N

N

Memory efficient scheduling of Strassen-Winograd’s
matrix multiplication algorithm

Brice Boyer, Jean-Guillaume Dumas, Clément Pernet, Wei Zhou

» To cite this version:

Brice Boyer, Jean-Guillaume Dumas, Clément Pernet, Wei Zhou. Memory efficient scheduling of
Strassen-Winograd’s matrix multiplication algorithm. ISSAC 2009 - International Symposium on Sym-
bolic and Algebraic Computation, Jul 2009, Séoul, South Korea. pp.55-62, 10.1145/1576702.1576713 .
hal-00163141v5

HAL Id: hal-00163141
https://hal.science/hal-00163141v5
Submitted on 18 May 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00163141v5
https://hal.archives-ouvertes.fr

Memory efficient scheduling of
Strassen-Winograd’s matrix multiplication
algorithm*

Brice Boyer' Jean-Guillaume Dumas* Clément Pernet?

Wei Zhou?
May 18, 2009

Abstract

We propose several new schedules for Strassen-Winograd’s matrix mul-
tiplication algorithm, they reduce the extra memory allocation require-
ments by three different means: by introducing a few pre-additions, by
overwriting the input matrices, or by using a first recursive level of clas-
sical multiplication. In particular, we show two fully in-place schedules:
one having the same number of operations, if the input matrices can be
overwritten; the other one, slightly increasing the constant of the leading
term of the complexity, if the input matrices are read-only. Many of these
schedules have been found by an implementation of an exhaustive search
algorithm based on a pebble game.

Keywords: Matrix multiplication, Strassen-Winograd’s algorithm, Memory
placement.
1 Introduction

Strassen’s algorithm [16] was the first sub-cubic algorithm for matrix multipli-
cation. Its improvement by Winograd [17] led to a highly practical algorithm.

*©ACM, 2009. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution. The definitive version was published in
ISSAC 2009.

fLaboratoire J. Kuntzmann, Université de Grenoble. 51, rue des Mathématiques, umr
CNRS 5224, bp 53X, F38041 Grenoble, France, \{Brice.Boyer, Jean-Guillaume.Dumas\}@
imag.fr

fLaboratoire LIG, Université de Grenoble. umr CNRS, F38330 Montbonnot, France.
Clement.Pernet@imag.fr

§School of Computer Science, University of Waterloo, Waterloo, ON, N2B 3G1, Canada.
w2zhouQuwaterloo.ca

The best asymptotic complexity for this computation has been successively im-
proved since then, down to O (n?37%) in [5] (see |3, 4] for a review), but Strassen-
Winograd’s still remains one of the most practicable. Former studies on how
to turn this algorithm into practice can be found in [2, 9, 10, 6] and references
therein for numerical computation and in [15, 7] for computations over a finite
field.

In this paper, we propose new schedules of the algorithm, that reduce the extra
memory allocation, by three different means: by introducing a few pre-additions,
by overwriting the input matrices, or by using a first recursive level of classical
multiplication. These schedules can prove useful for instance for memory effi-
cient computations of the rank, determinant, nullspace basis, system resolution,
matrix inversion... Indeed, the matrix multiplication based LQUP factorization
of [11] can be computed with no other temporary allocations than the ones
involved in its block matrix multiplications [12]. Therefore the improvements
on the memory requirements of the matrix multiplication, used together for in-
stance with cache optimization strategies [1], will directly improve these higher
level computations.

We only consider here the computational complexity and space complexity,
counting the number of arithmetic operations and memory allocations. The
focus here is neither on stability issues, nor really on speed improvements. We
rather study potential memory space savings. Further studies have thus to be
made to assess for some gains for in-core computations or to use these sched-
ules for numerical computations. They are nonetheless already useful for exact
computations, for instance on integer /rational or finite field applications [8, 14].

The remainder of this paper is organized as follows: we review Strassen-
Winograd’s algorithm and existing memory schedules in sections 2 and 3. We
then present in section 4 the dynamic program we used to search for schedules.
This allows us to give several schedules overwriting their inputs in section 5, and
then a new schedule for C «+ AB+C' using only two extra temporaries in section
6, all of them preserving the leading term of the arithmetic complexity. Finally,
in section 7, we present a generic way of transforming non in-place matrix
multiplication algorithms into in-place ones (i.e. without any extra temporary
space), with a small constant factor overhead. Then we recapitulate in table 10
the different available schedules and give their respective features.

2 Strassen-Winograd Algorithm

We first review Strassen-Winograd’s algorithm, and setup the notations that
will be used throughout the paper.

Let m,n and k be powers of 2. Let A and B be two matrices of dimension m x k
and k x n and let C = A x B. Consider the natural block decomposition:

{Cll 012}_{1411 Alﬂ {Bll 312]
Co1 Coo Azy Asg| |Ba1 Boaa|’

where Aj; and By respectively have dimensions m/2 x k/2 and k/2 x n/2.
Winograd’s algorithm computes the m x n matrix C' = A x B with the following
22 block operations:

e 8 additions:

Sp Ao + Az So— 51— An S3 A — Az
Ty < Big — B11 T3 < Boo =17 13+ By — By
Sq — A2 — 5 Ty Ty — By

e 7 recursive multiplications:

Py — Aj1 X Bl P+ A1z X By
P3<—S4><ng P4<—A22><T4
f% F—;gl X 71 }% — Sb X 75 }% — Sé X 7%

e 7 final additions:

Uy—Pi+P U;«+— P+ PFg
Us—Us+P; Uy«—Us+ Ps
Us—Us+P3 Us«— Uz~ Py Uy —Us+ Bs

Uy Us
Us U; |’
Figure 1 illustrates the dependencies between these tasks.

e The result is the matrix: C = {

3 Existing memory placements

Unlike the classic multiplication algorithm, Winograd’s algorithm requires some
extra temporary memory allocations to perform its 22 block operations.

3.1 Standard product

We first consider the basic operation C' « A x B. The best known schedule
for this case was given by [6]. We reproduce a similar schedule in table 1. It
requires two temporary blocks X and Y whose dimensions are respectively equal
to m/2 x max(k/2,n/2) and k/2 x n/2. Thus the extra memory used is:

m k n kn m k n
E k,n)=— -, = ——+4+FE ==, =]
l(m7 7n) 2max<2,2)+ + 1(27272>
Summing these temporary allocations over every recursive levels leads to a total
amount of memory, where for brevity M = min{m, k,n}:

Ing(M)
Ey(m,k,n) = Z o (mmax (k,n) + kn) (1)
= % (- %) (mmax (k,n) + kn)

< % (mmax (k,n) + kn).

Figure 1: Winograd’s task dependency graph

We can prove in the same manner the following lemma:

Lemma 1. Let m, k and n be powers of two, g(z,y,z) be homogeneous, M =
min {m, k,n} and f(m, k,n) be a function such that

9(3:55) +/(5.5.:3) #mnandk>1
0 otherwise.

f(m,k,n)—{

Then f(m,k,n) =1 (1 - 5=) g(m, k,n) < 2g(m, k,n).

In the remainder of the paper, we use E; to denote the amount of extra
memory used in table number i. The amount of extra memory we consider is
always the sum up to the last recursion level.

Finally, assuming m = n = k gives a total extra memory requirement of
Ei(n,n,n) < 2/3n?

3.2 Product with accumulation

For the more general operation C «— aA x B + C, a first naive method would
compute the product a4 x B using the scheduling of table 1, into a temporary

operation loc. | # operation loc.
1 Sg = A11 — A21 X |12 P = AnBu X
2 T3=DBypx—Bia Y |13 Uo=P1+Fs Ci2
3 Pr=S3T3 Co1 |14 Us=Us+ Pr Co
4 S1=An+ A2 Xx|15 Us=Us+Ps Ci2
5
6
7
8
9

Ty =Bi2—Bi1 Y |16 Ur=U3z+FP5 Ca
Ps = 51T Caz (17 Us =Us+ P3 Ci2
So =851 — A11 X (18 Ty =Ts — Boy Y
T5 = Boo — T Y (19 Py = AxTy C11
Ps = SoT» Ci2 (20 Ug =Us — Py Cxn
10 Sy = A12— 952 X |21 Po=Ai12B21 Cu
11 P3 = S4B Cu (22 Ui=P+PFP Ci

Table 1: Winograd’s algorithm for operation C' «+ A x B, with two temporaries

matrix C’ and finally compute C «— C’+ 3C. It would require (1+2/3)n? extra
memory allocations in the square case.

Now the schedule of table 2 due to [10, fig. 6] only requires 3 temporary blocks
for the same number of operations (7 multiplications and 4+ 15 additions). The

operation loc. | # operation loc.
1 S1=Aa+ Ax X [12 Si=A12— 5 X
2 Ty = Bi2 — B11 Y |13 Ty =T5 — Bo1 Y
3 Ps=a5T) Z |14 Chi2 = aS4Bos + Ci2 Cia
4 Cao = P5+ pCa Caz |15 Us =Uz + Ci2 C12
5 Ci2 =P+ [Cr2 Ci2 |16 Py = aATy — Co1 Cxn
6 So =851 — A11 X |17 Sg = A11 — A21 X
7 Tg = Bzz — T1 Y |18 T3 = Bzz — Blz Y
8 P =aA1Bn1 Z |19 Uz = aS3Ts + Us Z
9 Cun =P +pCn C11 |20 Ur =Usz + Co2 Ca2
10 Uy = aSTs + Py Z |21 Ug=Us— Co Co1
11 Uy =adi12Bo1 +Ci1 Cuy |22

Table 2: Schedule for operation C «— aA x B + SC with 3 temporaries

required three temporary blocks XY, Z have dimensions m/2 x k/2, k/2 xn/2
and m/2 x n/2. Since the two temporary blocks in schedule 1 are smaller than
the three ones here, we have F; > E;. Hence, using lemma 1, we get

Eg(m,k,n):%(l—#) (mk + kn+ mn). (2

~

With m = n = k, this gives Ez(n,n,n) < n’.

We propose in table 9 a new schedule for the same operation aA x B 4+ GC only
requiring two temporary blocks.

Our new schedule is more efficient if some inner calls overwrite their temporary

input matrices. We now present some overwriting schedules and the dynamic
program we used to find them.

4 Exhaustive search algorithm

We used a brute force search algorithm! to get some of the new schedules that
will be presented in the following sections. It is very similar to the pebble game
of Huss-Lederman et al. [10].

A sequence of computations is represented as a directed graph, just like figure 1
is built from Winograd’s algorithm.

A node represents a program variable. The nodes can be classified as initials
(when they correspond to inputs), temporaries (for intermediate computations)
or finals (results or nodes that we want to keep, such as ready-only inputs).
The edges represent the operations; they point from the operands to the result.
A pebble represents an allocated memory. We can put pebbles on any nodes,
move or remove them according to a set of simple rules shown below.

When a pebble arrives to a node, the computation at the associated variable
starts, and can be “partially” or “fully” executed. If not specified, it is assumed
that the computation is fully executed.

Edges can be removed, when the corresponding operation has been computed.
The last two points are especially useful for accumulation operations: for exam-
ple, it is possible to try schedule the multiplication separately from the addition
in an otherwise recursive AB + C' call; the edges involved in the multiplication
operation would then be removed first and the accumulated part later. They
are also useful if we do not want to fix the way some additions are performed:
if U3 = P, + Ps + Pr the associativity allows different ways of computing the
sum and we let the program explore these possibilities. At the beginning of
the exploration, each initial node has a pebble and we may have a few extra
available pebbles. The program then tries to apply the following rules, in order,
on each node. The program stops when every final node has a pebble or when
no further moves of pebbles are possible:

e Rule 0. Computing a result/removing edges. If a node has a pebble and
parents with pebbles, then the operation can be performed and the correspond-
ing edges removed. The node is then at least partially computed.

e Rule 1. Freeing some memory/removing a pebble. If a node is isolated
and not final, its pebble is freed. This means that we can reclaim the memory
here because this node has been fully computed (no edge pointing to it) and is
no longer in use as an operand (no edge initiating from it).

e Rule 2. Computing in place/moving a pebble. If a node P has a full
pebble and a single empty child node S and if other parents of S have pebbles
on them, then the pebble on P may be transferred to S (corresponding edges
are removed). This means an operation has been made in place in the parent
P’s pebble.

IThe code is available at http://1jk.imag.fr/CASYS/LOGICIELS/Galet.

e Rule 3. Using more memory/adding a pebble. If parents of an empty node
N have pebbles and a free pebble is available, then this pebble can be assigned
to NV and the corresponding edges are removed. This means that the operation
is computed in a new memory location.

e Rule 4. Copying some memory/duplicating a pebble. A computed node
having a pebble can be duplicated. The edges pointed to or from the original
node are then rearranged between them. This means that a temporary result
has been copied into some free place to allow more flexibility.

5 Overwriting input matrices

We now relax some constraints on the previous problem: the input matrices
A and B can be overwritten, as proposed by [13]. For the sake of simplicity,
we first give schedules only working for square matrices (i.e. m = n = k and
any memory location is supposed to be able to receive any result of any size).
We nevertheless give the memory requirements of each schedule as a function
of m; k and n. Therefore it is easier in the last part of this section to adapt the
proposed schedules partially for the general case. In the tables, the notation
A;jB;j (vesp. Aj;Bi;j +Cjj;) denotes the use of the algorithm from table 1 (resp.
table 2) as a subroutine. Otherwise we use the notation Alg(A;;B;;) to denote
a recursive call or the use of one of our new schedules as a subroutine.

5.1 Standard product

We propose in table 3 a new schedule that computes the product C «+— A x B
without any temporary memory allocation. The idea here is to find an order-
ing where the recursive calls can be made also in place such that the operands
of a multiplication are no longer in use after the multiplication has completed
because they are overwritten. An exhaustive search showed that no schedule
exists overwriting less than four sub-blocks. Note that this schedule uses only

operation loc. | # operation loc.
1 S3=An—Axn Cii|12 Si=A12— 5 A2z
2 S1=As+ Azx A |13 Ps = IP(S2T%) Cao
3 Ti1=Bi2—DB11 Cxn|l4 Uo=P+Fs Ca2
4 T3 =By —Bi2 Biz|15 P> =1IP(A12B21) Ciz
5
6
7
8
9

Pr = IP(S3T3) Co1 |16 Up =P+ P C11
S2 =851 —An Ciz |17 Us=Uz+ P5 Ci2
Py =IP(A11B11) Cuu |18 Us=Ux+ P; C2o
To = Bos —Th B |19 Ug=Us— Py Ca1
Ps = IP(S1T1) A1 |20 Ur=Us+ Ps Cas
10 Ty =715 — Boy Cos |21 P3 = IP(S4B22) Aqg
11 Py = IP(A22T4) Aoy |22 Ug=Us+ Ps C12

Table 3: IP schedule for operation C' <+ A x B in place

two blocks of B and the whole of A but overwrites all of A and B. For instance
the recursive computation of P, requires overwriting parts of A12 and Bag; too.
Using another schedule as well as back-ups of overwritten parts into some avail-
able memory In the following, we will denote by IP for InPlace, either one of
these two schedules.

We present in tables 4 and 5 two new schedules overwriting only one of the two
input matrices, but requiring an extra temporary space. These two schedules
are denoted OvL and OvR. The exhaustive search also showed that no schedule
exists overwriting only one of A and B and using no extra temporary. We note

operation loc. | # operation loc.
1 S3=A11 — Axn Cop |12 Ps = OVL(SQTQ) Ca1
2 S1= A + A Ay |13 Ty =T> — By A
3 So=51—An Ci2 |14 Us =P+ Fs Ca21
4 T1=DBi2— B Cor |15 Ug=Uza+ Ps Ci2
5 P = UVL(A11B11) Cii |16 Us=Us + Py Cay
6 13 = Bos — Bio A |17 Ur=Us+ Ps Cao
7 Pr= IP(SgT;g) X |18 Us=Us+ P3 Cha
8 Ty = Bos —T1 A1 |19 P = 0VL(A12B21) X
9 Ps=1IP(SiTh) Cy (20 Ui =P+ P Cn
10 Sy =A12— 52 Cor |21 Py = IP(A22T4) Aoy
11 P3 = UVL(S4B22) Asqr |22 Ug=Usz — Py Ca1

Table 4: 0vL schedule for operation C' «+ A x B using strictly two blocks of A
and one temporary

operation loc. | # operation loc.
1 S3=A11 — A Cop |12 Py = 0VR(A22T4) Bia
2 S1 = Ao + As C21 |13 Sq= A12 — So Bi1
3 11 =DBi2—Bn Ci2 |14 U2=P1+ Fs Ca1
4 P1r=0vR(A11B11) Cu |15 Us=Uz+ Ps Ci2
5 Se=51—An Bu |16 Us =Uz2 + P Ca1
6 13 = Bz — Bi2 Biz |17 Uz =Us + Ps Caa
7 Pr= IP(S3T3) X |18 Ug=U3z — P4 Ca1
8 T =DByp—T B2 |19 P3 = IP(S4B22) Bz
9 Ps =1IP(S1Th) Caz |20 Us=Us+ Ps3 Ci2
10 Ty =715 — Bo1 Ci2 |21 P = UVR(Alszl) Bio
11 P = UVR(SQTQ) Co |22 Ui =P+ P C11

Table 5: 0OvR schedule for operation C' < A x B using strictly two blocks of B
and one temporary

that we can overwrite only two blocks of A in OvL when the schedule is modified
as follows:

operation loc.
18bis Ao = Copy(Alg) Aoy
19bis Ao = COpy(A21) Aqg
21 P, = UVR(A22T4) Aoy

Similarly, for OvR, we can overwrite only two blocks of B using copies on lines
20 and 21 and OvL on line 19.

We now compute the extra memory needed for the schedule of table 5. The size
of the temporary block X is (2)2, the extra memory required for table 5 hence

2
satisfies: E5(n,n,n) < in?

5.2 Product with accumulation

We now consider the operation C «— aA x B+ 3C, where the input matrices A
and B can be overwritten. We propose in table 6 a schedule that only requires
2 temporary block matrices, instead of the 3 in table 2. This is achieved by
overwriting the inputs and by using two additional pre-additions (Z; and Zs)
on the matrix C. We also propose in table 7 a schedule similar to table 6

operation loc.[# operation loc.
1 Zy =Co — Cia Ca2|13 Py = ACLR(QA22T47[5Z2) Ca1
2 S1 = A2 + Ao X|[14 Sy = A12 - 52 Ao
3 Ty = Bi2 — B11 Y|l5 Pg = OtIP(SgTQ) X
4 Z3=Co1— 71 C21|16 P = AcLR(aA12B21+8C11) Ci1
5 T3 = B2z — Bia B12|17 Uy = P + P C11
6 S3=A11 — A A21|18 Uz = P + Ps X
5 P;= ACLR(QSng-‘,—BZl) Co2(17 Us = Uz + P Cao
8 Sy =851 —An A21|20 Uy = Uy + Ps5 X
9 To =B —T) Bi12(21 Ug =Us — Py Ca1
10 Ps = AcLR(aSlT1+[5012) C12|22 U7z =Us + Ps Cao
11 P = OLIP(AllBll) Y23 P3 = QIP(S4B22) Ci2
12 Ty = T3 — B2y X|24 Us =Uys + P3 Ci2

Table 6: AcLR schedule for C' «+ aA x B + C overwriting A and B with 2
temporaries, 4 recursive calls

overwriting only for instance the right input matrix. It also uses only two
temporaries, but has to call the OvR schedule. The extra memory required by

X and Y in table 6 is 2 (%)2 Hence, using lemma 1:

2
Es(n,n,n) < §n2.

(3)
The extra memory E7(n,n,n) required for table 7 in the top level of recursion
is:
ny 2 ny\2 nnmn
(3) +(3) +maxn B0 (5.53)

We clearly have E; > E5 and:

2
Ez(n,n,n) < gnz.

operation loc.[# operation loc.
1 Zy =Ca2 —Ci2 C2|13 P2 = AccR(aA12B21+8C11) Ci1
2 T, = Bis — B3 X|14 So =851 — Anx Y
3 Zo=Co — 721 C21|15 Pg = OLUVR(SQTQ) Ba1
4 T3 = B2z — Bia Bi2(16 Sy = A12 — S2 Y
5 S3=A11 —An Y17 Uz = P, + Ps Bay
6 P;= ACCR(QS3T3+ﬁZ1) C22|18 Us = Us + Pr Cao
7 S1 = Az + Aao Y19 Uy =Usz + Ps By
8 1o = Bax —T B12(20 Ug = Uz — P4 C21
9 P5= ACCR(OtSlTl-'rBClz) Ci2(21 Uy = P + P Ci1
10 Ty = T3 — B2y X|22 Uy =Us + P5 Cao
11 Py = ACCR(QA22T47['3Z2) C21|23 P3 = QIP(S4B22) Ci2
12 P, = OLUVR(AllBll) X|24 Us =Uys + Ps3 Ci2

Table 7: AccR schedule for C' +— aA x B+ 3C overwriting B with 2 temporaries,
4 recursive calls

Compared with the schedule of table 2, the possibility to overwrite the input
matrices makes it possible to have further in place calls and replace recursive
calls with accumulation by calls without accumulation. We show in theorem 3
that this enables us to almost compensate for the extra additions performed.

5.3 The rectangular case

We now examine the sizes of the temporary locations used, when the matrices
involved do not have identical sizes. We want to make use of table 3 for the
general case.

Firstly, the sizes of A and B must not be bigger than that of C' (i.e. we need
k < min (m,n)). Indeed, let’s play a pebble game that we start with pebbles on
the inputs and 4 extra pebbles that are the size of a C;;. No initial pebble can
be moved since at least two edges initiate from the initial nodes. If the size of
A;j is larger that the size of the free pebbles, then we cannot put a free pebble
on the S; nodes (they are too large). We cannot put either a pebble on P; or
P, since their operands would be overwritten. So the size of A;; is smaller or
equal than that of Cj;. The same reasoning applies for B;;.

Then, if we consider a pebble game that was successful, we can prove in the
same fashion that either the size of A or the size of B can not be smaller that
of C (so one of them has the same size as C).

Finally, table 3 shows that this is indeed possible, with £k = n < m. It is also
possible to switch the roles of m and n.

Now in tables 4 to 7, we need that A, B and C have the same size. Generalizing
table 3 whenever we do not have a dedicated in-place schedule can then done by
cutting the larger matrices in squares of dimension min (m, k,n) and doing the
multiplications / product with accumulations on these smaller matrices using
algorithm 1 to 7 and free space from A, B or C.Since algorithms 1 to 7 require
less than n? extra memory, we can use them as soon as one small matrix is free.
We now propose an example in algorithm 1 for the case n < min (m, k):

Proposition 1. Algorithm 1 computes the product C = AB in place, overwrit-
ing A and B.

10

Algorithm 1 IPOvMM: In-Place Overwrite Matrix Multiply
Input: A and B of resp. sizes m x k and k X n
Input: n < min (m, k) and m, k, n powers of 2.
Output: C=Ax B
1: Let ko = k/n and mg = m/n.
A1,1 .. A17k0 ﬂ ﬂ
2: Split A = : : ,B=1] : |and C= | : >

Amg | - {Amo,ko B, &
where A;; and B;

have dimension n xn
Ch— A1 By > with alg. of table 1 and memory Cj.

Now we use A;; as temporary space.
fori=2...ky do
Ci— Ai1B: > with alg. of table 4.
end for
for j =2...ky do
fori=1...mg do
10: Oj — Aiﬁij + Cj > with alg. of table 2.
11: end for
12: end for

Finally, we generalize the accumulation operation from table 7 to the rect-
angular case. We can no longer use dedicated square algorithms. This is done
in table 8, overwriting only one of the inputs and using only two temporaries,
but with 5 recursive accumulation calls:

operation loc.[# operation loc.
1 Zy =Ca—Ci2 C22[13 P2 = AcR(aA12B21+5C11) Chia
2 Ty = Bi2 — Bi1 X14 Uy =P + P C11
3 Zo=Ca1— 21 C21|15 S2 =81 — A1n Y
4 T3 = Bao — Bio Bi2[16 Uz = ACR(O[SQTg-‘rPl) X
5 Sz3=A11—An Y|17 Uz = Uz + Pr Caz
6 Pr= ACR(aSng-‘rﬁZl) C22|18 Ug = U3z — Py Co1
7 S1 = Az + A Y19 U7z =Us + Ps Caa
8 T = Bass — 1T, B12|20 Uy = Us + Ps X
9 P;= ACR(OtSlTl +5012) C12]21 Sy = A2 — So Y
10 T4 = T2 — Bgl X|[22 P3 = 0154822 012
11 Py = ACR(QA22T4—BZ2) C21|23 Ug = Uy + P3 Ci2
12 P1 = aAllBll X|[24

Table 8: AcR schedule for C' «+ aAx B+ C with 5 recursive calls, 2 temporaries
and overwriting B

For instance, in table 8, the last multiplication (line 22, Ps = «S4Ba2) could
have been made by a call to the in place algorithm, would C72 be large enough.
This is not always the case in a rectangular setting.

Now, the size of the extra temporaries required in table 8 is max (%, %)% +

11

2% and Es(m, k,n) is equal to:

m k\n mk m k n
max (5,5)5—’—55 +max(Eg,E1) (5,5,5)

Ifm<k<nork<m<n,then Es(m,k,n) < E1(m,k,n):
k k k

Eg(m,k,n):max T Y E_|_T__|_E11 ﬂv_aﬁ

2°2°2

n

2

cmax (M E\n mE L1 (mn K
*\202)2 722 73\22 22)
Otherwise Es(m, k,n) > E1(m, k,n) and:

Es(m,k,n) < % (max (m, k)n +mk) .

2

In the square case, this simplifies into Fg(n,n,n) < £n?.

win

In addition, if the size of B is bigger than that of A, then one can store Sy, for
instance within Bj2, and separate the recursive call 16 into a multiplication and
an addition, which reduces the arithmetic complexity. Otherwise, a scheduling
with only 4 recursive calls exists too, but we need for instance to recompute Sy
at step 21.

6 Hybrid scheduling

By combining techniques from sections 3 and 5, we now propose in table 9
a hybrid algorithm that performs the computation C' «— aA x B + gC with
constant input matrices A and B, with a lower extra memory requirement than
the scheduling of [10] (table 2). We have to pay a price of order n? log(n) extra
operations, as we need to compute the temporary variable 75 twice.

operation loc.|# operation loc.
1 Zy=Ca2 —Ci2 C22[14 P2 = Acc(aA12B21+6C11) C1
2 Z3=Ci12—Can Ci2|15 Uy =P + P> Ci1
3 S1 = Az + Aoz X|16 Us = Uz + P3 Ci2
5 P;= ACC(O[SlTl-‘rﬁZg) C12(18 T3 = By — Bj2 Y
6 S =51 — A1 X|19 Us = P; + Uz Cao1
7 T5 = Bos — T4 Y = OLACLR(S;;T3+U2)

8 Ps = Acc(aSaT2+pC21) C21|20 Uz = Uz + Wy 22
9 Sy =Ai2— S X|21 T{:Blngll Y
10 Wy = Ps 4+ B2y C22|22 T2, = Bag — Tll Y
11 P3 = ACC(OLS4BQQ+P5) C12|23 Ty = T2, — Boy

12 P1 = OtAllBll X|24 Uﬁ = U3 — P4 021
13 Uy = Ps + P1 Co1 = —aACCR(A22T4—U3)

Table 9: Acc schedule for operation C «— aA x B + SC with 2 temporaries

12

Again, the two temporary blocks X and Y have dimensions X, = Y, =
(n/2)? so that:
m k n
Eg = YS + max{XS + EQ,XS + EG,ES} (5, 5, 5) .

In all cases, Eg + Xs > Fs. But X, 4+ Y; is not as large as the size of the two
temporaries in table 6. We therefore get:

m k n
Eg(mvkan):}/S_FXs_FEﬁ <57§7§>

<2(5) 3 () (3))

Assuming m = n = k, one gets Eg(n,n,n) < %nQ, which is smaller than the
extra memory requirement of table 2.

7 A sub-cubic in-place algorithm

Following the improvements of the previous section, the question was raised
whether extra memory allocation was intrinsic to sub-cubic matrix multiplica-
tion algorithms. More precisely, is there a matrix multiplication algorithm com-
puting C «— A x Bin O (n1°g2 7) arithmetic operations without extra memory
allocation and without overwriting its input arguments? We show in this sec-
tion that a combination of Winograd’s algorithm and a classic block algorithm
provides a positive answer. Furthermore this algorithm also improves the extra
memory requirement for the product with accumulation C' «— aA x B + C.

7.1 The algorithm

The key idea is to split the result matrix C into four quadrants of dimension
n/2 x n/2. The first three quadrants C11,Cy2 and Cy; are computed using fast
rectangular matrix multiplication, which accounts for 2k/n standard Winograd
multiplications on blocks of dimension n/2 x n/2. The temporary memory
for these computations is stored in Csy. Lastly, the block Cs2 is computed
recursively up to a base case, as shown on algorithm 2. This base case, when
the matrix is too small to benefit from the fast routine, is then computed with
the classical matrix multiplication.

Theorem 1. The complexity of algorithm 2 is:
G(n,n) = 7.2n'°%2(7" _13n2 4+ 6.8n

when k = n.

13

Algorithm 2 IPMM: In-Place Matrix Multiply

Input: A and B, of dimensions resp. n X k and k£ x n with k, n powers of 2
and k£ > n.

Output: C=Ax B

o Al A _Bi1 | Bia
. _ €102 Al AL ok/n _ } }
1: Split €' = [021022}7 A= |:A2,1. . ‘A2,2k/n:| and B = - - g
Boi /n,1|Bak/n,2
where each
Aiﬁj, Biﬁj and Oiﬁj
have dimension
n/2 xn/2.
2: do > with alg. of table 1 using C2 as temp. space
3: Cii=A11B1
4: Cio=A411B1
5: Co1 = A31B1,1
6: end do
7. fori=2... % do > with alg. of table 2 using C5; as temporary space:
8: Cii=41,;Bi1+Cn
9: Cia = A1iBi2+ Cr2

H
@

Co1 = Ay;Bi1 +Cx
: end for
: Cog = Ag 4« X By > recursively using IPMM.

=
N =

Proof. Recall that the cost of Winograd’s algorithm for square matrices is
W (n) = 6n'°827 —5n? for the operation C « Ax B and Wyee(n) = 6n'°827 —4n?
for the operation C «+— A x B + C. The cost G(n, k) of algorithm 2 is given by
the relation

G(n, k) = 3W(n/2) + 3(2k/n — 1)Waee(n/2) + G(n/2, k),

the base case being a classical dot product: G(1,k) = 2k — 1. Thus, G(n,k) =
7.2kn!o82(N=1 _ 12kn — n? 4 34k /5. O

Theorem 2. For any m, n and k, algorithm 2 is in place.

Proof. W.l.o.g, we assume that m > n > 1 (otherwise we could use the trans-
pose). The exact amount of extra memory from algorithms in table 1 and 2 is
respectively given by eq. (1) and (2).

If we cut B into p; stripes at recursion level i, then the sizes for the involved
submatrices of A (resp. B) are m/2% x k/p; (reps. k/p; x n/2%). The lower right
corner submatrix of C' that we would like to use as temporary space has a size
m/2¢ x n/2%. Thus we need to ensure that the following inequality holds:

(4)

k
HlaX(El,EQ) (m 7’L> < mn

3502 Sag

14

It is clear that Fy < FEs, which simplifies the previous inequality. Let us now
write K = k/p;, M = m/2" and N = n/2". We need to find, for every i an
integer p; > 1 so that eq. (4) holds. In other words, let us show that there exists
some K < k such that, for any (M, N), the inequality Eo(M,K,N) < MN
holds. Then the fact that E(M,2,N) < 2(2M +2N+MN) < $(4M + MN) <
M N provides at least one such K.

As the requirements in algorithm 2 ensure that £k > N and M = N, there just
remains to prove that E(M,N,N) < MN. Since E(M,N,N) < 1(2MN + N?)
and again M > N, algorithm 2 is indeed in place. o

Hence a fully in-place O (n1°g2 7) algorithm is obtained for matrix multipli-
cation. The overhead of this approach appears in the multiplicative constant of
the leading term of the complexity, growing from 6 to 7.2.

This approach extends to the case of matrices with general dimensions, using
for instance peeling or padding techniques.

It is also useful if any sub-cubic algorithm is used instead of Winograd’s. For in-
stance, in the square case, one can use the product with accumulation in table 9
instead of table 2.

7.2 Reduced memory usage for the product with accumu-
lation

In the case of computing the product with accumulation, the matrix C' can no
longer be used as temporary storage, and extra memory allocation cannot be
avoided. Again we can use the idea of the classical block matrix multiplication
at the higher level and call Winograd algorithm for the block multiplications.
As in the previous subsection, C' can be divided into four blocks and then the
product can be made with 8 calls to Winograd algorithm for the smaller blocks,
with only one extra temporary block of dimension n/2 x n/2.

More generally, for square n x n matrices, C' can be divided in #? blocks of
dimension % x . Then one can compute each block with Winograd algorithm
using only one extra memory chunk of size (n/t)?. The complexity is changed
to Ri(n) = t*tWyee(n/t), which is Ry(n) = 6t371082(Nplog=(T) _ 4¢n? for an
accumulation product with Winograd’s algorithm. Using the parameter ¢, one
can then balance the memory usage and the extra arithmetic operations. For
example, with ¢ = 2,

Ry = 6.857n1°%27 — 8n? and ExtraMem = n

and with ¢ = 3,

2

Ry = 7.414n1°%27 — 1202 and ExtraMem — %.

Note that one can use the algorithm of table 9 instead of the classical Wino-
grad accumulation as the base case algorithm. Then the memory overhead drops
2n?

down to 5z and the arithmetic complexity increases to Ry (n)+t271o82(3) plog2(6) _
2

tn”.

15

8 Conclusion

With constant input matrices, we reduced the number of extra memory alloca-
tions for the operation C' < oA x B + 3C from n? to 2n?, by introducing two
extra pre-additions. As shown below, the overhead induced by these supple-
mentary additions is amortized by the gains in number of memory allocations.

If the input matrices can be overwritten, we proposed a fully in-place sched-
ule for the operation C' +— A x B without any extra operations. We also proposed
variants for the operation C <+ A x B, where only one of the input matrices
is being overwritten and one temporary is required. These subroutines allow
us to reduce the extra memory allocations required for the C' +— «A x B + 8C
operation without overwrite: the extra required temporary space drops from n?
to only %n2, at a negligible cost.

Some algorithms with an even more reduced memory usage, but with some
increase in arithmetic complexity, are also shown. Table 10 gives a summary
of the features of each schedule that has been presented. The complexities are
given only for m = k = n being a power of 2.

Theorem 3. The arithmetic and memory complezities of table 10 are correct.

Proof. For the operation A x B, the arithmetic complexity of the schedule of
table 1 classically satisfies

{Wl(n)_7wl(g) +15(2)°
Wi (1)=1 ’

so that Wi (n) = 6n'°82(7) — 5n2,
The schedule of table 1 requires

extra memory space, which is Mi(n) = 2n?. Its total number of allocations

satisfies 41 (n) = 2 (2)2 + 7TA; (%) which is Al() = 2(nlos2(D —pn?),
The schedule of table 4 requires My(n) = (%) + My (%) extra memory
space, which is My(n) = 3 n?. Its total number of allocations satisfies A4(n) =

(2)® + 444 (2) which is Ay(n) = 1n2logy(n).
The schedule of table 5 requires the same amount of arithmetic operations
or memory.

For A x B + BC, the arithmetic complexity of [10] satisfies
n 2
Wa(n) = 5Ws (5) +2W1()+14()

5)°+
(n) =

hence Wa(n) = 6n'e(7) — 4n ; its memory overhead satisfies Ma(n) = 3 (
M,y (%) , which is My (n) = n?; its total number of allocations satlsﬁes Ao

16

LT

Algorithm Input matrices # of extrg extra botal # O.f extra arithmetic complexity
temporaries mem- allocations
ory
Table 1 [6] Constant 2 Zn? 2(n>%7 —n?) 6n>897 — 5n?
T Table3 Both Overwritten 0 0 0 60507 — 5n>
< | Table 4 or 5 | A or B Overwritten 1 in® in*log,(n) 6n>897 — 5n?
7.1 Constant 0 0 0 7.2n> %7 — 13n°
2 loga (7) logs(5) _
& | Table 2 [10] Constant 3 n? 3" ;;L;l 612807 — 4n?
= . 2.2 1 28 2.807 2,12
+ Table 6 Both Overwritten 2 n 51" logy(n) 6n —4n~ + 3n"log,(n)
A Table 7 B Overwritten 2 %nQ 202322 _ op? 6n>%°7 — 4n® + In”log,(n)
é Table 9 Constant 2 =n’ 2?80 4 on? 32 _22p2 | 6n> 807 —4n? + In?log,(n)
S 7.2 Constant N/A in’ in’ 6.857n>%"7 — 8n?
7.2 Constant N/A sn’ in’ 7.414n> %7 — 12n?

Table 10: Complexities of the schedules presented for square matrix multiplication

3(2)° + 54, (2) + 24, (), which is
Ax(n) = ZnomsD g s 22,

The arithmetic complexity of the schedule of table 6 satisfies
n 2
We(n) = 4Ws (5) + 3w, () +17()

so that We(n) = 6n°82(7 — 4n? + In?log,(n); its number of extra memory sat-

isfies Mg(n) = 2 (%)2+Mﬁ (%), which is Mg(n) = 2n?; its total number of allo-

cations satisfies Ag(n) = 2 (%)2 +4Ag (%), which is Ag(n) =n? + 1n?log,(n).
The arithmetic complexity of table 7 schedule satisfies

o = (3) s (2) 2 (2) 102"

so that W7(n) = 6n'°%2(") — 4n? 4 In2log,(n); its number of extra memory

satisfies M7 (n) = 2 (%)2 + M7 (2), which is Mr(n) = 2n?; its total number
of allocations satisfies A7(n) = 2 (%) +4A7 (%) +2A5 (%), which is A7(n) =
2nto82(5) — 9n?2,

The arithmetic complexity of the schedule of table 9 satisfies

Wo(n)—4W9()+W1()+2W6()+17()2,

so that Wo(n) = 6n'°82(1) — 4n? + 2n? (log,(n) — 1) + 2; its number of extra
memory satisfies Mg(n) = 2 (%)2 + My (%), which is Mg(n) = 2n?; its total
number of allocations satisfies Ag(n) = 2 () —i— 449 () + Ay (%) + 246 (%) ,
which is Ag(n) = 2nloe2(7) 4 2ploe: () _ 22p2 4 2, O

For instance, by adding up allocations and arithmetic operations in table 10,
one sees that the overhead in arithmetic operations of the schedule of table 9
is somehow amortized by the decrease of memory allocations. Thus it makes it
theoretically competitive with the algorithm of [10] as soon as n > 44.

Also, problems with dimensions that are not powers of two can be handled by
combining the cuttings of algorithms 1 and 2 with peeling or padding techniques.
Moreover, some cut-off can be set in order to stop the recursion and switch to
the classical algorithm. The use of these cut-offs will in general decrease both
the extra memory requirements and the arithmetic complexity overhead.

For instance we show on table 11 the relative speed of different multiplication
procedures for some double floating point rectangular matrices. We use atlas-
3.9.4 for the BLAS and a cut-off of 1024. We see that pour new schedules
perform quite competitively with the previous ones and that the savings in
memory enable larger computations (MT for memory thrashing).

18

Dims. (m,k,n) Classic [6] IPMM | IPOVMM
(4096,4096,4096) 14.03 | 11.93 13.59 11.98
(4096,8192,4096) 28.29 | 23.39 27.16 23.88
(8192,8192,8192) 113.07 | 85.97 | 98.75 85.02

(8192,16384,8192) 231.86 MT | 197.24 | 170.72

Table 11: Rectangular matrix multiplication: computation time in seconds on
a core2 duo, 3.00GHz, 2x2Gb RAM

References

1

2]

3]

4]

[5]

[6]

7]

8]

19]

[10]

M. Bader and C. Zenger. Cache oblivious matrix multiplication using an
element ordering based on a Peano curve. Linear Algebra and its Applica-
tions, 417(2-3):301-313, Sept. 2006.

D. H. Bailey. Extra high speed matrix multiplication on the Cray-2. SIAM
Journal on Scientific and Statistical Computing, 9(3):603-607, 1988.

D. Bini and V. Pan. Polynomial and Matriz Computations, Volume 1:
Fundamental Algorithms. Birkhauser, Boston, 1994.

M. Clausen, P. Biirgisser, and M. A. Shokrollahi. Algebraic Complexity
Theory. Springer, 1997.

D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic
progressions. Journal of Symbolic Computation, 9(3):251-280, 1990.

C. C. Douglas, M. Heroux, G. Slishman, and R. M. Smith. GEMMW:
A portable level 3 BLAS Winograd variant of Strassen’s matrix-matrix
multiply algorithm. Journal of Computational Physics, 110:1-10, 1994.

J.-G. Dumas, T. Gautier, and C. Pernet. Finite field linear algebra sub-
routines. In T. Mora, editor, ISSAC’2002, pages 63-74. ACM Press, New
York, July 2002.

J.-G. Dumas, P. Giorgi, and C. Pernet. FFPACK: Finite field linear algebra
package. In J. Gutierrez, editor, ISSAC 2004, pages 119-126. ACM Press,
New York, July 2004.

S. Huss-Lederman, E. M. Jacobson, J. R. Johnson, A. Tsao, and T. Turn-
bull. Implementation of Strassen’s algorithm for matrix multiplication. In
ACM, editor, Supercomputing ‘96 Conference Proceedings: November 17—
22, Pittsburgh, PA. ACM Press and IEEE Computer Society Press, 1996.
WWw . supercomp.org/sc96/proceedings/SCI6PROC/JACOBSON/.

S. Huss-Lederman, E. M. Jacobson, J. R. Johnson, A. Tsao, and T. Turn-
bull. Strassen’s algorithm for matrix multiplication : Modeling analysis,
and implementation. Technical report, Center for Computing Sciences,
Nov. 1996. CCS-TR-96-17.

19

[11]

[12]

[13]

[14]

[15]

[16]

[17]

O. H. Ibarra, S. Moran, and R. Hui. A generalization of the fast LUP
matrix decomposition algorithm and applications. Journal of Algorithms,
3(1):45-56, Mar. 1982.

C.-P. Jeannerod, C. Pernet, and A. Storjohann. Fast Gaussian elimination
and the PLUQ decomposition. Technical report, 2007.

A. Kreczmar. On memory requirements of Strassen’s algorithms. In
A. Mazurkiewicz, editor, Proceedings of the 5th Symposium on Mathemati-
cal Foundations of Computer Science, volume 45 of LNCS, pages 404-407,
Gdansk, Poland, Sept. 1976. Springer.

J. Laderman, V. Pan, and X.-H. Sha. On practical algorithms for accel-
erated matrix multiplication. Linear Algebra and its Applications, 162—
164:557-588, 1992.

C. Pernet. Implementation of Winograd’s fast matrix multiplication over
finite fields using ATLAS level 3 BLAS. Technical report, Laboratoire Infor-
matique et Distribution, July 2001. 1jk.imag.fr/membres/Jean-Guillaume.
Dumas/FFLAS

V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13:354-356, 1969.

S. Winograd. On multiplication of 2x2 matrices. Linear Algebra and Ap-
plication, 4:381-388, 1971.

20

