
, n = 1, 2, . . .

Φn = sin
(nπ

2
(x + 1)

)
, λn =

n2π2

4
, n = 1, 2, . . .

(3.12)

Notice that (except for the first Neumann eigenpair) the Neumann and Dirichlet eigenvalues are

equal and we have a simple relation,

Φn = −µ
− 1

2

n Ψ′
n, Ψn = λ

− 1

2

n Φ′
n (3.13)

Function βµ
0 is simply linear and the remaining functions βµ

n , βλ
n are expressed in terms of expo-

nentials.

Remark 3.1 The global and elementwise constructions of U result in the same trace lifting,

which is the only harmonic H1(Ω) function satisfying the trace condition γ0U = u. This defines

the lift operator L0. �
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3.1.2 H(curl) extension operator

In 2D, the construction of the H(curl)-extension operator can be reduced to the use of the H1-

extension operator. Given a distribution et ∈ H− 1

2 (∂Ω), we compute first its average,

e0 = 〈et, 1〉/8 (3.14)

Next, we utilize the isomorphism,

∂t : H
1

2

avg(∂Ω)→ H
− 1

2

avg(∂Ω) (3.15)

and introduce the trace potential u ∈ H
1

2

avg(∂Ω) such that,

∂tu = et − e0 (3.16)

Here ∂t is the derivative along the tangential unit vector field t such that (n, t) is direct. The

H(curl)-extension is now constructed as follows,

E = ∇U + E0 (3.17)

where U is the H1-extension of the trace potential u, and E0 ∈ Q1(Ω) is e.g. the extension of the

constant trace e0 expressed in terms of the lowest order Nédélec shape functions. As a consequence

of the construction above we obtain the estimates

‖E‖H(curl,Ω) ≤ C
(
‖U‖H1(Ω) + ‖E0‖H(curl,Ω)

)

≤ C
(
‖u‖

H
1
2 (∂Ω)

+ ‖e0‖
H

−

1
2 (∂Ω)

)
≤ C‖et‖

H
−

1
2 (∂Ω)

(3.18)

Our alternative edge-wise construction relies on the fact that the average value need not be

evaluated over the whole boundary. This reveals nicely the difference between spaces H− 1

2 (I) and

H̃− 1

2 (I). We can consider the restriction of et to the third edge. Utilizing the isomorphism,

∂ : H
1

2

avg(I)→ H− 1

2 (I) (3.19)

we introduce the corresponding potential u3 ∈ H
1

2

avg(e3) such that ∂tu3 = et|e3 . The corresponding

lift from the edge is defined by taking the gradient of the lift of the potential,

E3 = ∇U3 (3.20)

Notice that we cannot take the average of functionals from H− 1

2 (I). In the same way, we construct

lift E1. Upon subtracting traces of the lifts from the first and third edges,

ft = et − γt(E1 + E3) (3.21)

we learn that the corresponding restrictions live in smaller spaces H̃− 1

2 (I), for which the computa-

tion of the average value is now possible. This can be seen by recalling that space H̃− 1

2 (I) is dual
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of space H
1

2 (I) which includes the unit function. Construction of the lift from the second edge is

now done similarly to the global construction. Utilizing the isomorphism,

∂ : H̃
1

2 (I)→ H̃
− 1

2

avg(I) (3.22)

we represent the boundary data as,

ft|e2 = ∂t v2 + f2,0 (3.23)

where f2,0 denotes the average value. We construct then the lift by taking,

E2 = ∇U2 + E2,0 (3.24)

where E0,2 ∈ Q1(Ω) is obtained with the lowest order Nédélec shape function corresponding to

the second edge. In the same way, we lift ft|e4 and define the final lift by summing up the four

edge contributions,

E =
4∑

j=1

Ej (3.25)

Remark 3.2 Here again, the “global” and “local” constructions result in the same extension

operator Lt which, moreover, is divergence free: Whatever the construction, we find an extension

in the form E = ∇U + E0 where U ∈ H1(Ω) is harmonic and E0 ∈ Q1(Ω). Since all elements

of Q1(Ω) are divergence free, we find div E = 0. Let us prove that such an extension of the zero

tangential trace et = 0 is zero: Since

∫

Ω

curl E dx dy =

∫

∂Ω

et dt = 0

we find that the average of curl E0 on Ω is zero. Since curl E0 is a constant, it is zero. Using

the exact sequence (1.1) we obtain U0 ∈ H1(Ω) such that E0 = ∇U0, and we find that E =
∇(U + U0). Since div E = 0, we find that ∆(U + U0) = 0. Since, moreover, γt∇(U + U0) = 0,

we finally deduce that U + U0 is constant, hence E is zero. �

Conclusions in 2D continuous case. The lift operators L0 and Lt satisfy the following exact

sequence and commuting diagram properties,

H1(Ω)
∇−→ H(curl, Ω)

curl−→ L2(Ω)

γ0

y
xL0 γt

y
xLt

γavg

y
xLavg

H
1

2 (∂Ω)
∂−→ H− 1

2 (∂Ω)
γavg−→ R

(3.26)

Here, γavg is the averaging operator, and Lavg is its lifting by a constant function.

The operator L0 is uniquely determined by the condition that ∆◦L0 = 0, and Lt by the conditions

that div ◦ Lt is zero and that curl ◦ Lt takes its values in R. �
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3.2 Special families of 1D polynomials

We shall mimic now the continuous construction on the discrete level. We begin by defining a

number of polynomial families defined on the master interval I = (−1, 1), with p ≥ 1 denoting a

polynomial degree.

Function φ
(p)
0 will denote the minimum L2-norm extension of 0 and 1 values at the interval

endpoints in the space of polynomials of order less or equal p.

Lemma 3.3 Let φ
(p)
0 ∈ Pp(I) satisfy φ

(p)
0 (−1) = 0 and φ

(p)
0 (1) = 1, with minimum norm in

L2(I). There holds

‖φ(p)
0 ‖2L2(I) =

2

p(p + 2)
(3.27)

Proof: See [21, Lemma 1]. �

Next we introduce the discrete Dirichlet eigenpairs,





Φi ∈ P
p
0(I)∫

I

Φ′
iv

′ = λ
(p)
i

∫

I

Φiv, ∀v ∈ P
p
0(I)

i = 2, . . . , p

(3.28)

and the discrete Neumann eigenpairs,





Ψi ∈ P
p(I)∫

I

Ψ′
iv

′ = µ
(p)
i

∫

I

Ψiv, ∀v ∈ P
p(I)

i = 0, . . . , p

(3.29)

Obviously both eigenvalues and the corresponding eigenvectors depend upon the polynomial de-

gree p, λi = λ
(p)
i , Φi = Φ

(p)
i , µi = µ

(p)
i , Ψi = Ψ

(p)
i . We shall assume that all discrete eigenvectors

have been normalized to have a unit L2-norm,

‖Φi‖L2(I) = 1, ‖Ψi‖L2(I) = 1 (3.30)

Notice that the first Neumann eigenvalue µ
(p)
0 = 0, independently of p. For each of the discrete

Dirichlet and Neumann eigenvalues, we introduce the following solution of the associated discrete

1D boundary-value problem, comp. Section 3.1.





βλ
i ∈ P

p(I), βλ
i (−1) = 0, βλ

i (1) = 1∫

I

(βλ
i )′v′ + λ

(p)
i

∫

I

βλ
i v = 0 ∀v ∈ P

p
0(I)

i = 2, . . . , p





βµ
i ∈ P

p(I), βµ
i (−1) = 0, βµ

i (1) = 1∫

I

(βµ
i )′v′ + µ

(p)
i

∫

I

βµ
i v = 0 ∀v ∈ P

p
0(I)

i = 0, . . . , p
(3.31)

Notice that function βµ
0 , corresponding to the zero Neumann eigenvalue, is linear for all values of

p.
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Lemma 3.4 There holds the inverse inequality

|f |2H1(I) ≤
(p + 1)4

2
‖f‖2L2(I), ∀f ∈ P

p(I) (3.32)

Proof: See [5]. �

Lemma 3.5 There exists constant C > 0, independent of p, such that,

|βλ
i |2H1(I) + λ

(p)
i ‖βλ

i |2L2(I) ≤ C (λ
(p)
i )

1

2 , i = 2, . . . , p

|βµ
i |2H1(I) + µ

(p)
i ‖βµ

i |2L2(I) ≤ C (µ
(p)
i )

1

2 , i = 1, . . . , p
(3.33)

Proof: For a completeness, we shall reproduce the reasoning from [21] and prove the second

inequality. The proof of the first inequality is fully analogous. Let i ≥ 1.

• It follows from the definition (3.31) that,

|βµ
i |2H1(I) + µ

(p)
i ‖βµ

i ‖2L2(I) ≤ |σ|2H1(I) + µ
(p)
i ‖σ‖2L2(I)

∀σ ∈ P
p(I) : σ(−1) = 0, σ(1) = 1

(3.34)

• Next, we have,

µ
(p)
i =

∫

I

|Ψ′
i|2 set v = Ψ in the definition of Ψi

≤ (p + 1)4

2
Lemma 3.4

(3.35)

• Since i ≥ 1, the discrete eigenvalue µ
(p)
i is larger than µi which is in turn, larger than π2

4
> 1

2
.

Thus we deduce from (3.35) that there exists an integer q, 1 ≤ q ≤ p such that,

q4

2
≤ µ

(p)
i ≤

(q + 1)4

2
(3.36)

Select now σ = φ
(q)
0 with φ

(q)
0 defined in Lemma 3.3. We have,

|φ(q)
0 |2H1(I) + µ

(p)
i ‖φ

(q)
0 ‖2L2(I) ≤ (q + 1)4 ‖φ(q)

0 ‖2L2(I) Lemma 3.4

≤ 12q2 Lemma 3.3
(3.37)

• Substituting into (3.34),

|βµ
i |2H1(I) + µ

(p)
i ‖βµ

i ‖2L2(I) ≤ 12q2 ≤ 12
√

2 (µ
(p)
i )

1

2 (3.38)

Notice however that the inequality (3.33)2 does not hold for index i = 0, as the first Neumann

eigenvalue is equal zero. �
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3.3 Construction of the polynomial H1 extension operator

We shall consider the master square Ω shown in Fig. 1, p.14. Let u belong to the trace space

Wp(∂Ω), cf (2.11)1.

Step 1: Lifting from a horizontal edge. We shall consider first the third edge e3. Let u3 = u
be the restriction of u to e3. Then u(x) ∈ Pp(e3), and we expand it into the discrete Neumann

eigenvalues,

u(x) =

p∑

j=0

ujΨj(x), uj =

∫

I

uΨj (3.39)

and define its polynomial extension as,

U(x, y) :=

p∑

j=0

ujΨj(x)βµ
j (y) (3.40)

A straightforward evaluation of the H1-norm follows.

∫

Ω

|∇U |2 =

p∑

i=0

p∑

j=0

uiūj

(∫

I

Ψ′
iΨ

′
j

∫

I

βµ
i βµ

j +

∫

I

ΨiΨj

∫

I

(βµ
i )′(βµ

j )′
)

=

p∑

j=0

|uj|2
(
µ

(p)
j ‖βµ

j ‖2L2(I) + |βµ
j |2H1(I)

)
definition of Ψj

≤ |u0|2 + C

p∑

j=1

|uj|2(µ(p)
j )

1

2 Lemma 3.5

∫

Ω

|U |2 =

p∑

j=0

|uj|2‖βµ
j ‖2L2(I)

≤ C

p∑

j=0

|uj|2

(3.41)

Consequently,

‖U‖2H1(Ω) ≤ C

p∑

j=0

|uj|2
(
1 + (µ

(p)
j )

1

2

)
(3.42)

Clearly, the right-hand side of (3.42) is the fractional 1
2
- norm for the polynomial space P

p(I)
obtained by the standard interpolation argument applied to the L2- and the H1-norms and the

space of polynomials. The following theorem of Bernardi, Dauge, and Maday provides the key

argument for our result.

Proposition 3.6 There exists a constant C > 0, independent of polynomial degree p, such that,

‖u‖2
H

1
2 (I)
≤

p∑

j=0

|uj|2
(
1 + (µ

(p)
j )

1

2

)
≤ C‖u‖2

H
1
2 (I)

(3.43)
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e1

e2

e3

e4
x

y

Figure 1: Master square element. Enumeration of edges. The first and third edges are parametrized

with x, and the second and fourth edges are parametrized with y.

for every polynomial u ∈ Pp(I), where uj =
∫

I
u Ψ

(p)
j .

Proof: See [6, Ch II, Thm 4.2]. �

Consequently, the H1 norm of the lift U = U3 given by (3.40) is bounded by the H
1

2 (e3)-norm

of trace u = u3 which, in turn, is bounded by the global norm of the trace u on the whole boundary.

Notice that, by construction, the lift U3 has a zero trace on the lower edge e1. Repeating thus exactly

the same construction for the first edge, we obtain a lift U1 of the trace u1. The polynomial trace

v = u− γ0(U1 + U3) (3.44)

vanishes along the horizontal edges and, consequently, has zero vertex values.

Step 2: Lifting from a vertical edge. We consider now the function v given by (3.44). Its restric-

tions v2 and v4 to either of the two vertical edges are now bounded in the H̃
1

2 -norm,

‖vi‖ eH
1
2 (ei)
≤ C‖u‖

H
1
2 (∂Ω)

, i = 2, 4 (3.45)

Consider the second edge and expand function v2 now in terms of the discrete Dirichlet eigenvec-

tors,

v2(y) =

p∑

j=2

vjΦj(y), vj =

∫

I

vΦj (3.46)

The extension U = U2 to the square element is now defined as follows,

U(y) =

p∑

j=2

vjβ
λ
j (x)Φj(y) (3.47)

By exactly the same arguments as in the previous paragraph, we show that,

‖U‖2H1(Ω) ≤ C

p∑

j=2

|vj|2
(
1 + (λ

(p)
j )

1

2

)
(3.48)
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The discrete norm on the right-hand side of (3.48) turns out to be equivalent to the continuous

H̃
1

2 -norm.

Proposition 3.7 There exists a constant C > 0, independent of polynomial degree p, such that,

‖v‖2
eH

1
2 (I)
≤

p∑

j=2

|vj |2
(
1 + (λ

(p)
j )

1

2

)
≤ C‖v‖2

eH
1
2 (I)

(3.49)

for every polynomial v ∈ P
p
0(I), where uj =

∫
I
u Φ

(p)
j .

Proof: See [6, Ch II, Thm 4.6]. �

Notice that the lift does not alter the trace on the remaining edges. Let U4 denote the analogous

lift from vertical edge e4. We have proved,

THEOREM 3.8 The operator,

L(p)
0 : Wp(∂Ω) ∋ u 7−→ U :=

4∑

j=1

Uj ∈Wp(Ω) (3.50)

defines a polynomial lift of traces. Its norm from H
1

2 (∂Ω) into H1(Ω) is independent of degree p.

Remark 3.9 We can see that for any u ∈ Wp(∂Ω), the lift L(p)
0 u coincides with the solution

U ∈Wp(Ω) of the discrete Dirichlet problem

γ0U = u and

∫

Ω

∇U ·∇V = 0 ∀V ∈Wp,0(Ω) (3.51)

Thus, despite its non-symmetric construction, L(p)
0 is canonical. �

3.4 Construction of the polynomial H(curl) extension operator

Let p ≥ 1 be an integer and let et be an element of Qp(∂Ω), cf (2.11)2. Using the construction

in the continuous case first, we obtain an extension in H(curl, Ω) in the form E = ∇U + E0

with harmonic U ∈ H1(Ω) and E0 ∈ Q1(Ω). We define our polynomial extension L(p)
t

et by the

formula

L(p)
t

et = ∇
(
L(p)

0 u
)

+ E0, with u = γ0U ∈Wp(∂Ω) (3.52)

Indeed we check that

γt L(p)
t

et = γt∇(L(p)
0 u) + γtE0

= ∂t(L(p)
0 u)|∂Ω + γtE0

= ∂tu + γtE0 = et
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Let us prove furthermore that definition (3.52) is independent of the way that E is split into ∇U +
E0 with harmonic U ∈ H1(Ω) and E0 ∈ Q1(Ω): Let us consider two such representations of E

E = ∇U + E0 = ∇U ′ + E′
0, with harmonic U, U ′ ∈ H1(Ω) and E0, E′

0 ∈ Q1(Ω).

Therefore ∇(U − U ′) = E′
0 − E0. Using the exact sequence (2.9), we find that E′

0 − E0 =
∇U0 with a (harmonic) U0 ∈ W1(Ω). We deduce that, after the possible addition of a constant,

U − U ′ = U0. Hence

∇L(p)
0 γ0(U − U ′) = ∇L(p)

0 γ0U0.

Since U0 is a harmonic element of W1(Ω) ⊂Wp(Ω), it satisfies

L(p)
0 γ0U0 = U0.

Finally

∇L(p)
0 γ0(U − U ′) = ∇U0 = E′

0 −E0,

which proves the independence of L(p)
t

et of the representation of E.

THEOREM 3.10 The operator,

L(p)
t

: Qp(∂Ω) ∋ et 7−→ E = ∇
(
L(p)

0 u
)

+ E0 ∈ Qp(Ω) (3.53)

defines a polynomial lift of tangential traces. Its norm from H− 1

2 (∂Ω) into H(curl, Ω) is bounded

independently of degree p.

Proof: The definition of L(p)
t

and the fact that it lifts tangential traces are clear from the consid-

erations above. The uniform boundedness with respect to p is a consequence of estimates (3.18)

for the extension in the continuous case, and of the uniform boundedness of the scalar extensions

L(p)
0 (Theorem 3.8). �

Conclusions in 2D polynomial case. With p ≥ 1 any integer, the lift operators L(p)
0 and L(p)

t

satisfy the following exact sequence and commuting diagram properties, reproducing those of the

continuous case:

Wp(Ω)
∇−→ Qp(Ω)

curl−→ Yp(Ω)

γ0

y
xL(p)

0
γt

y
xL(p)

t

γavg

y
xLavg

Wp(∂Ω)
∂−→ Qp(∂Ω)

γavg−→ R

(3.54)

Here, γavg is the averaging operator, and Lavg is its lifting by a constant function.

The operator L(p)
0 is uniquely determined by the extra condition of orthogonality (3.51), and L(p)

t

by ∫

Ω

E ·∇V = 0 ∀V ∈Wp,0(Ω) and curl E ∈ R (3.55)

for E = L(p)
t

et with et any element of Qp(∂Ω). �
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4 3D Extension Operators on the Continuous Level

As in 2D, we will discuss first the construction of the extension operators on the continuous level.

4.1 H1 extension operator

The procedure is fully analogous to its 2D counterpart. Let Ω denote the master hexahedron shown

in Fig.2. We begin with the top face f2. Let u2 ∈ H
1

2 (f2) denote the restriction of the boundary

data u ∈ H
1

2 (∂Ω) to face f2. The corresponding lift U2 is constructed by solving the following

mixed boundary-value problem for the Laplacian.





U ∈ H1(Ω)

−∆U = 0 in Ω

U = u2 on face f2

U = 0 on face f1

∂nU = 0 on faces f3, f4, f5, f6

(4.1)

Separation of variables leads to two Neumann eigenvalue problems in terms of x and y coordinates,

and a two-point Dirichlet boundary-value problem in terms of coordinate z,

− β ′′ + (µn + µm)β = 0, β(−1) = 0, β(1) = 1 (4.2)

Functions β = βµµ
nm, n, m = 0, 1, . . . depend upon pairs of Neumann eigenvalues µn, µm. The

solution U = U2 reads as follows,

U2(x, y, z) =
∞∑

n=0

∞∑

m=0

unmΨn(x)Ψm(y)βµµ
nm(z), unm =

∫

f2

u2(x, y)Ψn(x)Ψm(y) dxdy (4.3)

In the same way we lift from the bottom face f2. We subtract then the traces of lifts U1, U2 from

the original boundary data,

v = u− (U1 + U2)|∂Ω (4.4)

Next, we construct the lifts from the pair of vertical faces f3, f5. The key point is that, after the

subtraction of the first two lifts, function v vanishes over the horizontal faces. Its restriction v5 to

face f5 lives in space H
1

2 (Ix, L
2(Iz)) ∩ L2(Ix, H̃

1

2 (Iz)) with the norm controlled by the H
1

2 norm

of the original data. Consequently, we can impose homogeneous Dirichlet boundary conditions on

faces f1, f2. Lift U = U5 is defined as the solution of the problem,





U ∈ H1(Ω)

−∆U = 0 in Ω

U = v5 on face f5

U = 0 on faces f1, f2, f3

∂nU = 0 on faces f4, f6

(4.5)
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Separation of variables leads now to Neumann eigenvalue problem in the x-coordinate and Dirich-

let eigenvalue problem in the z-direction. We need to define a new family of solutions β = βµλ
nm to

the two-point boundary-value problem,

− β ′′ + (µn + λm)β = 0, β(−1) = 0, β(1) = 1 (4.6)

The solution U = U5 reads as follows,

U5(x, y, z) =
∞∑

n=0

∞∑

m=1

unmΨn(x)βµλ
nm(y)Φm(z), unm =

∫

f5

v5(x, y)Ψn(x)Φm(z) dxdz (4.7)

In the same way we construct lift U3. Upon subtracting lifts U3, U5, the modified boundary data

vanishes over faces f1, f2, f3, f5,

w = u− (U1 + U2 + U3 + U5)|∂Ω (4.8)

Consequently, the traces w4 and w2 of function w on the remaining vertical faces f4, f6 lives in

space H̃
1

2 (I2). We determine lift U = U4 by solving a Dirichlet problem for the Laplacian,





U ∈ H1(Ω)

−∆U = 0 in Ω

U = w4 on face f4

U = 0 on faces f1, f2, f3, f5, f6

(4.9)

The solution depends continuously on ‖w4‖ eH
1
2 (f4)

which, in turn, is bounded by the H
1

2 (∂Ω)-norm

of the original data. Lift U4 is expressed in terms of Dirichlet eigenfunctions,

U4(x, y, z) =

∞∑

n=1

∞∑

j=1

unmβλλ
nm(x)Φn(y)Φm(z), unm =

∫

f4

v4(y, z)Φn(y)Φm(z) dydz (4.10)

and solutions β = βλλ
nm to the two-point boundary-value problem,

− β ′′ + (λn + λm)β = 0, β(−1) = 0, β(1) = 1 (4.11)

In the same way we construct the lift from face f6. The final extension is constructed by summing

up the six individual face lifts,

U =

6∑

j=1

Uj (4.12)

Remark 4.1 As in 2D this local construction coincides with the global extension operator L0

defined as the Dirichlet harmonic extension. �
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4.2 H(div) extension operator

We shall continue now from the other end of the exact sequence. Given a function h ∈ H− 1

2 (∂Ω),
we will construct an extension H ∈ H(div, Ω) such that γnH = h. As in the previous cases, we

will work with one face at a time. We first consider restriction h2 = h|f2 ∈ H− 1

2 (f2) and solve and

auxiliary mixed problem for the Laplace operator,





U ∈ H1(Ω)

−∆U = 0 in Ω

∂nU = h2 on face f2

∂nU = 0 on face f1

U = 0 on faces f3, f4, f5, f6

(4.13)

Notice that, due to the presence of Dirichlet boundary conditions, Neumann data h2 need not satisfy

any compatibility conditions. The lift from face f2 is now set to the gradient of function U = U2,

H2 = ∇U2 (4.14)

As U2 is harmonic, lift H2 is divergence-free, and its L2 norm, equal to the H1-seminorm of U2, is

bounded by the H− 1

2 -norm of data h2. Moreover U2 can be computed using separation of variables,

U2(x, y, z) =

∞∑

n=1

∞∑

m=1

hnmΦn(x)Φm(y)γλλ
nm(z), hnm =

∫

f2

h2(x, y)Φn(x)Φm(y) dxdy (4.15)

where γ = γλλ
nm are solutions to two-point boundary-value problems with Neumann boundary

conditions,

− γ′′ + (λn + λm)γ = 0, γ′(−1) = 0, γ′(1) = 1 (4.16)

Extension H1 from face f1 is constructed in the same way.

Next, we subtract from the original data h, the normal traces of the first two face extensions,

g = h− γn(H1 + H2) (4.17)

and proceed in the same way as for the H1-extensions. Extension H5 is constructed by taking the

gradient of solution U to the problem,





U ∈ H1(Ω)

−∆U = 0 in Ω

∂nU = g5 on face f5

∂nU = 0 on face f1, f2, f3

U = 0 on faces f4, f6

(4.18)

Here g5 is in space H− 1

2 (Ix, L
2(Iz)) + L2(Ix, H̃

− 1

2 (Iz)), with the corresponding norm controlled

by the H− 1

2 (∂Ω)-norm of the original data h. Solution U = U5 is obtained using the separation of
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variables,

U5(x, y, z) =

∞∑

n=0

∞∑

m=1

gnmΦn(x)γλµ
nm(y)Ψm(z), gnm =

∫

f5

g5(x, y)Φn(x)Ψm(z) dxdz (4.19)

where γ = γλµ
nm are solutions to two-point boundary-value problems with Neumann boundary

conditions,

− γ′′ + (λn + µm)γ = 0, γ′(−1) = 0, γ′(1) = 1 (4.20)

In the same way we construct lift H3. We subtract then from the original data h normal traces of

the four face extensions,

f = h− γn(H1 + H2 + H3 + H5) (4.21)

Functional f vanishes over faces f1, f2, f3, f5. Consequently, its restriction f 4 to face f4 lives in

space H̃− 1

2 (I2) with the corresponding norm bounded by the H− 1

2 (∂Ω)-norm of the original data

h. For functionals in H̃− 1

2 (I2), we can compute their average values. Let f4,0 be the average of f 4,

f4,0 = 〈f 4, 1〉/4 (4.22)

We solve now a pure Neumann problem for U = U4,





U ∈ H1(Ω)

−∆U = 0 in Ω

∂nU = f 4 − f4,0 on face f4

∂nU = 0 on faces f1, f2, f3, f5, f6

(4.23)

and construct the corresponding face extension as,

H4 = ∇U4 + H4,0 (4.24)

where H4,0 ∈ V 1(Ω) is obtained with the lowest order Raviart-Thomas shape function for face f4.

Function U = U4 is computed using separation of variables,

U4(x, y, z) =
∞∑

n=0

∞∑

m=0

fnmγµµ
nm(x)Ψn(y)Ψm(z), fnm =

∫

f4

(f 4(x, y)− f4,0)Ψn(y)Ψm(z) dxdz

(4.25)

where γ = γµµ
nm are solutions to two-point boundary-value problems with Neumann boundary

conditions,

− γ′′ + (µn + µm)γ = 0, γ′(−1) = 0, γ′(1) = 1 (4.26)

In the same way we construct lift H6. The final extension, obtained by summing up the six face

lifts,

H =

6∑

j=1

Hj (4.27)

is bounded in H(div, Ω)-norm by the H− 1

2 (∂Ω)-norm of data h.
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We finish this section by recording relations between functions β and γ,

βλλ
nm =

(
γλλ

nm

)′
βλµ

nm =
(
γλµ

nm

)′
βµµ

nm =
(
γµµ

nm

)′

γλλ
nm =

1

λn + λm

(
βλλ

nm

)′
γλµ

nm =
1

λn + µm

(
βλµ

nm

)′
γµµ

nm =
1

µn + µm

(
βµµ

nm

)′ (4.28)

Remark 4.2 This local construction results in fact in a global extension operator Ln which,

moreover, is curl free and with constant divergence: Whatever the construction, we find an exten-

sion in the form H = ∇U + H0 where U ∈ H1(Ω) is harmonic and H0 ∈ V 1(Ω). Since all

elements of V 1(Ω) are curl free, we find curlH = 0. Let us prove that such an extension of the

zero normal trace h = 0 is zero: Since
∫

Ω

div H dx dy =

∫

∂Ω

h dS = 0

we find that the average of div H0 on Ω is zero. Since div H0 is a constant, it is zero, hence

div H = 0. Using the identity curlH0 = 0 with the exact sequence (1.1) we obtain U0 ∈ H1(Ω)
such that H0 = ∇U0, and we find that H = ∇(U + U0). Since div H = 0, we find that

∆(U + U0) = 0. Since, moreover, γn∇(U + U0) = 0, we finally deduce that U + U0 is constant,

hence H is zero. �

4.3 H(curl) extension operator

Given a boundary data et ∈ H− 1

2 (curl, ∂Ω), we set to construct an extension E = Ltet ∈
H(curl, Ω) such that γtE = et and,

‖E‖H(curl,Ω) ≤ C‖et‖
H

−

1
2 (curl,∂Ω)

(4.29)

with constant C independent of functional et.

We will construct the operator so that we have a commuting diagram property like in 2D. For

this we use the Poincaré map K, see §2.5. We take the surface curl of the boundary data,

h = curl∂Ωet (4.30)

and consider the corresponding H(div)-extension H = Lnh ∈ H(div, Ω). Since the average of

h on ∂Ω is zero, the divergence of H = Lnh is zero.

We then use the Poincaré map K, to pull function H back into space H(curl, Ω),

E0 = KH (4.31)

It follows from the continuity of map K that E0 is bounded in the H(curl, Ω)-norm by the

H(div, Ω)-norm of H and, in turn, by the H− 1

2 (curl, ∂Ω)-norm of data et. Since div H = 0, by

the fundamental property (2.15) of the Poincaré map we find curlE0 = H and, hence

curl γtE0 = γn curlE0 = γnH = h (4.32)
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After subtracting from et the tangential trace of E0,

f t = et − γtE0 (4.33)

the resulting functional f t has zero surface curl and it can be identified as the surface gradient of a

potential u ∈ H
1

2

avg(∂Ω),
f t = ∇∂Ωu (4.34)

The potential u can now be extended to U ∈ H1(Ω) using the H1-extension operator L0, and the

final H(curl)-extension is defined by summing up the two contributions,

E = ∇U + KH (4.35)

Remark 4.3 The use of the Poincaré map K introduces a “non-canonical” element into this

construction. We can get a canonical construction by replacing E0 = KH in (4.31) by Ẽ0 defined

by

Ẽ0 = KH + ∇U0 with U0 ∈ H1
0 (Ω) such that ‖Ẽ0‖L2(Ω) is minimal. (4.36)

The H(curl, Ω) norm of Ẽ0 is not larger than the one of E0, and the lift Ẽ constructed in this way

satisfies the orthogonality conditions
∫

Ω

curl Ẽ · curlF = 0 ∀F ∈H0(curl, Ω) and

∫

Ω

Ẽ ·∇V = 0 ∀V ∈ H1
0 (Ω) (4.37)

It is easy to see that these two orthogonality relations determine Ẽ uniquely. �

Conclusions in 3D continuous case. The lift operators L0, Lt and Ln satisfy the following exact

sequence and commuting diagram properties,

H1(Ω)
∇−→ H(curl, Ω)

curl−→←−
K

H(div, Ω)
div−→ L2(Ω)

γ0

y
xL0 γt

y
xLt

γn

y
xLn

γavg

y
xLavg

H
1

2 (∂Ω)
∇−→ H− 1

2 (curl, ∂Ω)
curl−→ H− 1

2 (∂Ω)
γavg−→ R

(4.38)

The operator L0 is uniquely determined by the condition that ∆ ◦ L0 is zero, and Ln by the condi-

tions that curl ◦ Ln is zero and that div ◦ Ln takes its values in R. �

5 H1 Polynomial Extension Operator in 3D

5.1 Additional 1D polynomials

On top of the polynomials discussed in Section 3.2, we need now a discrete counterparts of func-

tions βλλ
nm, βλµ

nm and βµµ
nm. For each pair of discrete Neumann eigenvalues µ

(p)
i and µ

(p)
j , we introduce
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the corresponding polynomial βµµ
ij that solves the following 1D variational problem, compare with

(3.31), 



βµµ
ij ∈ P

p, βµµ
ij (−1) = 0, βµµ

ij (1) = 1∫

I

(βµµ
ij )′v′ + (µ

(p)
i + µ

(p)
j )

∫

I

βµµ
ij v = 0, ∀v ∈ P

p
0

i, j, = 0, . . . , p

(5.1)

In an analogous way, for each couple of Dirichlet eigenvalues, we introduce the corresponding

functions βλλ
ij , i, j = 2, . . . , p, and then functions βµλ

ij , i = 0, . . . , p, j = 2, . . . , p, corresponding

to pairs (µ
(p)
i , λ

(p)
j ).

Lemma 5.1 There exists constant C > 0, independent of p, such that,

|βλλ
ij |2H1(I) + (λ

(p)
i + λ

(p)
j )‖βλλ

ij ‖2L2(I) ≤ C
(
λ

(p)
i + λ

(p)
j

) 1

2

, i = 2, . . . , p, j = 2, . . . , p

|βµµ
ij |2H1(I) + (µ

(p)
i + µ

(p)
j )‖βµµ

ij ‖2L2(I) ≤ C
(
µ

(p)
i + µ

(p)
j

) 1

2

, i, j = 0, . . . , p, (i, j) 6= (0, 0)

|βµλ
ij |2H1(I) + (µ

(p)
i + λ

(p)
j )‖βµλ

ij ‖2L2(I) ≤ C
(
µ

(p)
i + λ

(p)
j

) 1

2

, i = 0, . . . , p, j = 2, . . . , p

(5.2)

Proof: Proof is fully analogous to the proof of (3.33). �

5.2 Step 1: Lifting from a horizontal face

Let u ∈ Wp(∂Ω) be a polynomial trace, cf (2.12). We first consider the horizontal face z = 1 of

the master cube Ω = I3, see Fig. 2, p. 24. Let u2(x, y) be the restriction of u on this face. We

expand it into the 1D Neumann eigenvectors,

u2(x, y) =

p∑

i=0

p∑

j=0

uijΨi(x)Ψj(y) , (5.3)

and define the extension U = U2 as follows.

U2(x, y, z) =

p∑

i=0

p∑

j=0

uijΨi(x)Ψj(y)βµµ
ij (z) (5.4)
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y
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Figure 2: Master cube element. Enumeration of faces. Face numbers are located in the middle of

each face. The faces are parametrized with the corresponding master element coordinates in the

lexicographic order, i.e. faces f1, f2 are parametrized with x, y, faces f3, f5 are parametrized with

x, z, and faces f4, f6 are parametrized with y, z.

A straightforward evaluation of the H1-norm gives, (we write µi, µj for µ
(p)
i , µ

(p)
j )

∫

Ω

|∇U |2 =

p∑

i=0

p∑

j=0

|uij|2
(
(µi + µj)|βµµ

ij ‖2L2(Ω) + |βµµ
ij |2H1(I)

)

= |u00|2|βµµ
00 |2H1(I) +

∑

(i,j)6=(0,0)

|uij|2
(
(µi + µj)|βµµ

ij ‖2L2(Ω) + |βµµ
ij |2H1(I)

)

≤ 2|u00|2 + C
∑

(i,j)6=(0,0)

|uij|2(µi + µj)
1

2

∫

Ω

|U |2 =

p∑

i=0

p∑

j=0

|uij|2‖βµµ
ij ‖2L2(I)

≤ C

p∑

i=0

p∑

j=0

|uij|2

(5.5)

In the last line we have used the fact that all discrete eigenvalues µi, i > 0 are greater than the exact

eigenvalues and, therefore, are uniformly bounded away from zero which, by (5.2) implies that the

corresponding L2-norms ‖βµµ
ij ‖2L2(I) are uniformly bounded. In summary, we have obtained the

estimate,

‖U‖2H1(Ω) ≤ C

p∑

i=0

p∑

j=0

|uij|2
(
1 + (µi + µj)

1

2

)
(5.6)

Lemma 5.2 The discrete norm on the right-hand side of (5.6) is equivalent to the standard

H
1

2 -norm on the face.
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Proof: The standard L2- and H1-norms are equal to the corresponding discrete norms. Thus,

by the standard interpolation argument, the continuous H
1

2 -norm must be bounded by the discrete

H
1

2 -norm. On the other side, by Proposition 3.6, we have,

p∑

i=0

p∑

j=0

|uij|2
(
1 + µ

1

2

i

)
≤ C‖u‖2

L2(Ix,H
1
2 (Iy))

, (5.7)

and, by the same argument,

p∑

i=0

p∑

j=0

|uij|2
(
1 + µ

1

2

j

)
≤ C‖u‖2

L2(Iy,H
1
2 (Ix))

. (5.8)

Summing up the last two inequalities we get,

p∑

i=0

p∑

j=0

|uij|2
(
1 + (µi + µj)

1

2

)
≤ C(‖u‖2

L2(Ix,H
1
2 (Iy))

+ ‖u‖2
L2(Iy,H

1
2 (Ix))

) ≈ ‖u‖2
H

1
2 (I2)

(5.9)

�

In conclusion, the H1-norm of extension U = U2 is bounded by the H
1

2 -norm of the data u. In

exactly the same way, we construct an extension U1 from the lower face z = −1. Notice that both

extension are zero on the opposite face and, therefore, do not alter the original values there.

5.3 Lifting from the vertical faces

We proceed now along the lines of the construction on the continuous level discussed in Sec-

tion 4.1. Let U1 and U2 denote the extensions from the lower and the upper horizontal faces,

respectively. We consider the trace,

v = v(x, z) = (u− U1 − U2)(x, 1, z) (5.10)

Function u − U1 − U2 vanishes over the horizontal faces and, therefore, the trace v is bounded in

the norm of H
1

2 (Ix, L
2(Iz))∩L2(Ix, H̃

1

2 (Iz)) space. We expand function v now in the products of

Neumann and Dirichlet eigenvectors,

v(x, z) =

p∑

i=0

p∑

j=2

vijΨi(x)Φj(z) , (5.11)

and define extension U = U5 as,

U5(x, y, z) =

p∑

i=0

p∑

j=2

vijΨi(x)βµλ
ij (y)Φj(z) , (5.12)

Following the same steps as in the previous section, we demonstrate that the H1-norm of extension

U5 is bounded by the H
1

2 (Ix, L
2(Iz)) ∩ L2(Ix, H̃

1

2 (Iz))-norm of trace v and, consequently, by the
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H
1

2 -norm of the trace on the whole boundary. Then, in the same way, we construct lift U3 from

face y = −1.

Having constructed the lifts U3 and U5 from the third and the fifth face, we subtract them from

u− U1 − U2 and consider the trace of the remaining function on face x = 1,

w(y, z) = (u− U1 − U2 − U3 − U5)(1, y, z) (5.13)

As function u−U1 −U2−U3 −U5 vanishes over faces 1, 2, 3 and 5, the trace v is bounded in the

H̃
1

2 -norm. We expand it into the Dirichlet eigenvectors,

w(x, z) =

p∑

i=2

p∑

j=2

wijΦi(y)Φj(z) , (5.14)

and define the extension as,

U4(x, y, z) =

p∑

i=2

p∑

j=2

wijβ
λλ
ij (x)Φi(y)Φj(z) , (5.15)

Again, following the same steps as in the previous section, we demonstrate that the H1-norm of

extension U4 is bounded by the H̃
1

2 (I2)-norm of trace v and, consequently, by the H
1

2 -norm of the

trace on the whole boundary. Then, in the same way, we construct the lift U6 from face x = −1.

Thy final extension is defined as the sum of the contributions from the six faces, and we have

proved,

THEOREM 5.3 On the cube Ω = I3, the operator,

L(p)
0 : Wp(∂Ω) ∋ u 7−→ U :=

6∑

j=1

Uj ∈Wp(Ω) (5.16)

defines a polynomial lift of traces. Its norm from H
1

2 (∂Ω) into H1(Ω) is bounded independently of

degree p.

6 H(div) Polynomial Extension Operator in 3D

Before we proceed along the lines outlined in Section 4.2, we make one important modification.

Motivated with relations (4.28) between functions γ and β on the continuous level, we shall re-

place all functions γ (that have not been defined on the discrete level at all) with derivatives of

the corresponding functions β and, similarly, express 1D Neumann eigenvectors with the deriva-

tives of Dirichlet eigenvectors, and 1D Dirichlet eigenvectors with the derivatives of Neumann

eigenvectors.
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6.1 Step 1: Lifting from a horizontal face

Let h be a polynomial trace in the trace space Vp(∂Ω), see (2.12). We begin with the restriction h2

of function h to the second face. This restriction belongs to Pp−1⊗ Pp−1. We expand it in terms of

derivatives of the 1D Neumann eigenvectors,

h2(x, y) =

p∑

n=1

p∑

m=1

hnm

Ψ′
n(x)

µ
1

2

n

Ψ′
m(y)

µ
1

2

m

(6.1)

Notice that functions µ
− 1

2

n Ψ′
n are L2-orthonormal. The vector-valued extension H = H2 is now

defined as follows,

H2 =

(
−

p∑

n=1

p∑

m=1

hnm µ
1

2

nΨn(x)
1

µ
1

2

m

Ψ′
m(y)

1

µn + µm

(
βµµ

nm

)′
(z),

−
p∑

n=1

p∑

m=1

hnm

1

µ
1

2

n

Ψ′
n(x) µ

1

2

mΨm(y)
1

µn + µm

(
βµµ

nm

)′
(z),

p∑

n=1

p∑

m=1

hnm

1

µ
1

2

n

Ψ′
n(x)

1

µ
1

2

m

Ψ′
m(y) βµµ

nm(z)

)
(6.2)

Notice a direct correspondence of Formula (6.2) with the gradient of function (4.15) with the

replacements outlined in the beginning of this section.

A direct calculation reveals that polynomial H2 is divergence-free. The H(div)-norm of func-

tion H2 reduces then to its L2-norm which we now calculate. Utilizing the L2-orthogonality of

eigenvectors Ψn and their derivatives, we obtain,

‖H2‖2L2(Ω) =

p∑

n=1

p∑

m=1

|hnm|2
(

1

µn + µm

‖
(
βµµ

nm

)′‖2L2(I) + ‖βµµ
nm‖2L2(I)

)
(6.3)

Making use of Lemma 5.1, we obtain the bound,

‖H2‖2L2(Ω) ≤ C

p∑

n=1

p∑

m=1

|hnm|2 (µn + µm)−
1

2 (6.4)

It remains to show now that the weighted sum on the right-hand side is equivalent to the H− 1

2 -norm

of data h2. We begin with a simple result concerning the H− 1

2 -norm in one space dimension.

Lemma 6.1 Let w ∈ Pp−1 be expanded in terms of the derivatives of discrete Neumann eigen-

vectors,

w =

p∑

n=1

wn

Ψ′
n

µ
1

2

n

(6.5)

The following discrete norm is equivalent to the H− 1

2 -norm of w with equivalence constants inde-

pendent of degree p,

‖w‖2
H−

1
2 (I)
≈

p∑

n=1

|wn|2µ
− 1

2

n (6.6)
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Proof: The proof follows from the isomorphism,

∂ : H
1

2

avg(I)→ H− 1

2 (I) (6.7)

and Proposition 3.6. �

We can prove now a similar result for two space dimensions.

Lemma 6.2 Let polynomial h ∈ P
p−1⊗P

p−1 be expanded in terms of the derivatives of discrete

Neumann eigenvectors as in Formula (6.1). The discrete norm (6.4) is equivalent to the H− 1

2 -norm

of h with equivalence constants independent of degree p.

Proof: We begin be recalling the standard tensorization result for space H− 1

2 (I2),

H− 1

2 (I2) = L2(Ix, H
− 1

2 (Iy)) + L2(Iy, H
− 1

2 (Ix)) (6.8)

where

L2(Ix, H
− 1

2 (Iy)) := {h(x, y) :

∫

I

‖h(x, ·)‖2
H−

1
2 (I)

dx <∞} (6.9)

with an analogous definition for the second space. The norm in the sum of two normed spaces is

defined as follows,

V = X + Y, ‖v‖X+Y = inf
x+y=v

(‖x‖X + ‖y‖Y ) (6.10)

or, with an equivalent norm defined as,

‖v‖2X+Y = inf
x+y=v

(
‖x‖2X + ‖y‖2Y

)
(6.11)

Lemma 6.1 implies that,

‖h‖2
L2(Ix,H−

1
2 (Iy))

≈
p∑

n=1

p∑

m=1

|hnm|2µ
− 1

2

m

‖h‖2
L2(Iy,H

−

1
2 (Ix))

≈
p∑

n=1

p∑

m=1

|hnm|2µ
− 1

2

n

(6.12)

Finally, definition (6.11) and elementary algebraic arguments lead to,

‖h‖2
H−

1
2 (I2)

= inf
unm+vnm=hnm

(
p∑

n=1

p∑

m=1

|unm|2µ
− 1

2

m +

p∑

n=1

p∑

m=1

|vnm|2µ
− 1

2

n

)

≈
p∑

n=1

p∑

m=1

|hnm|2 min{µ− 1

2

m , µ
− 1

2

n }

≈
p∑

n=1

p∑

m=1

|hnm|2(µn + µm)−
1

2

(6.13)

Here sign A ≈ B indicates existence of constants C1, C2 independent of function h and polynomial

degree p, such that A ≤ C1B and B ≤ C2A. �
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We have demonstrated therefore the continuity of the lift operator,

‖H‖H(div,Ω) ≤ C‖h2‖
H−

1
2 (f2)

(6.14)

In the same way we construct then the lift from bottom face f1.

6.2 Step 2: Lifting from faces f3, f5

We mimic the construction on the continuous level. First normal traces of lifts H1, H2 are sub-

tracted from the original data,

g := h− γn(H1 + H2) (6.15)

Restriction g5 of polynomial g to face f5 is expanded in terms of derivatives of the 1D Neumann

and Dirichlet eigenvectors,

g5(x, z) =

p∑

n=1

gn1
Ψ′

n(x)

µ
1

2

n

1√
2

+

p∑

n=1

p∑

m=2

gnm

Ψ′
n(x)

µ
1

2

n

Φ′
m(z)

λ
1

2

m

(6.16)

Notice that the functions λ
− 1

2

m Φ′
m, m = 2, . . . , p, complemented with constant 1/

√
2, are L2-

orthonormal. The vector-valued extension H = H5 is now defined as follows,

H5 =

(
−

p∑

n=1

gn1 µ
1

2

nΨn(x)
1

µn

(
βµ

n

)′
(y)

1√
2
−

p∑

n=1

p∑

m=2

gnm µ
1

2

nΨn(x)
1

µn + λm

(
βµλ

nm

)′
(y)

1

λ
1

2

m

Φ′
m(z),

p∑

n=1

gn1
1

µ
1

2

n

Ψ′
n(x) βµ

n(y)
1√
2

+

p∑

n=1

p∑

m=2

gnm

1

µ
1

2

n

Ψ′
n(x) βµλ

nm(y)
1

λ
1

2

n

Φ′
m(z),

−
p∑

n=1

p∑

m=2

gnm

1

µ
1

2

n

Ψ′
n(x)

1

µn + λm

(
βµλ

nm

)′
(y) λ

1

2

mΦm(z)

)

(6.17)

A direct computation reveals that H5 is divergence-free. We proceed with the evaluation of the

L2-norm,

‖H5‖2L2(Ω) =

p∑

n=1

|gn1|2
(

1

µn

‖(βµ
n)′‖2L2(I) + ‖βµ

n‖2L2(I)

)

+

p∑

n=1

p∑

m=2

|gnm|2
(

1

µn + λm

‖(βµλ
nm)′‖2L2(I) + ‖βµλ

nm‖2L2(I)

)

≤ C

(
p∑

n=1

|gn1|2µ
− 1

2

n +

p∑

n=1

p∑

m=2

|gnm|2(µn + λm)−
1

2

)
(6.18)

where, in the last inequality, we have used Lemma 3.5 and Lemma 5.1. We continue now with a

result concerning the H̃− 1

2 -norm in one space dimension.
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Lemma 6.3 Let w ∈ P
p−1 be expanded in terms of the derivatives of discrete Dirichlet eigen-

vectors and a constant function,

w = w1
1√
2

+

p∑

m=2

wm

Φ′
n

λ
1

2

m

(6.19)

The following discrete norm is equivalent to the H̃− 1

2 -norm of w with equivalence constants inde-

pendent of degree p,

‖w‖2
eH−

1
2 (I)
≈ |w1|2 +

p∑

m=2

|wm|2λ
− 1

2

m (6.20)

Proof: The proof follows from the stable decomposition,

H̃− 1

2 (I) = C⊕ H̃
− 1

2

avg(I), w = w0 + (w − w0), w0 = 〈w, 1〉/2 (6.21)

isomorphism,

∂ : H̃
1

2 (I)→ H
− 1

2

avg(I) (6.22)

and Proposition 3.7. �

We have now a discrete version of the norm in space H− 1

2 (Ix, L
2(Iz)) + L2(Ix, H̃

− 1

2 (Iz)).

Lemma 6.4 Let h ∈ Pp−1 ⊗ Pp−1 be a polynomial expanded in terms of derivatives of dis-

crete Neumann and Dirichlet eigenvectors as in Formula (6.16). The following discrete norm is

equivalent to the norm in space H− 1

2 (Ix, L
2(Iz)) + L2(Ix, H̃

− 1

2 (Iz)) with equivalence constants

independent of polynomial degree p.

‖h‖2 =

p∑

n=1

|gn1|2µ
− 1

2

n +

p∑

n=1

p∑

m=1

|gnm|2(µn + λm)−
1

2 (6.23)

Proof: Lemma 6.3 implies that,

‖h‖2
L2(Ix, eH

−

1
2 (Iz))

≈
p∑

n=1

|gn1|2 +

p∑

n=1

p∑

m=2

|gnm|2λ
− 1

2

m (6.24)

and from Lemma 6.1 follows that,

‖h‖2
L2(Iz ,H

−

1
2 (Ix))

≈
p∑

n=1

|gn1|2µ
− 1

2

n +

p∑

n=1

p∑

m=2

|gnm|2µ
− 1

2

n (6.25)

As discrete eigenvalues µn are always greater than their exact counterparts, and only a finite num-

ber of Neumann eigenvalues is less than one, we have,

‖h‖2 ≈
p∑

n=1

|gn1|2 min{1, µ− 1

2

n }+

p∑

n=1

p∑

m=2

|gnm|2 min{µ− 1

2

n , λ
− 1

2

m }

≈
p∑

n=1

|gn1|2µ
− 1

2

n +

p∑

n=1

p∑

m=2

|gnm|2(µn + λm)−
1

2

(6.26)
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which ends the proof. �

Thus, we have shown that the H(div, Ω)-norm of extension H5 is bounded by the norm of

face data g5 in the space H− 1

2 (Ix, L
2(Iz)) + L2(Ix, H̃

− 1

2 (Iz)), and in turn, by the H− 1

2 (∂Ω)-norm

of the original boundary data h. The lift from face f3 is constructed in the same way.

6.3 Step 3: Lifting from faces f4, f6

We again mimic the construction of the continuous level. Normal traces of lifts H1, H2, H3, H5

are subtracted from the original data,

f := h− γn(H1 + H2 + H3 + H5) (6.27)

Restriction f 4 of polynomial f to face f4 is expanded in terms of derivatives of the 1D Dirichlet

eigenvectors and constant functions,

f 4(y, z) = f11
1√
2

1√
2

+
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(6.28)

As f 4 is now controlled in H̃− 1

2 (I2)-norm, the average value f11 of f 4 depends continuously upon

the norm, and the corresponding constant function is extended into the element using the lowest-

order Raviart-Thomas shape function HRT,4. We proceed by defining extension H = H4 of

function (6.28) with the constant f11 removed,
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A direct computation shows again that divH = 0. We proceed with the evaluation of the L2-norm,
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where, in the last inequality, we have used Lemma 3.5 and Lemma 5.1. We have,

Lemma 6.5 Let h ∈ Pp−1 ⊗ Pp−1 be a polynomial expanded in terms of derivatives of discrete

Dirichlet eigenvectors
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The following discrete norm is equivalent to the norm in space H̃− 1

2 (I2) with equivalence constants

independent of polynomial degree p.
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Proof: The proof is based on the tensorization result,

H̃− 1

2 (Iy × Iz) = L2(Iy, H̃
− 1

2 (Iz)) + L2(Iz, H̃
− 1

2 (Iy)) (6.33)

Lemma 6.3 implies that,
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and,
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We have,
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which ends the proof. �

In the same way we define the lift from face f6. Our final H(div, Ω)-extension is defined by

summing up all face contributions,

H = H1 + H2 + H3 + f4,11HRT,4 + H4 + H5 + f6,11HRT,6 + H6 (6.37)

where f4,11 and f6,11 are the average values of function (6.27) over faces f4, f6, and HRT,4, HRT,6 ∈
V 1(Ω) are the corresponding lowest order Raviart-Thomas shape functions. We conclude with,

THEOREM 6.6 Operator (6.37)

L(p)
n

: Vp(∂Ω) ∋ h 7−→H ∈ V p(Ω) (6.38)

defines a polynomial lift of normal traces. Its norm from H− 1

2 (∂Ω) into H(div, Ω) is bounded

independently of polynomial degree p.

Remark 6.7 We can check that the lifting H is orthogonal to the curls of all fields with zero

tangential trace E ∈ Qp,0(Ω). Moreover the divergence of H is constant. Conversely, if H ∈
V p(Ω) has these properties and a zero normal trace, it is zero. The proof uses similar arguments

as previously: We deduce first that div H = 0. Therefore, there exists E ∈ Qp(Ω) such that

curlE = H . Since γnH = 0, we deduce that curl γtE = 0. Therefore there exists a surface

potential u ∈ Wp(∂Ω) such that ∇u = γtE. Setting U = L(p)
0 u, we obtain that γt∇U = γtE.

Finally

H = curl(E −∇U) with E −∇U ∈ Qp,0(Ω)

The orthogonality condition against the curls of Qp,0(Ω) gives H = 0. �

7 H(curl) Polynomial Extension Operator in 3D

Having constructed the polynomial extension operators for the H1(Ω) and H(div, Ω) spaces, we

proceed along exactly the same lines as for the continuous case discussed in Section 4.3. We

consider the exact polynomial sequence (2.10). Given a polynomial trace et ∈ Qp(Ω), we compute

its surface curl,

h = curl∂Ω et (7.1)

and use the H(div)-extension operator L(p)
n to construct a H(div, Ω)-extension H of polynomial

h. We then use the Poincaré map to “take out the curl” out of the data et and conclude that the

resulting function must be a surface gradient of a potential u ∈Wp(∂Ω) (with a zero average),

et − γtKH = ∇∂Ωu (7.2)
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The H(curl, Ω)-extension is now obtained by summing up the gradient of H1(Ω)-extension of

potential u with KH ,

E = ∇U + KH (7.3)

Replicating the procedure from the continuous level is possible because the Poincaré map is poly-

nomial preserving. We conclude our construction with,

THEOREM 7.1 Operator (7.3)

L(p)
t

: Qp(∂Ω) ∋ et 7−→ E ∈ Qp (7.4)

defines a polynomial lift of the tangential trace. Its norm from H− 1

2 (curl, ∂Ω) into H(curl, Ω), is

bounded independently of polynomial degree p.

Remark 7.2 As in the continuous case, see Remark 4.3, we can get a canonical construction

by replacing the Poincaré map K by a p-depending operator K̃ defined as follows:

K̃H = KH + ∇U0 with U0 ∈Wp,0(Ω) such that ‖K̃H‖L2(Ω) is minimal. (7.5)

The operator norm of K̃ is not larger than the one of K, and the lift Ẽ constructed in this way

satisfies the orthogonality conditions
∫

Ω

curl Ẽ · curlF = 0 ∀F ∈ Qp,0(Ω) and

∫

Ω

Ẽ ·∇V = 0 ∀V ∈Wp,0(Ω) (7.6)

It is easy to see that these two orthogonality relations determine Ẽ uniquely. �

Conclusions in 3D polynomial case. With p ≥ 1 any integer, the lift operators L(p)
0 , L(p)

t
and

L(p)
t

satisfy the following exact sequence and commuting diagram properties, reproducing those of

the continuous case:

Wp(Ω)
∇−→ Qp(Ω)

curl−→←−
K

V p
div−→ Yp(Ω)

γ0

y
xL(p)

0
γt

y
xL(p)

t
γn

y
xL(p)

n
γavg

y
xLavg

Wp(∂Ω)
∇−→ Qp(∂Ω)

curl−→ Vp(∂Ω)
γavg−→ R

(7.7)

The operator L(p)
0 : u 7→ U is uniquely determined by the extra condition of orthogonality,

∫

Ω

∇U ·∇V = 0 ∀V ∈Wp,0(Ω) (7.8)

and L(p)
n : h 7→H by

∫

Ω

H · curlE = 0 ∀E ∈ Qp,0(Ω) and div H ∈ R (7.9)

The “canonical” version L̃(p)
t

of the lift et 7→ Ẽ as defined in Remark 7.2 is uniquely determined

by the orthogonality relations (7.6). �
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8 Conclusions

In the paper, we have constructed polynomial extension operators for a master hexahedron and the

polynomial spaces forming the exact sequence corresponding to Nédélec’s hexahedron of the first

type. The polynomial extension operators mimic closely the corresponding constructions on the

continuous level based on separation of variables. In the presentation, we have restricted ourselves

to the “isotropic” spaces (same polynomial order in each direction), but the whole procedure gen-

eralizes easily to the case of anisotropic spaces as well. Given a scalar space P(p,q,r), we arrange

the element system of coordinates in such a way that p ≤ q ≤ r, and the construction presented in

this paper goes through without any changes.

The existence of polynomial extension operators completes the theory of Projection-Based

Interpolation, see [12, 10] for the hexahedral element. The obtained discrete H
1

2 (I2) and H− 1

2 (I2)-
norms may be used in the automatic hp-adaptivity algorithm presented in [9, 13].

Finally, we finish with a didactic comment on teaching the separation of variables. When pre-

senting the solution of the Dirichlet problem for the Laplace equation on a square or cube, virtually

all textbooks recommend splitting the data into edge or face contributions, and the solution of the

corresponding single edge or face problems with pure Dirichlet conditions using the separation

of variables. The superposition principle is then used to obtain the final solution. With a regular

boundary data that guarantees the existence of a finite energy solution, the procedure breaks the

solution into the corresponding edge or face solutions that, in general, have infinite energy. This

can be avoided by using the mixed boundary conditions employed in this paper which guarantee

that all solutions corresponding to a non-homogeneous single edge or face data, remain of finite

energy. Same comments apply to the Neumann problem.
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[4] I. Babuška and M. Suri. The optimal convergence rate of the p-version of the Finite Element Method.

SIAM J. Numer. Anal., 24(4):750–776, 1987.

[5] R. Bellman. A note on an inequality of E. Schmidt. Bull. Amer. Math. Soc., 50:734–736, 1944.

35



[6] C. Bernardi, M. Dauge, and Y. Maday. Polynomials in the Sobolev world. Preprint 07-14, IRMAR

Rennes, 2007.

[7] A. Buffa and P. Ciarlet. On traces for functional spaces related to Maxwell’s equations. Part I: An

integration by parts formula in Lipschitz polyhedra. Mathematical Methods in the Applied Sciences,

24:9–30, 2001.

[8] A. Buffa, M. Costabel, and D. Sheen. On traces for H(curl,Ω) in Lipschitz domains. J. Math. Anal.

Appl., 276:845–876, 2002.

[9] L. Demkowicz. Computing with hp Finite Elements. Vol. I. One- and Two-Dimensional Elliptic and

Maxwell Problems. Chapman & Hall/CRC Press, Taylor and Francis, 2006.

[10] L. Demkowicz. Polynomial exact sequences and projection-based interpolation with applications to

maxwell equations. In D. Boffi and L. Gastaldi, editors, Mixed Finite Elements, Compatibility Condi-

tions and Applications, Lecture Notes in Mathematics. Springer-Verlag, 2007. See also ICES Report

06-12.
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