
HAL Id: hal-00163141
https://hal.science/hal-00163141v5

Submitted on 18 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Memory efficient scheduling of Strassen-Winograd’s
matrix multiplication algorithm

Brice Boyer, Jean-Guillaume Dumas, Clément Pernet, Wei Zhou

To cite this version:
Brice Boyer, Jean-Guillaume Dumas, Clément Pernet, Wei Zhou. Memory efficient scheduling of
Strassen-Winograd’s matrix multiplication algorithm. ISSAC 2009 - International Symposium on Sym-
bolic and Algebraic Computation, Jul 2009, Séoul, South Korea. pp.55-62, �10.1145/1576702.1576713�.
�hal-00163141v5�

https://hal.science/hal-00163141v5
https://hal.archives-ouvertes.fr

Memory e�
ient s
heduling ofStrassen-Winograd's matrix multipli
ationalgorithm∗Bri
e Boyer† Jean-Guillaume Dumas∗ Clément Pernet‡Wei Zhou§May 18, 2009Abstra
tWe propose several new s
hedules for Strassen-Winograd's matrix mul-tipli
ation algorithm, they redu
e the extra memory allo
ation require-ments by three di�erent means: by introdu
ing a few pre-additions, byoverwriting the input matri
es, or by using a �rst re
ursive level of
las-si
al multipli
ation. In parti
ular, we show two fully in-pla
e s
hedules:one having the same number of operations, if the input matri
es
an beoverwritten; the other one, slightly in
reasing the
onstant of the leadingterm of the
omplexity, if the input matri
es are read-only. Many of theses
hedules have been found by an implementation of an exhaustive sear
halgorithm based on a pebble game.Keywords: Matrix multipli
ation, Strassen-Winograd's algorithm, Memorypla
ement.1 Introdu
tionStrassen's algorithm [16℄ was the �rst sub-
ubi
 algorithm for matrix multipli-
ation. Its improvement by Winograd [17℄ led to a highly pra
ti
al algorithm.
∗
©ACM, 2009. This is the author's version of the work. It is posted here by permissionof ACM for your personal use. Not for redistribution. The de�nitive version was published inISSAC 2009.
†Laboratoire J. Kuntzmann, Université de Grenoble. 51, rue des Mathématiques, umrCNRS 5224, bp 53X, F38041 Grenoble, Fran
e, \{Bri
e.Boyer,Jean-Guillaume.Dumas\}�imag.fr
‡Laboratoire LIG, Université de Grenoble. umr CNRS, F38330 Montbonnot, Fran
e.Clement.Pernet�imag.fr
§S
hool of Computer S
ien
e, University of Waterloo, Waterloo, ON, N2B 3G1, Canada.w2zhou�uwaterloo.
a 1

The best asymptoti

omplexity for this
omputation has been su

essively im-proved sin
e then, down to O (

n2.376
) in [5℄ (see [3, 4℄ for a review), but Strassen-Winograd's still remains one of the most pra
ti
able. Former studies on howto turn this algorithm into pra
ti
e
an be found in [2, 9, 10, 6℄ and referen
estherein for numeri
al
omputation and in [15, 7℄ for
omputations over a �nite�eld.In this paper, we propose new s
hedules of the algorithm, that redu
e the extramemory allo
ation, by three di�erent means: by introdu
ing a few pre-additions,by overwriting the input matri
es, or by using a �rst re
ursive level of
lassi
almultipli
ation. These s
hedules
an prove useful for instan
e for memory e�-
ient
omputations of the rank, determinant, nullspa
e basis, system resolution,matrix inversion... Indeed, the matrix multipli
ation based LQUP fa
torizationof [11℄
an be
omputed with no other temporary allo
ations than the onesinvolved in its blo
k matrix multipli
ations [12℄. Therefore the improvementson the memory requirements of the matrix multipli
ation, used together for in-stan
e with
a
he optimization strategies [1℄, will dire
tly improve these higherlevel
omputations.We only
onsider here the
omputational
omplexity and spa
e
omplexity,
ounting the number of arithmeti
 operations and memory allo
ations. Thefo
us here is neither on stability issues, nor really on speed improvements. Werather study potential memory spa
e savings. Further studies have thus to bemade to assess for some gains for in-
ore
omputations or to use these s
hed-ules for numeri
al
omputations. They are nonetheless already useful for exa
t
omputations, for instan
e on integer/rational or �nite �eld appli
ations [8, 14℄.The remainder of this paper is organized as follows: we review Strassen-Winograd's algorithm and existing memory s
hedules in se
tions 2 and 3. Wethen present in se
tion 4 the dynami
 program we used to sear
h for s
hedules.This allows us to give several s
hedules overwriting their inputs in se
tion 5, andthen a new s
hedule for C ← AB+C using only two extra temporaries in se
tion6, all of them preserving the leading term of the arithmeti

omplexity. Finally,in se
tion 7, we present a generi
 way of transforming non in-pla
e matrixmultipli
ation algorithms into in-pla
e ones (i.e. without any extra temporaryspa
e), with a small
onstant fa
tor overhead. Then we re
apitulate in table 10the di�erent available s
hedules and give their respe
tive features.2 Strassen-Winograd AlgorithmWe �rst review Strassen-Winograd's algorithm, and setup the notations thatwill be used throughout the paper.Let m, n and k be powers of 2. Let A and B be two matri
es of dimension m×kand k × n and let C = A×B. Consider the natural blo
k de
omposition:

[

C11 C12

C21 C22

]

=

[

A11 A12

A21 A22

] [

B11 B12

B21 B22

]

,2

where A11 and B11 respe
tively have dimensions m/2 × k/2 and k/2 × n/2.Winograd's algorithm
omputes the m×n matrix C = A×B with the following22 blo
k operations:
• 8 additions:

S1 ← A21 + A22 S2 ← S1 −A11 S3 ← A11 −A21

T1 ← B12 −B11 T2 ← B22 − T1 T3 ← B22 −B12

S4 ← A12 − S2 T4 ← T2 −B21

• 7 re
ursive multipli
ations:
P1 ← A11 ×B11 P2 ← A12 ×B21

P3 ← S4 ×B22 P4 ← A22 × T4

P5 ← S1 × T1 P6 ← S2 × T2 P7 ← S3 × T3

• 7 �nal additions:
U1 ← P1 + P2 U2 ← P1 + P6

U3 ← U2 + P7 U4 ← U2 + P5

U5 ← U4 + P3 U6 ← U3 − P4 U7 ← U3 + P5

• The result is the matrix: C =

[

U1 U5

U6 U7

].Figure 1 illustrates the dependen
ies between these tasks.3 Existing memory pla
ementsUnlike the
lassi
 multipli
ation algorithm, Winograd's algorithm requires someextra temporary memory allo
ations to perform its 22 blo
k operations.3.1 Standard produ
tWe �rst
onsider the basi
 operation C ← A × B. The best known s
hedulefor this
ase was given by [6℄. We reprodu
e a similar s
hedule in table 1. Itrequires two temporary blo
ks X and Y whose dimensions are respe
tively equalto m/2×max(k/2, n/2) and k/2× n/2. Thus the extra memory used is:
E1(m, k, n) =

m

2
max

(

k

2
,
n

2

)

+
k

2

n

2
+ E1

(

m

2
,
k

2
,
n

2

)

.Summing these temporary allo
ations over every re
ursive levels leads to a totalamount of memory, where for brevity M = min {m, k, n}:
E1(m, k, n) =

log
2
(M)

∑

i=1

1

4i
(m max (k, n) + kn) (1)

=
1

3

(

1−
1

M2

)

(m max (k, n) + kn)

<
1

3
(m max (k, n) + kn) .3

Figure 1: Winograd's task dependen
y graphWe
an prove in the same manner the following lemma:Lemma 1. Let m, k and n be powers of two, g(x, y, z) be homogeneous, M =
min {m, k, n} and f(m, k, n) be a fun
tion su
h that

f(m, k, n) =

{

g
(

m
2 , k

2 , n
2

)

+ f
(

m
2 , k

2 , n
2

) if m,n and k > 1

0 otherwise.Then f (m, k, n) = 1
3

(

1− 1
M2

)

g(m, k, n) < 1
3g(m, k, n).In the remainder of the paper, we use Ei to denote the amount of extramemory used in table number i. The amount of extra memory we
onsider isalways the sum up to the last re
ursion level.Finally, assuming m = n = k gives a total extra memory requirement of

E1(n, n, n) < 2/3n2.3.2 Produ
t with a

umulationFor the more general operation C ← αA×B + βC, a �rst naïve method would
ompute the produ
t αA×B using the s
heduling of table 1, into a temporary4

operation lo
. # operation lo
.1 S3 = A11 − A21 X 12 P1 = A11B11 X2 T3 = B22 − B12 Y 13 U2 = P1 + P6 C123 P7 = S3T3 C21 14 U3 = U2 + P7 C214 S1 = A21 + A22 X 15 U4 = U2 + P5 C125 T1 = B12 − B11 Y 16 U7 = U3 + P5 C226 P5 = S1T1 C22 17 U5 = U4 + P3 C127 S2 = S1 − A11 X 18 T4 = T2 − B21 Y8 T2 = B22 − T1 Y 19 P4 = A22T4 C119 P6 = S2T2 C12 20 U6 = U3 − P4 C2110 S4 = A12 − S2 X 21 P2 = A12B21 C1111 P3 = S4B22 C11 22 U1 = P1 + P2 C11Table 1: Winograd's algorithm for operation C ← A×B, with two temporariesmatrix C′ and �nally
ompute C ← C′+βC. It would require (1+2/3)n2 extramemory allo
ations in the square
ase.Now the s
hedule of table 2 due to [10, �g. 6℄ only requires 3 temporary blo
ksfor the same number of operations (7 multipli
ations and 4+15 additions). The# operation lo
. # operation lo
.1 S1 = A21 + A22 X 12 S4 = A12 − S2 X2 T1 = B12 − B11 Y 13 T4 = T2 − B21 Y3 P5 = αS1T1 Z 14 C12 = αS4B22 + C12 C124 C22 = P5 + βC22 C22 15 U5 = U2 + C12 C125 C12 = P5 + βC12 C12 16 P4 = αA22T4 − βC21 C216 S2 = S1 − A11 X 17 S3 = A11 − A21 X7 T2 = B22 − T1 Y 18 T3 = B22 − B12 Y8 P1 = αA11B11 Z 19 U3 = αS3T3 + U2 Z9 C11 = P1 + βC11 C11 20 U7 = U3 + C22 C2210 U2 = αS2T2 + P1 Z 21 U6 = U3 − C21 C2111 U1 = αA12B21 + C11 C11 22Table 2: S
hedule for operation C ← αA×B + βC with 3 temporariesrequired three temporary blo
ks X, Y, Z have dimensions m/2× k/2, k/2×n/2and m/2× n/2. Sin
e the two temporary blo
ks in s
hedule 1 are smaller thanthe three ones here, we have E2 > E1. Hen
e, using lemma 1, we get
E2 (m, k, n) =

1

3

(

1−
1

M2

)

(mk + kn + mn) . (2)With m = n = k, this gives E2(n, n, n) < n2.We propose in table 9 a new s
hedule for the same operation αA×B +βC onlyrequiring two temporary blo
ks.Our new s
hedule is more e�
ient if some inner
alls overwrite their temporary5

input matri
es. We now present some overwriting s
hedules and the dynami
program we used to �nd them.4 Exhaustive sear
h algorithmWe used a brute for
e sear
h algorithm1 to get some of the new s
hedules thatwill be presented in the following se
tions. It is very similar to the pebble gameof Huss-Lederman et al. [10℄.A sequen
e of
omputations is represented as a dire
ted graph, just like �gure 1is built from Winograd's algorithm.A node represents a program variable. The nodes
an be
lassi�ed as initials(when they
orrespond to inputs), temporaries (for intermediate
omputations)or �nals (results or nodes that we want to keep, su
h as ready-only inputs).The edges represent the operations; they point from the operands to the result.A pebble represents an allo
ated memory. We
an put pebbles on any nodes,move or remove them a

ording to a set of simple rules shown below.When a pebble arrives to a node, the
omputation at the asso
iated variablestarts, and
an be �partially� or �fully� exe
uted. If not spe
i�ed, it is assumedthat the
omputation is fully exe
uted.Edges
an be removed, when the
orresponding operation has been
omputed.The last two points are espe
ially useful for a

umulation operations: for exam-ple, it is possible to try s
hedule the multipli
ation separately from the additionin an otherwise re
ursive AB + C
all; the edges involved in the multipli
ationoperation would then be removed �rst and the a

umulated part later. Theyare also useful if we do not want to �x the way some additions are performed:if U3 = P1 + P6 + P7 the asso
iativity allows di�erent ways of
omputing thesum and we let the program explore these possibilities. At the beginning ofthe exploration, ea
h initial node has a pebble and we may have a few extraavailable pebbles. The program then tries to apply the following rules, in order,on ea
h node. The program stops when every �nal node has a pebble or whenno further moves of pebbles are possible:
• Rule 0. Computing a result/removing edges. If a node has a pebble andparents with pebbles, then the operation
an be performed and the
orrespond-ing edges removed. The node is then at least partially
omputed.
• Rule 1. Freeing some memory/removing a pebble. If a node is isolatedand not �nal, its pebble is freed. This means that we
an re
laim the memoryhere be
ause this node has been fully
omputed (no edge pointing to it) and isno longer in use as an operand (no edge initiating from it).
• Rule 2. Computing in pla
e/moving a pebble. If a node P has a fullpebble and a single empty
hild node S and if other parents of S have pebbleson them, then the pebble on P may be transferred to S (
orresponding edgesare removed). This means an operation has been made in pla
e in the parent

P 's pebble.1The
ode is available at http://ljk.imag.fr/CASYS/LOGICIELS/Galet.6

• Rule 3. Using more memory/adding a pebble. If parents of an empty node
N have pebbles and a free pebble is available, then this pebble
an be assignedto N and the
orresponding edges are removed. This means that the operationis
omputed in a new memory lo
ation.
• Rule 4. Copying some memory/dupli
ating a pebble. A
omputed nodehaving a pebble
an be dupli
ated. The edges pointed to or from the originalnode are then rearranged between them. This means that a temporary resulthas been
opied into some free pla
e to allow more �exibility.5 Overwriting input matri
esWe now relax some
onstraints on the previous problem: the input matri
es

A and B
an be overwritten, as proposed by [13℄. For the sake of simpli
ity,we �rst give s
hedules only working for square matri
es (i.e. m = n = k andany memory lo
ation is supposed to be able to re
eive any result of any size).We nevertheless give the memory requirements of ea
h s
hedule as a fun
tionof m; k and n. Therefore it is easier in the last part of this se
tion to adapt theproposed s
hedules partially for the general
ase. In the tables, the notation
AijBij (resp. AijBij +Cij) denotes the use of the algorithm from table 1 (resp.table 2) as a subroutine. Otherwise we use the notation Alg(AijBij) to denotea re
ursive
all or the use of one of our new s
hedules as a subroutine.5.1 Standard produ
tWe propose in table 3 a new s
hedule that
omputes the produ
t C ← A × Bwithout any temporary memory allo
ation. The idea here is to �nd an order-ing where the re
ursive
alls
an be made also in pla
e su
h that the operandsof a multipli
ation are no longer in use after the multipli
ation has
ompletedbe
ause they are overwritten. An exhaustive sear
h showed that no s
heduleexists overwriting less than four sub-blo
ks. Note that this s
hedule uses only# operation lo
. # operation lo
.1 S3 = A11 − A21 C11 12 S4 = A12 − S2 A222 S1 = A21 + A22 A21 13 P6 = IP(S2T2) C223 T1 = B12 − B11 C22 14 U2 = P1 + P6 C224 T3 = B22 − B12 B12 15 P2 = IP(A12B21) C125 P7 = IP(S3T3) C21 16 U1 = P1 + P2 C116 S2 = S1 − A11 C12 17 U4 = U2 + P5 C127 P1 = IP(A11B11) C11 18 U3 = U2 + P7 C228 T2 = B22 − T1 B11 19 U6 = U3 − P4 C219 P5 = IP(S1T1) A11 20 U7 = U3 + P5 C2210 T4 = T2 − B21 C22 21 P3 = IP(S4B22) A1211 P4 = IP(A22T4) A21 22 U5 = U4 + P3 C12Table 3: IP s
hedule for operation C ← A×B in pla
e7

two blo
ks of B and the whole of A but overwrites all of A and B. For instan
ethe re
ursive
omputation of P2 requires overwriting parts of A12 and B21 too.Using another s
hedule as well as ba
k-ups of overwritten parts into some avail-able memory In the following, we will denote by IP for InPla
e, either one ofthese two s
hedules.We present in tables 4 and 5 two new s
hedules overwriting only one of the twoinput matri
es, but requiring an extra temporary spa
e. These two s
hedulesare denoted OvL and OvR. The exhaustive sear
h also showed that no s
heduleexists overwriting only one of A and B and using no extra temporary. We note# operation lo
. # operation lo
.1 S3 = A11 − A21 C22 12 P6 = OvL(S2T2) C212 S1 = A21 + A22 A21 13 T4 = T2 − B21 A113 S2 = S1 − A11 C12 14 U2 = P1 + P6 C214 T1 = B12 − B11 C21 15 U4 = U2 + P5 C125 P1 = OvL(A11B11) C11 16 U3 = U2 + P7 C216 T3 = B22 − B12 A11 17 U7 = U3 + P5 C227 P7 = IP(S3T3) X 18 U5 = U4 + P3 C128 T2 = B22 − T1 A11 19 P2 = OvL(A12B21) X9 P5 = IP(S1T1) C22 20 U1 = P1 + P2 C1110 S4 = A12 − S2 C21 21 P4 = IP(A22T4) A2111 P3 = OvL(S4B22) A21 22 U6 = U3 − P4 C21Table 4: OvL s
hedule for operation C ← A × B using stri
tly two blo
ks of Aand one temporary# operation lo
. # operation lo
.1 S3 = A11 − A21 C22 12 P4 = OvR(A22T4) B122 S1 = A21 + A22 C21 13 S4 = A12 − S2 B113 T1 = B12 − B11 C12 14 U2 = P1 + P6 C214 P1 = OvR(A11B11) C11 15 U4 = U2 + P5 C125 S2 = S1 − A11 B11 16 U3 = U2 + P7 C216 T3 = B22 − B12 B12 17 U7 = U3 + P5 C227 P7 = IP(S3T3) X 18 U6 = U3 − P4 C218 T2 = B22 − T1 B12 19 P3 = IP(S4B22) B129 P5 = IP(S1T1) C22 20 U5 = U4 + P3 C1210 T4 = T2 − B21 C12 21 P2 = OvR(A12B21) B1211 P6 = OvR(S2T2) C21 22 U1 = P1 + P2 C11Table 5: OvR s
hedule for operation C ← A × B using stri
tly two blo
ks of Band one temporarythat we
an overwrite only two blo
ks of A in OvL when the s
hedule is modi�edas follows: 8

operation lo
.18bis A21 = Copy(A12) A2119bis A12 = Copy(A21) A1221 P4 = OvR(A22T4) A21Similarly, for OvR, we
an overwrite only two blo
ks of B using
opies on lines20 and 21 and OvL on line 19.We now
ompute the extra memory needed for the s
hedule of table 5. The sizeof the temporary blo
k X is (

n
2

)2, the extra memory required for table 5 hen
esatis�es: E5(n, n, n) < 1
3n2.5.2 Produ
t with a

umulationWe now
onsider the operation C ← αA×B + βC, where the input matri
es Aand B
an be overwritten. We propose in table 6 a s
hedule that only requires

2 temporary blo
k matri
es, instead of the 3 in table 2. This is a
hieved byoverwriting the inputs and by using two additional pre-additions (Z1 and Z2)on the matrix C. We also propose in table 7 a s
hedule similar to table 6# operation lo
. # operation lo
.1 Z1 = C22 − C12 C22 13 P4 = A
LR(αA22T4−βZ2) C212 S1 = A21 + A22 X 14 S4 = A12 − S2 A223 T1 = B12 − B11 Y 15 P6 = αIP(S2T2) X4 Z2 = C21 − Z1 C21 16 P2 = A
LR(αA12B21+βC11) C115 T3 = B22 − B12 B12 17 U1 = P1 + P2 C116 S3 = A11 − A21 A21 18 U2 = P1 + P6 X5 P7 = A
LR(αS3T3+βZ1) C22 17 U3 = U2 + P7 C228 S2 = S1 − A11 A21 20 U4 = U2 + P5 X9 T2 = B22 − T1 B12 21 U6 = U3 − P4 C2110 P5 = A
LR(αS1T1+βC12) C12 22 U7 = U3 + P5 C2211 P1 = αIP(A11B11) Y 23 P3 = αIP(S4B22) C1212 T4 = T2 − B21 X 24 U5 = U4 + P3 C12Table 6: A
LR s
hedule for C ← αA × B + βC overwriting A and B with 2temporaries, 4 re
ursive
allsoverwriting only for instan
e the right input matrix. It also uses only twotemporaries, but has to
all the OvR s
hedule. The extra memory required by
X and Y in table 6 is 2

(

n
2

)2. Hen
e, using lemma 1:
E6(n, n, n) <

2

3
n2. (3)The extra memory E7(n, n, n) required for table 7 in the top level of re
ursionis:

(n

2

)2

+
(n

2

)2

+ max (E7, E5)
(n

2
,
n

2
,
n

2

)

.We
learly have E7 > E5 and:
E7(n, n, n) <

2

3
n2.9

operation lo
. # operation lo
.1 Z1 = C22 − C12 C22 13 P2 = A

R(αA12B21+βC11) C112 T1 = B12 − B11 X 14 S2 = S1 − A11 Y3 Z2 = C21 − Z1 C21 15 P6 = αOvR(S2T2) B214 T3 = B22 − B12 B12 16 S4 = A12 − S2 Y5 S3 = A11 − A21 Y 17 U2 = P1 + P6 B216 P7 = A

R(αS3T3+βZ1) C22 18 U3 = U2 + P7 C227 S1 = A21 + A22 Y 19 U4 = U2 + P5 B218 T2 = B22 − T1 B12 20 U6 = U3 − P4 C219 P5 = A

R(αS1T1+βC12) C12 21 U1 = P1 + P2 C1110 T4 = T2 − B21 X 22 U7 = U3 + P5 C2211 P4 = A

R(αA22T4−βZ2) C21 23 P3 = αIP(S4B22) C1212 P1 = αOvR(A11B11) X 24 U5 = U4 + P3 C12Table 7: A

R s
hedule for C ← αA×B+βC overwriting B with 2 temporaries,4 re
ursive
allsCompared with the s
hedule of table 2, the possibility to overwrite the inputmatri
es makes it possible to have further in pla
e
alls and repla
e re
ursive
alls with a

umulation by
alls without a

umulation. We show in theorem 3that this enables us to almost
ompensate for the extra additions performed.5.3 The re
tangular
aseWe now examine the sizes of the temporary lo
ations used, when the matri
esinvolved do not have identi
al sizes. We want to make use of table 3 for thegeneral
ase.Firstly, the sizes of A and B must not be bigger than that of C (i.e. we need
k 6 min (m, n)). Indeed, let's play a pebble game that we start with pebbles onthe inputs and 4 extra pebbles that are the size of a Cij . No initial pebble
anbe moved sin
e at least two edges initiate from the initial nodes. If the size of
Aij is larger that the size of the free pebbles, then we
annot put a free pebbleon the Si nodes (they are too large). We
annot put either a pebble on P1 or
P2 sin
e their operands would be overwritten. So the size of Aij is smaller orequal than that of Cij . The same reasoning applies for Bij .Then, if we
onsider a pebble game that was su

essful, we
an prove in thesame fashion that either the size of A or the size of B
an not be smaller thatof C (so one of them has the same size as C).Finally, table 3 shows that this is indeed possible, with k = n 6 m. It is alsopossible to swit
h the roles of m and n.Now in tables 4 to 7, we need that A, B and C have the same size. Generalizingtable 3 whenever we do not have a dedi
ated in-pla
e s
hedule
an then done by
utting the larger matri
es in squares of dimension min (m, k, n) and doing themultipli
ations / produ
t with a

umulations on these smaller matri
es usingalgorithm 1 to 7 and free spa
e from A, B or C.Sin
e algorithms 1 to 7 requireless than n2 extra memory, we
an use them as soon as one small matrix is free.We now propose an example in algorithm 1 for the
ase n < min (m, k):Proposition 1. Algorithm 1
omputes the produ
t C = AB in pla
e, overwrit-ing A and B. 10

Algorithm 1 IP0vMM: In-Pla
e Overwrite Matrix MultiplyInput: A and B of resp. sizes m× k and k × nInput: n < min (m, k) and m, k, n powers of 2.Output: C = A×B1: Let k0 = k/n and m0 = m/n.2: Split A =







A1,1 . . . A1,k0... ...
Am0,1 . . .Am0,k0






, B =







B1...
Bk0






and C =







C1...
Ck0






⊲where Ai,j and Bjhave dimension n×n3: C1 ← A1,1B1 ⊲ with alg. of table 1 and memory C2.4: Now we use A1,1 as temporary spa
e.5: for i = 2 . . . k0 do6: Ci ← Ai,1B1 ⊲ with alg. of table 4.7: end for8: for j = 2 . . . k0 do9: for i = 1 . . .m0 do10: Cj ← Ai,jBj + Cj ⊲ with alg. of table 2.11: end for12: end forFinally, we generalize the a

umulation operation from table 7 to the re
t-angular
ase. We
an no longer use dedi
ated square algorithms. This is donein table 8, overwriting only one of the inputs and using only two temporaries,but with 5 re
ursive a

umulation
alls:# operation lo
. # operation lo
.1 Z1 = C22 − C12 C22 13 P2 = A
R(αA12B21+βC11) C112 T1 = B12 − B11 X 14 U1 = P1 + P2 C113 Z2 = C21 − Z1 C21 15 S2 = S1 − A11 Y4 T3 = B22 − B12 B12 16 U2 = A
R(αS2T2+P1) X5 S3 = A11 − A21 Y 17 U3 = U2 + P7 C226 P7 = A
R(αS3T3+βZ1) C22 18 U6 = U3 − P4 C217 S1 = A21 + A22 Y 19 U7 = U3 + P5 C228 T2 = B22 − T1 B12 20 U4 = U2 + P5 X9 P5 = A
R(αS1T1+βC12) C12 21 S4 = A12 − S2 Y10 T4 = T2 − B21 X 22 P3 = αS4B22 C1211 P4 = A
R(αA22T4−βZ2) C21 23 U5 = U4 + P3 C1212 P1 = αA11B11 X 24Table 8: A
R s
hedule for C ← αA×B+βC with 5 re
ursive
alls, 2 temporariesand overwriting BFor instan
e, in table 8, the last multipli
ation (line 22, P3 = αS4B22)
ouldhave been made by a
all to the in pla
e algorithm, would C12 be large enough.This is not always the
ase in a re
tangular setting.Now, the size of the extra temporaries required in table 8 is max

(

m
2 , k

2

)

n
2 +11

m
2

k
2 and E8(m, k, n) is equal to:

max

(

m

2
,
k

2

)

n

2
+

m

2

k

2
+ max (E8, E1)

(

m

2
,
k

2
,
n

2

)

.If m < k < n or k < m < n, then E8(m, k, n) < E1(m, k, n):
E8(m, k, n) = max

(

m

2
,
k

2

)

n

2
+

m

2

k

2
+ E1

(

m

2
,
k

2
,
n

2

)

< max

(

m

2
,
k

2

)

n

2
+

m

2

k

2
+

1

3

(

m

2

n

2
+

k

2

n

2

)

.Otherwise E8(m, k, n) > E1(m, k, n) and:
E8(m, k, n) <

1

3
(max (m, k)n + mk) .In the square
ase, this simpli�es into E8(n, n, n) 6 2

3n2.In addition, if the size of B is bigger than that of A, then one
an store S2, forinstan
e within B12, and separate the re
ursive
all 16 into a multipli
ation andan addition, whi
h redu
es the arithmeti

omplexity. Otherwise, a s
hedulingwith only 4 re
ursive
alls exists too, but we need for instan
e to re
ompute S4at step 21.6 Hybrid s
hedulingBy
ombining te
hniques from se
tions 3 and 5, we now propose in table 9a hybrid algorithm that performs the
omputation C ← αA × B + βC with
onstant input matri
es A and B, with a lower extra memory requirement thanthe s
heduling of [10℄ (table 2). We have to pay a pri
e of order n2 log(n) extraoperations, as we need to
ompute the temporary variable T2 twi
e.# operation lo
. # operation lo
.1 Z1 = C22 − C12 C22 14 P2 = A

(αA12B21+βC11) C112 Z3 = C12 − C21 C12 15 U1 = P1 + P2 C113 S1 = A21 + A22 X 16 U5 = U2 + P3 C124 T1 = B12 − B11 Y 17 S3 = A11 − A21 X5 P5 = A

(αS1T1+βZ3) C12 18 T3 = B22 − B12 Y6 S2 = S1 − A11 X 19 U3 = P7 + U2 C217 T2 = B22 − T1 Y = αA
LR(S3T3+U2)8 P6 = A

(αS2T2+βC21) C21 20 U7 = U3 + W1 C229 S4 = A12 − S2 X 21 T ′

1
= B12 − B11 Y10 W1 = P5 + βZ1 C22 22 T ′

2
= B22 − T ′

1
Y11 P3 = A

(αS4B22+P5) C12 23 T4 = T ′

2
− B21 Y12 P1 = αA11B11 X 24 U6 = U3 − P4 C2113 U2 = P6 + P1 C21 = −αA

R(A22T4−U3)Table 9: A

 s
hedule for operation C ← αA×B + βC with 2 temporaries12

Again, the two temporary blo
ks X and Y have dimensions Xs = Ys =
(n/2)2 so that:

E9 = Ys + max {Xs + E9, Xs + E6, E8}

(

m

2
,
k

2
,
n

2

)

.In all
ases, E6 + Xs > E8. But Xs + Ys is not as large as the size of the twotemporaries in table 6. We therefore get:
E9(m, k, n) = Ys + Xs + E6

(

m

2
,
k

2
,
n

2

)

< 2
(n

2

)2

+
1

3

(

(n

2

)2

+
(n

2

)2
)

.Assuming m = n = k, one gets E9(n, n, n) < 2
3n2, whi
h is smaller than theextra memory requirement of table 2.7 A sub-
ubi
 in-pla
e algorithmFollowing the improvements of the previous se
tion, the question was raisedwhether extra memory allo
ation was intrinsi
 to sub-
ubi
 matrix multipli
a-tion algorithms. More pre
isely, is there a matrix multipli
ation algorithm
om-puting C ← A × B in O (

nlog
2
7
) arithmeti
 operations without extra memoryallo
ation and without overwriting its input arguments? We show in this se
-tion that a
ombination of Winograd's algorithm and a
lassi
 blo
k algorithmprovides a positive answer. Furthermore this algorithm also improves the extramemory requirement for the produ
t with a

umulation C ← αA×B + βC.7.1 The algorithmThe key idea is to split the result matrix C into four quadrants of dimension

n/2× n/2. The �rst three quadrants C11, C12 and C21 are
omputed using fastre
tangular matrix multipli
ation, whi
h a

ounts for 2k/n standard Winogradmultipli
ations on blo
ks of dimension n/2 × n/2. The temporary memoryfor these
omputations is stored in C22. Lastly, the blo
k C22 is
omputedre
ursively up to a base
ase, as shown on algorithm 2. This base
ase, whenthe matrix is too small to bene�t from the fast routine, is then
omputed withthe
lassi
al matrix multipli
ation.Theorem 1. The
omplexity of algorithm 2 is:
G(n, n) = 7.2nlog

2
(7) − 13n2 + 6.8nwhen k = n. 13

Algorithm 2 IPMM: In-Pla
e Matrix MultiplyInput: A and B, of dimensions resp. n × k and k × n with k, n powers of 2and k > n.Output: C = A×B1: Split C =

[

C11C12

C21C22

], A =

[

A1,1 . . .A1,2k/n

A2,1 . . .A2,2k/n

] and B =







B1,1 B1,2... ...
B2k/n,1B2k/n,2






⊲where ea
h

Ai,j , Bi,j and Ci,jhave dimension
n/2× n/2.2: do ⊲ with alg. of table 1 using C22 as temp. spa
e3: C11 = A1,1B1,14: C12 = A1,1B1,25: C21 = A2,1B1,16: end do7: for i = 2 . . . 2k

n
do ⊲ with alg. of table 2 using C22 as temporary spa
e:8: C11 = A1,iBi,1 + C119: C12 = A1,iBi,2 + C1210: C21 = A2,iBi,1 + C2111: end for12: C22 = A2,∗ ×B∗,2 ⊲ re
ursively using IPMM.Proof. Re
all that the
ost of Winograd's algorithm for square matri
es is

W (n) = 6nlog
2
7−5n2 for the operation C ← A×B and Wa

(n) = 6nlog

2
7−4n2for the operation C ← A ×B + C. The
ost G(n, k) of algorithm 2 is given bythe relation

G(n, k) = 3W (n/2) + 3(2k/n− 1)Wa

(n/2) + G(n/2, k),the base
ase being a
lassi
al dot produ
t: G(1, k) = 2k − 1. Thus, G(n, k) =
7.2knlog

2
(7)−1 − 12kn− n2 + 34k/5.Theorem 2. For any m, n and k, algorithm 2 is in pla
e.Proof. W.l.o.g, we assume that m > n > 1 (otherwise we
ould use the trans-pose). The exa
t amount of extra memory from algorithms in table 1 and 2 isrespe
tively given by eq. (1) and (2).If we
ut B into pi stripes at re
ursion level i, then the sizes for the involvedsubmatri
es of A (resp. B) are m/2i×k/pi (reps. k/pi×n/2i). The lower right
orner submatrix of C that we would like to use as temporary spa
e has a size

m/2i × n/2i. Thus we need to ensure that the following inequality holds:
max (E1, E2)

(

m

2i
,

k

pi

,
n

2i

)

6
m

2i

n

2i
. (4)14

It is
lear that E1 < E2, whi
h simpli�es the previous inequality. Let us nowwrite K = k/pi, M = m/2i and N = n/2i. We need to �nd, for every i aninteger pi > 1 so that eq. (4) holds. In other words, let us show that there existssome K < k su
h that, for any (M, N), the inequality E2(M, K, N) 6 MNholds. Then the fa
t that E(M, 2, N) < 1
3 (2M +2N +MN) 6

1
3 (4M +MN) 6

MN provides at least one su
h K.As the requirements in algorithm 2 ensure that k > N and M = N , there justremains to prove that E(M, N, N) 6 MN . Sin
e E(M, N, N) < 1
3 (2MN +N2)and again M > N , algorithm 2 is indeed in pla
e.Hen
e a fully in-pla
e O (

nlog
2
7
) algorithm is obtained for matrix multipli-
ation. The overhead of this approa
h appears in the multipli
ative
onstant ofthe leading term of the
omplexity, growing from 6 to 7.2.This approa
h extends to the
ase of matri
es with general dimensions, usingfor instan
e peeling or padding te
hniques.It is also useful if any sub-
ubi
 algorithm is used instead of Winograd's. For in-stan
e, in the square
ase, one
an use the produ
t with a

umulation in table 9instead of table 2.7.2 Redu
ed memory usage for the produ
t with a

umu-lationIn the
ase of
omputing the produ
t with a

umulation, the matrix C
an nolonger be used as temporary storage, and extra memory allo
ation
annot beavoided. Again we
an use the idea of the
lassi
al blo
k matrix multipli
ationat the higher level and
all Winograd algorithm for the blo
k multipli
ations.As in the previous subse
tion, C
an be divided into four blo
ks and then theprodu
t
an be made with 8
alls to Winograd algorithm for the smaller blo
ks,with only one extra temporary blo
k of dimension n/2× n/2.More generally, for square n × n matri
es, C
an be divided in t2 blo
ks ofdimension n

t
× n

t
. Then one
an
ompute ea
h blo
k with Winograd algorithmusing only one extra memory
hunk of size (n/t)2. The
omplexity is
hangedto Rt(n) = t2tWa

(n/t), whi
h is Rt(n) = 6t3−log

2
(7)nlog

2
(7) − 4tn2 for ana

umulation produ
t with Winograd's algorithm. Using the parameter t, one
an then balan
e the memory usage and the extra arithmeti
 operations. Forexample, with t = 2,

R2 = 6.857nlog
2
7 − 8n2 and ExtraMem =

n2

4and with t = 3,
R3 = 7.414nlog

2
7 − 12n2 and ExtraMem =

n2

9
.Note that one
an use the algorithm of table 9 instead of the
lassi
al Wino-grad a

umulation as the base
ase algorithm. Then the memory overhead dropsdown to 2n2

3t2
and the arithmeti

omplexity in
reases toRt(n)+t2−log

2
(3)nlog

2
(6)−

tn2. 15

8 Con
lusionWith
onstant input matri
es, we redu
ed the number of extra memory allo
a-tions for the operation C ← αA×B + βC from n2 to 2
3n2, by introdu
ing twoextra pre-additions. As shown below, the overhead indu
ed by these supple-mentary additions is amortized by the gains in number of memory allo
ations.If the input matri
es
an be overwritten, we proposed a fully in-pla
e s
hed-ule for the operation C ← A×B without any extra operations. We also proposedvariants for the operation C ← A × B, where only one of the input matri
esis being overwritten and one temporary is required. These subroutines allowus to redu
e the extra memory allo
ations required for the C ← αA ×B + βCoperation without overwrite: the extra required temporary spa
e drops from n2to only 2

3n2, at a negligible
ost.Some algorithms with an even more redu
ed memory usage, but with somein
rease in arithmeti

omplexity, are also shown. Table 10 gives a summaryof the features of ea
h s
hedule that has been presented. The
omplexities aregiven only for m = k = n being a power of 2.Theorem 3. The arithmeti
 and memory
omplexities of table 10 are
orre
t.Proof. For the operation A × B, the arithmeti

omplexity of the s
hedule oftable 1
lassi
ally satis�es
{

W1(n)=7W1(
n
2) + 15

(

n
2

)2

W1(1)=1
,so that W1(n) = 6nlog

2
(7) − 5n2.The s
hedule of table 1 requires

{

M1(n)=2
(

n
2

)2
+ M1

(

n
2

)

M1(1)=0extra memory spa
e, whi
h is M1(n) = 2
3n2. Its total number of allo
ationssatis�es A1(n) = 2

(

n
2

)2
+ 7A1

(

n
2

) whi
h is A1(n) = 2
3 (nlog

2
(7) − n2).The s
hedule of table 4 requires M4(n) =

(

n
2

)2
+ M4

(

n
2

) extra memoryspa
e, whi
h is M4(n) = 1
3n2. Its total number of allo
ations satis�es A4(n) =

(

n
2

)2
+ 4A4

(

n
2

) whi
h is A4(n) = 1
4n2 log2(n).The s
hedule of table 5 requires the same amount of arithmeti
 operationsor memory.For A×B + βC, the arithmeti

omplexity of [10℄ satis�es

W2(n) = 5W2

(n

2

)

+ 2W1

(n

2

)

+ 14
(n

2

)2

,hen
e W2(n) = 6nlog
2
(7)− 4n2; its memory overhead satis�es M2(n) = 3

(

n
2

)2
+

M2

(

n
2

)

, whi
h is M2(n) = n2; its total number of allo
ations satis�es A2(n) =16

Algorithm Input matri
es # of extratemporaries totalextramem-ory total # of extraallo
ations arithmeti

omplexity
A

×
B

Table 1 [6℄ Constant 2 2
3
n2 2

3
(n2.807

− n2) 6n2.807
− 5n2Table 3 Both Overwritten 0 0 0 6n2.807
− 5n2Table 4 or 5 A or B Overwritten 1 1

3
n2 1

4
n2 log2(n) 6n2.807

− 5n27.1 Constant 0 0 0 7.2n2.807
− 13n2

α
A

×
B

+
β
C

Table 2 [10℄ Constant 3 n2
2
3
nlog2(7) + nlog2(5)

−

5
3
n2 6n2.807

− 4n2Table 6 Both Overwritten 2 2
3
n2 1

2
n2 log2(n) 6n2.807

− 4n2 + 1
2
n2 log2(n)Table 7 B Overwritten 2 2

3
n2 2n2.322

− 2n2 6n2.807
− 4n2 + 1

2
n2 log2(n)Table 9 Constant 2 2

3
n2 2

9
n2.807 +2n2.322

−

22
9

n2 6n2.807
− 4n2 + 4

3
n2 log2(n)7.2 Constant N/A 1

4
n2 1

4
n2 6.857n2.807

− 8n27.2 Constant N/A 1
9
n2 1

9
n2 7.414n2.807

− 12n2Table 10: Complexities of the s
hedules presented for square matrix multipli
ation

17

3
(

n
2

)2
+ 5A2

(

n
2

)

+ 2A1

(

n
2

)

, whi
h is
A2(n) =

2

3
nlog

2
(7) + nlog

2
(5) −

5

3
n2.The arithmeti

omplexity of the s
hedule of table 6 satis�es

W6(n) = 4W6

(n

2

)

+ 3W1

(n

2

)

+ 17
(n

2

)2

,so that W6(n) = 6nlog
2
(7)− 4n2 + 1

2n2 log2(n); its number of extra memory sat-is�es M6(n) = 2
(

n
2

)2
+M6

(

n
2

)

, whi
h is M6(n) = 2
3n2; its total number of allo-
ations satis�es A6(n) = 2

(

n
2

)2
+ 4A6

(

n
2

)

, whi
h is A6(n) = n2 + 1
2n2 log2(n).The arithmeti

omplexity of table 7 s
hedule satis�es

W7(n) = 4W7

(n

2

)

+ W1

(n

2

)

+ 2W5

(n

2

)

+ 16
(n

2

)2

,so that W7(n) = 6nlog
2
(7) − 4n2 + 1

2n2 log2(n); its number of extra memorysatis�es M7(n) = 2
(

n
2

)2
+ M7

(

n
2

)

, whi
h is M7(n) = 2
3n2; its total numberof allo
ations satis�es A7(n) = 2

(

n
2

)2
+ 4A7

(

n
2

)

+ 2A5

(

n
2

)

, whi
h is A7(n) =

2nlog
2
(5) − 2n2.The arithmeti

omplexity of the s
hedule of table 9 satis�es

W9(n) = 4W9

(n

2

)

+ W1

(n

2

)

+ 2W6

(n

2

)

+ 17
(n

2

)2

,so that W9(n) = 6nlog
2
(7) − 4n2 + 4

3n2
(

log2(n)− 10
3

)

+ 4
9 ; its number of extramemory satis�es M9(n) = 2

(

n
2

)2
+ M9

(

n
2

)

, whi
h is M9(n) = 2
3n2; its totalnumber of allo
ations satis�es A9(n) = 2

(

n
2

)2
+ 4A9

(

n
2

)

+ A1

(

n
2

)

+ 2A6

(

n
2

)

,whi
h is A9(n) = 2
9nlog

2
(7) + 2nlog

2
(5) − 22

9 n2 + 2
9 .For instan
e, by adding up allo
ations and arithmeti
 operations in table 10,one sees that the overhead in arithmeti
 operations of the s
hedule of table 9is somehow amortized by the de
rease of memory allo
ations. Thus it makes ittheoreti
ally
ompetitive with the algorithm of [10℄ as soon as n > 44.Also, problems with dimensions that are not powers of two
an be handled by
ombining the
uttings of algorithms 1 and 2 with peeling or padding te
hniques.Moreover, some
ut-o�
an be set in order to stop the re
ursion and swit
h tothe
lassi
al algorithm. The use of these
ut-o�s will in general de
rease boththe extra memory requirements and the arithmeti

omplexity overhead.For instan
e we show on table 11 the relative speed of di�erent multipli
ationpro
edures for some double �oating point re
tangular matri
es. We use atlas-3.9.4 for the BLAS and a
ut-o� of 1024. We see that pour new s
hedulesperform quite
ompetitively with the previous ones and that the savings inmemory enable larger
omputations (MT for memory thrashing).18

Dims. (m, k, n) Classi
 [6℄ IPMM IP0vMM(4096,4096,4096) 14.03 11.93 13.59 11.98(4096,8192,4096) 28.29 23.39 27.16 23.88(8192,8192,8192) 113.07 85.97 98.75 85.02(8192,16384,8192) 231.86 MT 197.24 170.72Table 11: Re
tangular matrix multipli
ation:
omputation time in se
onds ona
ore2 duo, 3.00GHz, 2×2Gb RAMReferen
es[1℄ M. Bader and C. Zenger. Ca
he oblivious matrix multipli
ation using anelement ordering based on a Peano
urve. Linear Algebra and its Appli
a-tions, 417(2�3):301�313, Sept. 2006.[2℄ D. H. Bailey. Extra high speed matrix multipli
ation on the Cray-2. SIAMJournal on S
ienti�
 and Statisti
al Computing, 9(3):603�607, 1988.[3℄ D. Bini and V. Pan. Polynomial and Matrix Computations, Volume 1:Fundamental Algorithms. Birkhauser, Boston, 1994.[4℄ M. Clausen, P. Bürgisser, and M. A. Shokrollahi. Algebrai
 ComplexityTheory. Springer, 1997.[5℄ D. Coppersmith and S. Winograd. Matrix multipli
ation via arithmeti
progressions. Journal of Symboli
 Computation, 9(3):251�280, 1990.[6℄ C. C. Douglas, M. Heroux, G. Slishman, and R. M. Smith. GEMMW:A portable level 3 BLAS Winograd variant of Strassen's matrix-matrixmultiply algorithm. Journal of Computational Physi
s, 110:1�10, 1994.[7℄ J.-G. Dumas, T. Gautier, and C. Pernet. Finite �eld linear algebra sub-routines. In T. Mora, editor, ISSAC'2002, pages 63�74. ACM Press, NewYork, July 2002.[8℄ J.-G. Dumas, P. Giorgi, and C. Pernet. FFPACK: Finite �eld linear algebrapa
kage. In J. Gutierrez, editor, ISSAC'2004, pages 119�126. ACM Press,New York, July 2004.[9℄ S. Huss-Lederman, E. M. Ja
obson, J. R. Johnson, A. Tsao, and T. Turn-bull. Implementation of Strassen's algorithm for matrix multipli
ation. InACM, editor, Super
omputing '96 Conferen
e Pro
eedings: November 17�22, Pittsburgh, PA. ACM Press and IEEE Computer So
iety Press, 1996.www.super
omp.org/s
96/pro
eedings/SC96PROC/JACOBSON/.[10℄ S. Huss-Lederman, E. M. Ja
obson, J. R. Johnson, A. Tsao, and T. Turn-bull. Strassen's algorithm for matrix multipli
ation : Modeling analysis,and implementation. Te
hni
al report, Center for Computing S
ien
es,Nov. 1996. CCS-TR-96-17. 19

[11℄ O. H. Ibarra, S. Moran, and R. Hui. A generalization of the fast LUPmatrix de
omposition algorithm and appli
ations. Journal of Algorithms,3(1):45�56, Mar. 1982.[12℄ C.-P. Jeannerod, C. Pernet, and A. Storjohann. Fast Gaussian eliminationand the PLUQ de
omposition. Te
hni
al report, 2007.[13℄ A. Kre
zmar. On memory requirements of Strassen's algorithms. InA. Mazurkiewi
z, editor, Pro
eedings of the 5th Symposium on Mathemati-
al Foundations of Computer S
ien
e, volume 45 of LNCS, pages 404�407,Gda«sk, Poland, Sept. 1976. Springer.[14℄ J. Laderman, V. Pan, and X.-H. Sha. On pra
ti
al algorithms for a

el-erated matrix multipli
ation. Linear Algebra and its Appli
ations, 162�164:557�588, 1992.[15℄ C. Pernet. Implementation of Winograd's fast matrix multipli
ation over�nite �elds using ATLAS level 3 BLAS. Te
hni
al report, Laboratoire Infor-matique et Distribution, July 2001. ljk.imag.fr/membres/Jean-Guillaume.Dumas/FFLAS[16℄ V. Strassen. Gaussian elimination is not optimal. Numeris
he Mathematik,13:354�356, 1969.[17℄ S. Winograd. On multipli
ation of 2x2 matri
es. Linear Algebra and Ap-pli
ation, 4:381�388, 1971.

20

