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Memory efficient scheduling of

Strassen-Winograd’s matrix multiplication
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Brice Boyer∗ Jean-Guillaume Dumas∗ Clément Pernet†

Wei Zhou‡

January 27, 2009

Abstract

We propose several new schedules for Strassen-Winograd’s matrix mul-
tiplication algorithm, they reduce the extra memory allocation require-
ments by three different means: by introducing a few pre-additions, by
overwriting the input matrices, or by using a first recursive level of clas-
sical multiplication. In particular, we show two fully in-place schedules:
one having the same number of operations, if the input matrices can be
overwritten; the other one, slightly increasing the constant of the leading
term of the complexity, if the input matrices are read-only. Many of these
schedules have been found by an implementation of an exhaustive search
algorithm based on a pebble game.

1 Introduction

Strassen’s algorithm [16] was the first sub-cubic algorithm for matrix multipli-
cation. Its improvement by Winograd [17] led to a highly practical algorithm.
The best asymptotic complexity for this computation has been successively im-
proved since then, down to O

(

n2.376
)

in [5] (see [3, 4] for a review), but Strassen-
Winograd’s still remains one of the most practicable. Former studies on how
to turn this algorithm into practice can be found in [2, 9, 10, 6] and references
therein for numerical computation and in [15, 7] for computations over a finite
field.
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In this paper, we propose new schedules of the algorithm, that reduce the extra
memory allocation, by three different means: by introducing a few pre-additions,
by overwriting the input matrices, or by using a first recursive level of classical
multiplication. These schedules can prove useful e.g. for memory efficient com-
putations of the rank, determinant, nullspace basis, system resolution, matrix
inversion... Indeed, the matrix multiplication based LQUP factorization of [11]
can be computed with no other temporary allocations than the ones involved in
its block matrix multiplications [12]. Therefore the improvements on the mem-
ory requirements of the matrix multiplication, used together e.g. with cache
optimization strategies [1], will directly improve these higher level computa-
tions. We only consider here the computational complexity and space complex-
ity, counting the number of the number of arithmetic operations and memory
allocations and do not consider stability issues. Further studies have thus to
be made in order to use these schedules for numerical computations. They are
nonetheless useful for exact computations, for instance on integer/rational or
finite field applications [8, 14].

The remaining of this paper is organised as follows: we review Strassen-
Winograd’s algorithm and existing memory schedules in sections 2 and 3. We
then present in section 4 the dynamic program we used to search for schedules.
This enables us to give several schedules overwriting their inputs in section 5,
and then a new schedule for C ← AB + C using only two extra temporaries in
section 6, all of them preserving the leading term of the arithmetic complexity.
Eventually, in section 7, we present a generic way of transforming non in-place
matrix multiplication algorithms into in-place ones, with a small constant factor
overhead.

2 Strassen-Winograd Algorithm

We first review Strassen-Winograd’s algorithm, and setup the notations that
will be used throughout the paper.
Let m, n and k be powers of 2. Let A and B be two matrices of dimension m×k
and k × n and let C = A×B. Consider the natural block decomposition:

[

C11 C12

C21 C22

]

=

[

A11 A12

A21 A22

] [

B11 B12

B21 B22

]

,

where A11 and B11 respectively have dimensions m/2 × k/2 and k/2 × n/2.
Winograd’s algorithm computes the m×n matrix C = A×B with the following
22 block operations:
• 8 additions:

S1 ← A21 + A22 S2 ← S1 −A11 S3 ← A11 −A21

T1 ← B12 −B11 T2 ← B22 − T1 T3 ← B22 −B12

S4 ← A12 − S2 T4 ← T2 −B21
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• 7 recursive multiplications:

P1 ← A11 ×B11 P2 ← A12 ×B21

P3 ← S4 ×B22 P4 ← A22 × T4

P5 ← S1 × T1 P6 ← S2 × T2 P7 ← S3 × T3

• 7 final additions:

U1 ← P1 + P2 U2 ← P1 + P6

U3 ← U2 + P7 U4 ← U2 + P5

U5 ← U4 + P3 U6 ← U3 − P4 U7 ← U3 + P5

• The result is the matrix: C =

[

U1 U5

U6 U7

]

.

Figure 1 illustrates the dependencies between these tasks.

Figure 1: Winograd’s task dependency graph

3 Existing memory placements

Unlike the classic multiplication algorithm, Winograd’s algorithm requires some
extra temporary memory allocations to perform its 22 block operations.
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3.1 Standard product

We first consider the basic operation C ← A × B. The best known schedule
for this case was given by [6]. We reproduce a similar schedule in table 1. It

# operation loc. # operation loc.

1 S3 = A11 − A21 X 12 P1 = A11B11 X

2 T3 = B22 − B12 Y 13 U2 = P1 + P6 C12

3 P7 = S3T3 C21 14 U3 = U2 + P7 C21

4 S1 = A21 + A22 X 15 U4 = U2 + P5 C12

5 T1 = B12 − B11 Y 16 U7 = U3 + P5 C22

6 P5 = S1T1 C22 17 U5 = U4 + P3 C12

7 S2 = S1 − A11 X 18 T4 = T2 − B21 Y

8 T2 = B22 − T1 Y 19 P4 = A22T4 C11

9 P6 = S2T2 C12 20 U6 = U3 − P4 C21

10 S4 = A12 − S2 X 21 P2 = A12B21 C11

11 P3 = S4B22 C11 22 U1 = P1 + P2 C11

Table 1: Winograd’s algorithm for operation C ← A×B, with two temporaries

requires two temporary blocks X and Y whose dimensions are respectively equal
to m/2×max(k/2, n/2) and k/2× n/2. Thus the extra memory used is:

E1(m, k, n) =
m

2
max

(

k

2
,
n

2

)

+
k

2

n

2
+ E1

(

m

2
,
k

2
,
n

2

)

.

Summing these temporary allocations over every recursive levels leads to a total
amount of memory, where for brevity M = min {m, k, n}:

E1(m, k, n) =

log
2
(M)

∑

i=1

1

4i
(m max (k, n) + kn) (1)

=
1

3

(

1−
1

M2

)

(m max (k, n) + kn)

<
1

3
(m max (k, n) + kn) .

We can prove in the same manner the following lemma:

Lemma 1. Let m, k and n be powers of two, g(x, y, z) be homogeneous, M =
min {m, k, n} and f(m, k, n) be a function such that

f(m, k, n) =

{

g
(

m
2 , k

2 , n
2

)

+ f
(

m
2 , k

2 , n
2

)

if m,n and k > 1

0 otherwise.

Then f (m, k, n) = 1
3

(

1− 1
M2

)

g(m, k, n) < 1
3g(m, k, n).

In the remaining of the paper, we use Ei to denote the amount of extra
memory used in table number i. The amount of extra memory we consider is
always the sum up to the last recursion level.
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Finally, assuming m = n = k gives a total extra memory requirement of
E1(n, n, n) < 2/3n2.

3.2 Product with accumulation

For the more general operation C ← αA× B + βC, a first nave method would
compute the product αA×B using the scheduling of table 1, into a temporary
matrix C′ and finally compute C ← C′+βC. It would require (1+2/3)n2 extra
memory allocations in the square case.
Now the schedule of table 2 due to [10, fig. 6] only requires 3 temporary blocks
for the same number of operations (7 multiplications and 4+15 additions). The

# operation loc. # operation loc.

1 S1 = A21 + A22 X 12 S4 = A12 − S2 X

2 T1 = B12 − B11 Y 13 T4 = T2 − B21 Y

3 P5 = αS1T1 Z 14 C12 = αS4B22 + C12 C12

4 C22 = P5 + βC22 C22 15 U5 = U2 + C12 C12

5 C12 = P5 + βC12 C12 16 P4 = αA22T4 − βC21 C21

6 S2 = S1 − A11 X 17 S3 = A11 − A21 X

7 T2 = B22 − T1 Y 18 T3 = B22 − B12 Y

8 P1 = αA11B11 Z 19 U3 = αS3T3 + U2 Z

9 C11 = P1 + βC11 C11 20 U7 = U3 + C22 C22

10 U2 = αS2T2 + P1 Z 21 U6 = U3 − C21 C21

11 U1 = αA12B21 + C11 C11 22

Table 2: Schedule for operation C ← αA×B + βC with 3 temporaries

required three temporary blocks X, Y, Z have dimensions m/2×n/2, m/2×k/2
and k/2× n/2. Hence, using lemma 1, we get

E2 (m, k, n) =
1

3

(

1−
1

M2

)

(mk + kn + mn) . (2)

With m = n = k, this gives E2(n, n, n) < n2.
We propose in table 9 a new schedule for the same operation αA×B +βC only
requiring two temporary blocks.
Our new schedule is more efficient if some inner calls overwrite their temporary
input matrices. We now present some overwriting schedules and the dynamic
program we used to find them.

4 Exhaustive search algorithm

We used a brute force search algorithm1 to get some of the new schedules that
will be presented in the following sections. It is very similar to the pebble game
of Huss-Lederman et al. [10].

1The code is available at http://ljk.imag.fr/CASYS/LOGICIELS/Galet.
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A sequence of computations is represented as a directed graph, very much like
figure 1 is built from Winograd’s algorithm.
A node represents a program variable. The nodes can be classified as initials
(when they correspond to inputs), temporaries (for intermediate computations)
or finals (results or nodes that we want to keep, such as ready-only inputs).
The arcs represent the operations; they point from the operands to the result.
A pebble represents an allocated memory. We can put pebbles on any nodes,
move or remove them according to a set of simple rules shown below.
When a pebble arrives on a node, the computation at the associated variable
starts, and can be “partially” or “fully” executed. If not specified, it is assumed
that the computation is fully executed.
Arcs can be removed, when the corresponding operation has been computed.
These two rules are especially useful for accumulation operations: for example,
it is possible to try schedule the multiplication separately from the addition in
an otherwise recursive AB +C call; the multiplication-involved arcs would then
be removed first and the accumulated part later. It is also useful if we do not
want to fix the way some additions are performed: if U3 = P1 + P6 + P7 the
associativity allows different ways of computing the sum and we let the program
explore these possibilities. At the beginning of the exploration, each initial node
has a pebble and we may have a few extra available pebbles. The program then
tries to apply the following rules, in order, on each node. The program stops
when every final node has a pebble or when there is no more allowed move:
• Rule 0. Computing a result/removing arcs. If a node has a pebble and par-

ents with pebbles, then the operation can be performed and the corresponding
arcs removed. The node is then at least partially computed.
• Rule 1. Freeing some memory/removing a pebble. If a node is isolated

and not final, its pebble is freed. This means that we can reclaim the memory
here because this node has been fully computed (no arcs pointing to it) and is
no longer in use as an operand (no arcs initiating from it).
• Rule 2. Computing in place/moving a pebble. If a node P has a full pebble

and a single empty child node S and if other parents of S have pebbles on them,
then the pebble on P may be transferred to S (corresponding arcs are removed).
This means an operation has been made in place in the parent P ’s pebble.
• Rule 3. Using more memory/adding a pebble. If parents of an empty

node N have pebbles and a free pebble is available, then N can be assigned this
pebble and the corresponding arcs are removed. This means that the operation
is computed in a new memory location.
• Rule 4. Copying some memory/duplicating a pebble. A computed node

having a pebble can be duplicated. The arcs pointed to or from the original
node are then rearranged between them. This means that a temporary result
has been copied into some free place to allow more flexibility.
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5 Overwriting input matrices

We now relax some constraints on the previous problem: the input matrices
A and B can be overwritten, as proposed by [13]. For the sake of simplicity,
we first give schedules only working for square matrices (i.e. m = n = k and
any memory location is supposed to be able to receive any result of any size).
We nevertheless give the memory requirements of each schedule as a function
of m; k and n. Therefore it is easier in the last part of this section to adapt the
proposed schedules partially for the general case.

5.1 Standard product

We propose in table 3 a new schedule that computes the product C ← A × B
without any temporary memory allocation. The idea here is to find an ordering
where the recursive calls can be made also in place such that the operands of
a multiplication are no longer in use after the multiplication because they are
overwritten. An exhaustive search showed that no schedule exists overwriting
less than four sub-blocks.

# operation loc. # operation loc.

1 S3 = A11 − A21 C11 12 S4 = A12 − S2 C22

2 S1 = A21 + A22 A21 13 P6 = S2T2 C12

3 T1 = B12 − B11 C22 14 U2 = P1 + P6 C12

4 T3 = B22 − B12 B12 15 U3 = U2 + P7 C21

5 P7 = S3T3 C21 16 P3 = S4B22 B11

6 S2 = S1 − A11 B12 17 U7 = U3 + P5 C22

7 P1 = A11B11 C11 18 U6 = U3 − P4 C21

8 T2 = B22 − T1 B11 19 U4 = U2 + P5 C12

9 P5 = S1T1 A11 20 U5 = U4 + P3 C12

10 T4 = T2 − B21 C22 21 P2 = A12B21 B11

11 P4 = A22T4 A21 22 U1 = P1 + P2 C11

Table 3: Schedule for operation C ← A×B in place

Figure 2 shows the affectation of the tasks on each variable, by row.
Note that this schedule uses only two blocks of A or B as extra temporaries

(namely A11, A21, B11 and B12) but overwrites all of A and B. For instance
the recursive computation of P2 requires overwriting parts of A12 and B21 too.
This schedule can nonetheless overwrite strictly only two blocks of A and two
blocks of B. This is achieved by making a backup of the overwritten parts into
some available extra memory. The schedule is then modified as follows:
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 B22 

 A12 

 B21 

 A21  S1 

 A11 

 B12  S2 

 P5 

 T3 

P4

P2P3

C22 S4 

U2 C21U3

U4 C12

C11

 B11  T2  T1 

 T4 

 P7 P6

 S3  P1 

Figure 2: In-place Strassen-Winograd matrix multiplication

# operation loc.

10bis Copy A22 into C12 C12

11 P4 = A22T4 A21

11bis Restore A22 from C12 A22

15bis Copy B22 into B12 B12

16 P3 = S4B22 B11

16bis Restore B22 from B12 B22

20bis Copy A12 into A21 A21

20ter Copy B21 into B12 B12

21 P2 = A12B21 B11

21bis Restore B21 from B12 B21

21ter Restore A12 from A21 A12

In the following, we will denote by IP for InPlace, either one of these two
schedules.
We present in tables 4 and 5 two new schedules overwriting only one of the two
input matrices, but requiring an extra temporary space. These two schedules
are denoted O1L and O1R. The exhaustive search also showed that no schedule
exists overwriting only one of A and B and using no extra temporary. We
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# operation loc. # operation loc.

1 S3 = A11 − A21 C22 13 T4 = T2 − B21 A11

2 S1 = A21 + A22 A21 14 U2 = P1 + P6 C21

3 S2 = S1 − A11 C12 15 U4 = U2 + P5 C12

4 T1 = B12 − B11 C21 16 U3 = U2 + P7 C21

5 P1 = O1L(A11B11) C11 17 U7 = U3 + P5 C22

6 T3 = B22 − B12 A11 18 U5 = U4 + P3 C12

7 P7 = IP(S3T3) X A21 = Copy(A12) A21

8 T2 = B22 − T1 A11 19 P2 = O1L(A12B21) X

9 P5 = IP(S1T1) C22 A12 = Copy(A21) A12

10 S4 = A12 − S2 C21 20 U1 = P1 + P2 C11

11 P3 = O1L(S4B22) A21 21 P4 = O1R(A22T4) A21

12 P6 = O1L(S2T2) C21 22 U6 = U3 − P4 C21

Table 4: O1L Schedule for operation C ← A×B using strictly two blocks of A
and one temporary

remark that if it is allowed to use three blocks of A, the two Copy operations of
table 4 can be avoided. Note also that if three blocks of A can be overwritten
then the last multiplication (P4) can also be made by a strict recursive call to
O1L. Both behaviors can be simultaneous if four blocks of A (the whole matrix)
are overwritable. Similarly, for O1R, the copy or the call to O1L for P3 can also

# operation loc. # operation loc.

1 S3 = A11 − A21 C22 13 S4 = A12 − S2 B11

2 S1 = A21 + A22 C21 14 U2 = P1 + P6 C21

3 T1 = B12 − B11 C12 15 U4 = U2 + P5 C12

4 P1 = O1R(A11B11) C11 16 U3 = U2 + P7 C21

5 S2 = S1 − A11 B11 17 U7 = U3 + P5 C22

6 T3 = B22 − B12 B12 18 U6 = U3 − P4 C21

7 P7 = IP(S3T3) X 19 P3 = O1L(S4B22) B12

8 T2 = B22 − T1 B12 20 U5 = U4 + P3 C12

9 P5 = IP(S1T1) C22 B11 = Copy(B21) B11

10 T4 = T2 − B21 C12 21 P2 = O1R(A12B21) B12

11 P6 = O1R(S2T2) C21 B21 = Copy(B11) B21

12 P4 = O1R(A22T4) B12 22 U1 = P1 + P2 C11

Table 5: O1R Schedule for operation C ← A×B using strictly two blocks of B
and one temporary

be avoided if three or four blocks of B are overwritable.
We now compute the extra memory needed for any m, k and n such that table 5
is still valid. We procede in the same way as before and use the above results
for the general case (5.3).
The size of the temporary block X is m

2
n
2 , the extra memory required for table 5

hence satisfies: E5(m, k, n) < 1
3mn.

9



5.2 Product with accumulation

We now consider the operation C ← αA×B + βC, where the input matrices A
and B can be overwritten. We propose in table 6 a schedule that only requires
2 temporary block matrices, instead of the 3 in table 2. This is achieved by
overwriting the inputs and by using two additional pre-additions on the matrix
C. We also propose in table 6 a similar schedule overwriting only e.g. the right

# operation loc. # operation loc.

1 Z1 = C22 − C12 C22 13 P4 = αA22T4 − βZ2 C21

2 S1 = A21 + A22 X 14 S4 = A12 − S2 A21

3 T1 = B12 − B11 Y 15 P6 = αIP(S2T2) X

4 Z2 = C21 − Z1 C21 16 P2 = αA12B21 + βC11 C11

5 T3 = B22 − B12 B12 17 U1 = P1 + P2 C11

6 S3 = A11 − A21 A21 18 U2 = P1 + P6 X

5 P7 = αS3T3 + βZ1 C22 17 U3 = U2 + P7 C22

8 S2 = S1 − A11 A21 20 U4 = U2 + P5 X

9 T2 = B22 − T1 B12 21 U6 = U3 − P4 C21

10 P5 = αS1T1 + βC12 C12 22 U7 = U3 + P5 C22

11 P1 = αIP(A11B11) Y 23 P3 = αIP(S4B22) C12

12 T4 = T2 − B21 X 24 U5 = U4 + P3 C12

Table 6: AccLR Schedule for C ← αA × B + βC overwriting A and B with 2
temporaries, 4 recursive calls

input matrix. It also uses only two temporaries, but has to call the O1R schedule.
The extra memory required by X and Y in table 6 is:

max

(

m

2
,
k

2

)

n

2
+ max

{

m

2

k

2
,
k

2

n

2
,
m

2

n

2

}

.

Hence, using lemma 1:

E6(m, k, n) <
1

3
(max (m, k)n + max {mk, kn, mn}) . (3)

The extra memory E7(m, k, n) required for table 7 in the top level of recursion
is:

m

2

k

2
+ max

(

k

2
,
m

2

)

n

2
+ max (E7, E5)

(

m

2
,
k

2
,
n

2

)

.

Since the second term in the sum is greater than m
2

n
2 , we have E7 > E5 and:

E7(m, k, n) <
1

3

(

m

2

k

2
+ max

(

k

2
,
m

2

)

n

2

)

.

Compared with the schedule of table 2, the possibility to overwrite the input
matrices makes it possible to have further in place calls and replace recursive
calls (with accumulation) by calls without accumulation. We show in theo-
rem 3 that this enables us to almost compensate for the additional additions
performed.

10



# operation loc. # operation loc.

1 Z1 = C22 − C12 C22 13 P2 = αA12B21 + βC11 C11

2 T1 = B12 − B11 X 14 S2 = S1 − A11 Y

3 Z2 = C21 − Z1 C21 15 P6 = αO1R(S2T2) B21

4 T3 = B22 − B12 B12 16 S4 = A12 − S2 Y

5 S3 = A11 − A21 Y 17 U2 = P1 + P6 B21

6 P7 = αS3T3 + βZ1 C22 18 U3 = U2 + P7 C22

7 S1 = A21 + A22 Y 19 U4 = U2 + P5 B21

8 T2 = B22 − T1 B12 20 U6 = U3 − P4 C21

9 P5 = αS1T1 + βC12 C12 21 U1 = P1 + P2 C11

10 T4 = T2 − B21 X 22 U7 = U3 + P5 C22

11 P4 = αA22T4 − βZ2 C21 23 P3 = αIP(S4B22) C12

12 P1 = αO1R(A11B11) X 24 U5 = U4 + P3 C12

Table 7: AccR Schedule for C ← αA×B+βC overwriting B with 2 temporaries,
4 recursive calls

5.3 The general case

We now examine the sizes of the temporary locations used, when the involved
matrices are not of identical sizes. We want to adapt table 3 to make it work
for general matrices.
First we remark that there is no way to compute a general matrix multiplication
in place using Strassen-Winograd algorithm. Indeed, the only available memory
is the one in C. Consider the following pebble game. No available pebble (i.e.
some Cij) can be put on any Si or Ti since the size of Cij may be too small for
the purpose. No initial pebble can be moved since each node has at least two
empty child nodes at the beginning. So no solution exists for this game.
However, table 3 is still valid for rectangular matrices as soon as both A and
B are smaller in size than C, that is to say k max(m, n) 6 mn which can be
rewritten as:

k 6 min(m, n).

Table 6 is also valid with this assumption (since it calls IP internally). The
problem remaining is when k > min(m, n). We thus propose the following
algorithm 1:

Proposition 1. Algorithm 1 computes the product C = AB in place, overwrit-
ing A and B.

Proof. It suffices to show that there is enough extra temporary space in A(1)

and B(1), during the computation C ← A(i)B
(i) + C in the for loop.

On the one hand, the size of the extra memory used for the recursive calls
in table 6 is smaller than the quantity from eq. (3). Since k0 6 m, n, that
expression simplifies into:

E6(m, k0, n) <
1

3
(mn + mn) =

2

3
mn. (4)
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Algorithm 1 IP0MM: In-Place Overwrite Matrix Multiply

Input: A and B of resp. sizes m× k and k × n.
Output: C = A×B
1: Let k0 = min(m, n) and K = ⌈k/k0⌉.

2: Split A =
[

A(1) . . . A(K)

]

, B =







B(1)

...

B(K)






⊲ where A(i) (resp. B(j))

has dimension m× k0 (resp. k0 × n), expect perhaps for the smaller K-th
submatrices.

3: C ← A(1)B
(1) ⊲ with alg. of table 3.

4: for i = 2 . . .K do

5: C ← A(i)B
(i) + C ⊲

with alg. of table 6 using
A(1) and B(1) as temporary
space.

6: end for

On the other hand, the available extra memory in the for loop is the sum of
the sizes of A(1) and B(1), that is:

(m + n)min (m, n). (5)

Since the quantity (5) contains at least one mn term, it is larger than (4).
Therefore, there is enough free space to compute the products with accumula-
tions.

Finally, table 8 shows how to perform an accumulation in the general case,
overwriting only one of the inputs, with only two temporaries.

# operation loc. # operation loc.

1 Z1 = C22 − C12 C22 13 P2 = αA12B21 + βC11 C11

2 T1 = B12 − B11 X 14 U1 = P1 + P2 C11

3 Z2 = C21 − Z1 C21 15 S2 = S1 − A11 Y

4 T3 = B22 − B12 B12 16 U2 = αS2T2 + P1 X

5 S3 = A11 − A21 Y 17 U3 = U2 + P7 C22

6 P7 = αS3T3 + βZ1 C22 18 U6 = U3 − P4 C21

7 S1 = A21 + A22 Y 19 U7 = U3 + P5 C22

8 T2 = B22 − T1 B12 20 U4 = U2 + P5 X

9 P5 = αS1T1 + βC12 C12 21 S4 = A12 − S2 Y

10 T4 = T2 − B21 X 22 P3 = αS4B22 C12

11 P4 = αA22T4 − βZ2 C21 23 U5 = U4 + P3 C12

12 P1 = αA11B11 X 24

Table 8: AccR Schedule for C ← αA×B + βC with 5 recursive calls, 2 tempo-
raries and overwriting B

Here, the size of the extra temporaries is max
(

m
2 , k

2

)

n
2 + m

2
k
2 and E8(m, k, n)
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is equal to:

max

(

m

2
,
k

2

)

n

2
+

m

2

k

2
+ max (E8, E1)

(

m

2
,
k

2
,
n

2

)

.

If m < k < n or k < m < n, then E8(m, k, n) < E1(m, k, n):

E8(m, k, n) = max

(

m

2
,
k

2

)

n

2
+

m

2

k

2
+ E1

(

m

2
,
k

2
,
n

2

)

< max

(

m

2
,
k

2

)

n

2
+

m

2

k

2
+

1

3

(

m

2

n

2
+

k

2

n

2

)

.

Otherwise E8(m, k, n) > E1(m, k, n) and:

E8(m, k, n) <
1

3
(max (m, k)n + mk) .

In the square case, this simplifies into E8(n, n, n) 6
2
3n2.

In addition, if the size of B is bigger than that of A, then one can store S2 in
e.g. B12 and separate the recursive call 16 into a multiplication and an addition,
which reduces the arithmetic complexity. Otherwise, a scheduling with only 4
recursive calls exists too, but we need for instance to recompute S4 at step 21.

6 Hybrid scheduling

By combining techniques from sections 3 and 5, we now propose in table 9
a hybrid algorithm that performs the computation C ← αA × B + βC with
constant input matrices A and B, with a lower extra memory requirement than
the scheduling of [10] (table 2). We have to pay a price of order n2 log(n)
additional operations, as we need to compute the temporary variable T2 twice.

Again, the two temporary blocks X and Y respectively have dimensions
Xs = m/2×max (k/2, n/2) and Ys = k/2× n/2 so that:

E9 = Ys + max {Xs + E9, Xs + E6, E8}

(

m

2
,
k

2
,
n

2

)

.

In all cases, E6 + Xs > E8. But Xs + Ys is not as large as the size of the two
temporaries in table 6. We therefore get:

E9(m, k, n) = Ys + Xs + E6

(

m

2
,
k

2
,
n

2

)

<
m

2
max

(

k

2
,
n

2

)

+
k

2

n

2
+

1

3

(

max

(

m

2
,
k

2

)

n

2

+ max

{

m

2

k

2
,
k

2

n

2
,
m

2

n

2

})

.

Assuming m = n = k, one gets E9(n, n, n) < 2
3n2, which is smaller than the

extra memory requirement of table 2.
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# operation loc. # operation loc.

1 Z1 = C22 − C12 C22 14 P2 = αA12B21 + βC11 C11

2 Z3 = C12 − C21 C12 15 U1 = P1 + P2 C11

3 S1 = A21 + A22 X 16 U5 = U2 + P3 C12

4 T1 = B12 − B11 Y 17 S3 = A11 − A21 X

5 P5 = αS1T1 + βZ3 C12 18 T3 = B22 − B12 Y

6 S2 = S1 − A11 X 19 U3 = P7 + U2 C21

7 T2 = B22 − T1 Y = αAccLR(S3T3 + U2)
8 P6 = αS2T2 + βC21 C21 20 U7 = U3 + W1 C22

9 S4 = A12 − S2 X 21 T ′
1 = B12 − B11 Y

10 W1 = P5 + βZ1 C22 22 T ′
2 = B22 − T ′

1 Y

11 P3 = αS4B22 + P5 C12 23 T ′
4 = T ′

2 − B21 Y

12 P1 = αA11B11 X 24 U6 = U3 − P4 C21

13 U2 = P6 + P1 C21 = −αAccR(A22T
′
4 + U3)

Table 9: Schedule for operation C ← αA×B + βC with 2 temporaries

7 A sub-cubic in-place algorithm

Following the improvements of the previous section, the question was raised
whether extra memory allocation was intrinsic to sub-cubic matrix multiplica-
tion algorithms. More precisely, is there a matrix multiplication algorithm com-
puting C ← A × B in O

(

nlog
2
7
)

arithmetic operations without extra memory
allocation and without overwriting its input arguments? We show in this sec-
tion that a combination of Winograd’s algorithm and a classic block algorithm
provides a positive answer. Furthermore this algorithm also improves the extra
memory requirement for the product with accumulation C ← αA×B + βC.

7.1 The algorithm

The key idea is to split the result matrix C into four quadrants of dimension
n/2× n/2. The first three quadrants C11, C12 and C21 are computed using fast
rectangular matrix multiplication, i.e. 2k/n standard Winograd multiplications
on blocks of dimension n/2 × n/2. The temporary memory for these compu-
tations is stored in C22. Lastly, the block C22 is computed recursively up to
a base case, as shown on algorithm 2. This base case, when the matrix is too
small to benefit from the fast routine, is then computed with the classical matrix
multiplication.

Theorem 1. The complexity of algorithm 2 is:

G(n, n) = 7.2nlog
2
(7) − 13n2 + 6.8n

when k = n and FastThreshold = 1.

Proof. Recall that the cost of Winograd’s algorithm for square matrices is
W (n) = 6nlog

2
7−5n2 for the operation C ← A×B and Wacc(n) = 6nlog

2
7−4n2

14



Algorithm 2 IPMM: In-Place Matrix Multiply

Input: A and B, of dimensions resp. n × k and k × n with k, n powers of 2
and k > n.

Input: An integer FastThreshold > 1.
Output: C = A×B
1: if k 6 FastThreshold then

2: C = A×B ⊲ with the classical algorithm.
3: else

4: Split C =

[

C11 C12

C21 C22

]

, A =

[

A1,1 . . . A1,2k/n

A2,1 . . . A2,2k/n

]

and B =







B1,1 B1,2

...
...

B2k/n,1 B2k/n,2






⊲

where each
Ai,j , Bi,j and Ci,j

have dimension
n/2× n/2.

5: do ⊲ with alg. of table 1 using C22 as temp. space
6: C11 = A1,1B1,1

7: C12 = A1,1B1,2

8: C21 = A2,1B1,1

9: end do

10: for i = 2 . . . 2k
n

do ⊲ with alg. of table 2 using C22 as temporary space:
11: C11 = A1,iBi,1 + C11

12: C12 = A1,iBi,2 + C12

13: C21 = A2,iBi,1 + C21

14: end for

15: C22 = A2,∗ ×B∗,2 ⊲ recursively using IPMM.
16: end if

for the operation C ← A×B + C. The cost G(n, k) of algorithm 2 is given by
the relation

G(n, k) = 3W (n/2) + 3(2k/n− 1)Wacc(n/2) + G(n/2, k),

the base case being a classical dot product: G(1, k) = 2k − 1. Thus, G(n, k) =
7.2knlog

2
(7)−1 − 12kn− n2 + 34k/5.

Theorem 2. For any m, n and k, algorithm 2 is in place.

Proof. W.l.o.g, we assume that m > n > 1 (otherwise we could use the trans-
pose). The exact amount of extra memory from algorithms in table 1 and 2 is
respectively given by eq. (1) and (2).
If we cut B into pi stripes at recursion level i, then the sizes for the involved
submatrices of A (resp. B) are m/2i×k/pi (reps. k/pi×n/2i). The lower right
corner submatrix of C that we would like to use as temporary space has a size
m/2i × n/2i. Thus we need to ensure that the following inequality holds:

max (E1, E2)

(

m

2i
,

k

pi

,
n

2i

)

6
m

2i

n

2i
. (6)
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It is clear that E1 < E2, which simplifies the previous inequality. Let us now
write K = k/pi, M = m/2i and N = n/2i. We need to find, for every i an
integer pi > 1 so that eq. (6) holds. In other words, let us show that there exists
some K < k such that, for any (M, N), the inequality E2(M, K, N) 6 MN
holds. Then the fact that E(M, 2, N) < 1

3 (2M +2N +MN) 6
1
3 (4M +MN) 6

MN provides at least one such K.
As the requirements in algorithm 2 ensure that k > N and M = N , there just
remains to prove that E(M, N, N) 6 MN . Since E(M, N, N) < 1

3 (2MN +N2)
and again M > N , algorithm 2 is indeed in place.

Hence a fully in-place O
(

nlog
2
7
)

algorithm is obtained for matrix multipli-
cation. The overhead of this approach appears in the multiplicative constant of
the leading term of the complexity, growing from 6 to 7.2.
This approach extends to the case of matrices with general dimensions, using
e.g. peeling or padding techniques.
It is also useful if any sub-cubic algorithm is used instead of Winograd’s. For in-
stance, in the square case, one can use the product with accumulation in table 9
instead of table 2.

7.2 Reduced memory usage for the product with accumu-

lation

In the case of computing the product with accumulation, the matrix C can no
longer be used as temporary storage, and extra memory allocation cannot be
avoided. Again we can use the idea of the classical block matrix multiplication
at the higher level and call Winograd algorithm for the block multiplications.
As in the previous subsection, C can be divided into four blocks and then the
product can be made with 8 calls to Winograd algorithm for the smaller blocks,
with only one extra temporary block of dimension n/2× n/2.
More generally, for square n × n matrices, C can be divided in t2 blocks of
dimension n

t
× n

t
. Then one can compute each block with Winograd algorithm

using only one extra memory chunk of size (n/t)2. The complexity is changed
to Rt(n) = t2tWacc(n/t), which is Rt(n) = 6t3−log

2
(7)nlog

2
(7) − 4tn2 for an

accumulation product with Winograd’s algorithm. Using the parameter t, one
can then balance the memory usage and the extra arithmetic operations. For
example, with t = 2,

R2 = 6.857nlog
2
7 − 8n2 and ExtraMem =

n2

4

and with t = 3,

R3 = 7.414nlog
2
7 − 12n2 and ExtraMem =

n2

9
.

Note that one can use the algorithm of table 9 instead of the classical Winograd
accumulation as the base case algorithm. Then the extra memory requirements

drop to 2n2

3t2
and the arithmetic complexity increases to Rt(n)+t2−log

2
(3)nlog

2
(6)−

tn2.
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8 Conclusion

With constant input matrices, we reduced the number of extra memory alloca-
tions for the operation C ← αA×B + βC from n2 to 2

3n2, by introducing two
extra pre-additions. As shown below, the overhead induced by these supple-
mentary additions is amortized by the gains in number of memory allocations.

If the input matrices can be overwritten, we proposed a fully in-place sched-
ule for the operation C ← A×B without any extra operation. We also reduced
the extra memory allocations for the operation C ← αA ×B + βC from n2 to
2
3n2, by introducing only two extra pre-additions. We also proposed variants
for the operation C ← A × B, where only one of the input matrices is being
overwritten and one temporary is required.

Some algorithms with an even more reduced memory usage, but with some
increase in arithmetic complexity, are also shown. Table 10 gives a summary
of the features of each schedule that has been presented. The complexities are
given only for m = k = n being a power of 2.

Theorem 3. The arithmetic and memory complexities given in table 10 are
correct.

Proof. For the operation A × B, the arithmetic complexity of the schedule of
table 1 classically satisfies

{

W1(n) = 7W1(
n
2 ) + 15

(

n
2

)2

W1(1) = 1
,

so that W1(n) = 6nlog
2
(7) − 5n2.

The schedule of table 1 requires

{

M1(n) = 2
(

n
2

)2
+ M1

(

n
2

)

M1(1) = 0

extra memory space, which is M1(n) = 2
3n2. Its total number of allocations

satisfies A1(n) = 2
(

n
2

)2
+ 7A1

(

n
2

)

which is A1(n) = 2
3 (nlog

2
(7) − n2).

The schedule of table 4 requires M4(n) =
(

n
2

)2
+ M4

(

n
2

)

extra memory
space, which is M4(n) = 1

3n2. Its total number of allocations satisfies A4(n) =
(

n
2

)2
+ 5A4

(

n
2

)

which is A4(n) = nlog
2
(5) − n2.

The schedule of table 5 requires the same amount of arithmetic operations
or memory.

For A×B + βC, the arithmetic complexity of [10] satisfies

W2(n) = 5W2

(n

2

)

+ 2W1

(n

2

)

+ 14
(n

2

)2

,

so that W2(n) = 6nlog
2
(7) − 4n2; its number of extra memory satisfies M2(n) =

3
(

n
2

)2
+ M2

(

n
2

)

, which is M2(n) = n2; its total number of allocations satisfies
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Algorithm Input matrices
# of extra

tempo-
raries

total
extra
mem-
ory

total # of extra
allocations

arithmetic complexity
A

×
B

Table 2 [6] Constant 2 2
3n2 2

3 (n2.807 − n2) 6n2.807 − 5n2

Table 3 Both Overwritten 0 0 0 6n2.807 − 5n2

Table 4 or 5 A or B Overwritten 1 1
3n2 n2.322 − n2 6n2.807 − 5n2

7.1 Constant 0 0 0 7.2n2.807 − 13n2

α
A

×
B

+
β
C

Table 2 [10] Constant 3 n2
14
3 n2.807 − 7n2.322 +

7
3n2 6n2.807 − 4n2

Table 6 Both Overwritten 2 2
3n2 1

2n2 log2(n) 6n2.807 − 4n2 + 1
2n2 log2(n)

Table 7 B Overwritten 2 2
3n2 2n2.322 − 2n2 6n2.807 − 4n2 + 1

2n2 log2(n)

Table 9 Constant 2 2
3n2

2
9n2.807 + 2n2.322 −

22
9 n2 6n2.807 − 4n2 + 4

3n2 log2(n)

7.2 Constant N/A 1
4n2 1

4n2 6.857n2.807 − 8n2

7.2 Constant N/A 1
9n2 1

9n2 7.414n2.807 − 12n2

Table 10: Complexities of the presented matrix multiplication schedules

1
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A2(n) = 3
(

n
2

)2
+ 5A2

(

n
2

)

+ 2A1(n), which is

A2(n) =
1

3

(

14nlog
2
(7) + 7n2 − 21nlog

2
(5)

)

.

The arithmetic complexity of the schedule of table 6 satisfies

W6(n) = 4W6

(n

2

)

+ 3W1

(n

2

)

+ 17
(n

2

)2

,

so that W6(n) = 6nlog
2
(7)− 4n2 + 1

2n2 log2(n); its number of extra memory sat-

isfies M6(n) = 2
(

n
2

)2
+M6

(

n
2

)

, which is M6(n) = 2
3n2; its total number of allo-

cations satisfies A6(n) = 2
(

n
2

)2
+ 4A6

(

n
2

)

, which is A6(n) = n2 + 1
2n2 log2(n).

The arithmetic complexity of the schedule of table 7 satisfies

W7(n) = 4W7

(n

2

)

+ W1

(n

2

)

+ 2W5

(n

2

)

+ 16
(n

2

)2

,

so that W7(n) = 6nlog
2
(7) − 4n2 + 1

2n2 log2(n); its number of extra memory

satisfies M7(n) = 2
(

n
2

)2
+ M7

(

n
2

)

, which is M7(n) = 2
3n2; its total number

of allocations satisfies A7(n) = 2
(

n
2

)2
+ 4A7

(

n
2

)

+ 2A5

(

n
2

)

, which is A7(n) =

2nlog
2
(5) − 2n2.

The arithmetic complexity of the schedule of table 9 satisfies

W9(n) = 4W9

(n

2

)

+ W1

(n

2

)

+ 2W6

(n

2

)

+ 17
(n

2

)2

,

so that W9(n) = 6nlog
2
(7) − 4n2 + 4

3n2
(

log2(n)− 10
3

)

+ 4
9 ; its number of extra

memory satisfies M9(n) = 2
(

n
2

)2
+ M9

(

n
2

)

, which is M9(n) = 2
3n2; its total

number of allocations satisfies A9(n) = 2
(

n
2

)2
+ 4A9

(

n
2

)

+ A1

(

n
2

)

+ 2A6

(

n
2

)

,

which is A9(n) = 2
9nlog

2
(7) + 2nlog

2
(5) − 22

9 n2 + 2
9 .

For instance, by adding up allocations and arithmetic operations in table 10,
one sees that the overhead in arithmetic operations of the schedule of table 9
is somehow amortized by the decrease of memory allocations. Thus it makes it
competitive with the algorithm of [10] as soon as n > 10.

Also, problems with dimensions that are not powers of two can be handled by
combining the cuttings of algorithms 1 and 2 with peeling or padding techniques.
Moreover, some cut-off can be set in order to stop the recursion and switch to
the classical algorithm. The use of these cut-offs will in general decrease both
the extra memory requirements and the arithmetic complexity overhead.
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