
HAL Id: hal-00163141
https://hal.science/hal-00163141v2

Preprint submitted on 31 Aug 2007 (v2), last revised 18 May 2009 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Memory efficient scheduling of Strassen-Winograd’s
matrix multiplication algorithm

Jean-Guillaume Dumas, Clément Pernet, Wei Zhou

To cite this version:
Jean-Guillaume Dumas, Clément Pernet, Wei Zhou. Memory efficient scheduling of Strassen-
Winograd’s matrix multiplication algorithm. 2007. �hal-00163141v2�

https://hal.science/hal-00163141v2
https://hal.archives-ouvertes.fr

ha
l-

00
16

31
41

, v
er

si
on

 2
 -

 3
1

A
ug

 2
00

7

Memory efficient scheduling of

Strassen-Winograd’s matrix multiplication

algorithm

Jean-Guillaume Dumas ∗ Clément Pernet † Wei Zhou †

August 31, 2007

Abstract

We propose several new schedules for Strassen-Winograd’s algorithm,

in order to reduce the extra memory allocation requirements by three dif-

ferent means: either by introducing a few pre-additions, or by overwriting

the input matrices or by using a first recursive level of classical multiplica-

tion. In particular, we show two fully in-place schedules: one having the

same number of operations, if the input matrices can be overwritten, the

other, slightly increasing the constant of the leading term of the complex-

ity if the input matrices are constant. Many of these schedules have been

found by an implementation of an exhaustive search algorithm, based on

a pebble game set of rules.

1 Introduction

Strassen’s algorithm [13] was the first sub-cubic algorithm for matrix multipli-
cation. Its improvement by Winograd led to a highly practicable algorithm.

The best asymptotic complexity for this computation has been successively
improved since then, down to O

(

n2.376
)

[4] (see [2, 3] for a review), but Strassen-
Winograd’s still remains one of the most practicable.

Former studies on how to turn this algorithm into practice can be found in
[1, 8, 9, 5] and references therein for numerical computation and in [12, 6] for
computations over a finite field.

In this paper, we propose new schedules of the algorithm, that reduce the
extra memory allocation, by three differents means: either by introducing a few
pre-additions, by overwriting the input matrices or by using a first recursive
level of classical multiplication.

∗Laboratoire J. Kuntzmann, Université J. Fourier. UMR CNRS 5224, BP 53X, F38041

Grenoble, France, jgdumas@imag.fr
†School of Computer Science University of Waterloo Waterloo, ON, N2B 3G1, Canada,

{cpernet,w2zhou}@uwaterloo.ca

1

These schedules can prove useful e.g. for memory efficient computations of
the rank, determinant, null-space basis, system resolution, matrix inversion...
Indeed, the matrix multiplication based LQUP factorization of [10] can be com-
puted with no other temporary allocations than the one involved in its block
matrix multiplications [11]. Therefore the improvements on the memory re-
quirements of the matrix multiplication will directly improve these higher level
computations. We do not consider here stability issues, just the number of arith-
metic operations and memory allocations. Further studies have thus to be made
in order to use these schedules for numerical computations. They can nonethe-
less be used as is for exact computations, for instance for integer/rational or
finite field applications [7].

2 Algorithm and notations

We first recall the principle of the algorithm, and setup the notations that will
be used throughout the paper.

Let m, n and k be powers of 2. Let A and B be two matrices of dimension
m× k and k × n and let C = A×B.

Consider the natural block decomposition

[

C11 C12

C21 C22

]

=

[

A11 A12

A21 A22

] [

B11 B12

B21 B22

]

,

where A11 and B11 have respectively dimension m/2× k/2 and k/2× n/2.
Winograd’s algorithm computes the m × n matrix C = A × B with the

following 22 block operations:

• 8 additions:

S1 ← A21 + A22 T1 ← B12 −B11

S2 ← S1 −A11 T2 ← B22 − T1

S3 ← A11 −A21 T3 ← B22 −B12

S4 ← A12 − S2 T4 ← T2 −B21

• 7 recursive multiplications:

P1 ← A11 ×B11 P5 ← S1 × T1

P2 ← A12 ×B21 P6 ← S2 × T2

P3 ← S4 ×B22 P7 ← S3 × T3

P4 ← A22 × T4

• 7 final additions:

U1 ← P1 + P2 U5 ← U4 + P3

U2 ← P1 + P6 U6 ← U3 − P4

U3 ← U2 + P7 U7 ← U3 + P5

U4 ← U2 + P5

2

• The result is the matrix: C =

[

U1 U5
U6 U7

]

Figure 1 illustrates the dependencies between these tasks.

Figure 1: Task dependency graph of Winograd’s algorithm

3 Memory efficient scheduling

Unlike the classic multiplication algorithm, Winograd’s algorithm requires some
extra temporary memory allocations to perform its 22 block operations. We
present in this section several scheduling minimizing the number of temporary
space allocated. Section 3.2 deals with the usual situation where the input
matrices A and B are constant. In section 3.3, we allow to overwrite the input
matrices A and B, leading to better memory efficiency.

3.1 Exhaustive search algorithm

We used a classical brute force search algorithm to get some of the new schedules
that will be presented in the following sections. It has two components a Tester
and an Explorer. The Tester is a variant of the pebble game of [9] with the
following rules applied in this order:

3

Rule 1 A pebble is removed of any vertex having all its immediate succesors
completed except for non-overwritable initial inputs.

Rule 2 If all the immediate predecessors of a vertex have pebbles on them, if the
computation to be performed at that vertex is of type αA×B + βC, and
if all the other immediate succesors of C are already computed, then C’s
pebble can be moved onto that vertex.

Rule 3 If all the immediate predecessors of a vertex have pebbles on them, if the
computation to be performed at that vertex is an addition, and if all the
other immediate succesors of a predecessor are already computed, then
this predecessor’s pebble can be moved onto that vertex.

Rule 4 If all the immediate predecessors of a vertex are either initial inputs or
have pebbles on them, a pebble may be placed on that vertex.

Then, the Explorer follows the dependency graph depth-first as in game theory:
possible moves are ready (all the immediate predecessors are already computed)
and not yet computed tasks; the possible moves are tried recursively in turns.

3.2 With constant input matrices

3.2.1 Standard product

We first consider the basic operation C ← A×B. The best known schedule for
this case was given by [5]. We reproduce a similar schedule in table 1. It requires

operation loc. # operation loc.
1 S3 = A11 −A21 X1 12 P1 = A11B11 X1

2 T3 = B22 −B12 X2 13 U2 = P1 + P6 C12

3 P7 = S3T3 C21 14 U3 = U2 + P7 C21

4 S1 = A21 + A22 X1 15 U4 = U2 + P5 C12

5 T1 = B12 −B11 X2 16 U7 = U3 + P5 C22

6 P5 = S1T1 C22 17 U5 = U4 + P3 C12

7 S2 = S1 −A11 X1 18 T4 = T2 −B21 X2

8 T2 = B22 − T1 X2 19 P4 = A22T4 C11

9 P6 = S2T2 C12 20 U6 = U3 − P4 C21

10 S4 = A12 − S2 X1 21 P2 = A12B21 C11

11 P3 = S4B22 C11 22 U1 = P1 + P2 C11

Table 1: Winograd’s algorithm for operation C ← A×B, with two temporaries

two temporary blocks X1 and X2 of dimension respectively m/2×max(k/2, n/2)
and k/2×n/2. Assuming m = n = k, and summing these temporary allocations
for every recursive level, leads to a total extra memory requirement of

2

logn
∑

i=1

(n

2i

)2

<
2

3
n2.

4

3.2.2 Product with accumulation

For the more general operation C ← αA×B+βC, a first naive method would be
to compute the product αA×B using the scheduling of table 1, into a temporary
matrix C′ and finally compute C ← C′+βC. It would require (1+2/3)n2 extra
memory allocation.

Now the schedule of table 2 due to [9, fig. 6] only requires 3 temporary blocks
for the same number of operations (7 multiplications and 4 + 15 additions).

operation loc. # operation loc.
1 S1 = A21 + A22 X1 12 S4 = A12 − S2 X1

2 T1 = B12 −B11 X2 13 T4 = T2 −B21 X2

3 P5 = αS1T1 X3 14 C12 = αS4B22 + C12 C12

4 C22 = P5 + βC22 C22 15 U5 = U2 + C12 C12

5 C12 = P5 + βC12 C12 16 P4 = αA12T4 − βC21 C21

6 S2 = S1 −A11 X1 17 S3 = A11 −A21 X1

7 T2 = B22 − T1 X2 18 T3 = B22 −B12 X2

8 P1 = αA11B11 X3 19 U3 = αS3T3 + U2 X3

9 C11 = P1 + βC11 C11 20 U7 = U3 + C22 C22

10 U2 = αS2T2 + P1 X3 21 U6 = U3 − C21 C21

11 U1 = αA12B21 + C11 C11 22

Table 2: Schedule for operation C ← αA×B + βC with 3 temporaries

The three temporary blocks X1, X2, X3 required have dimension m/2×n/2,
m/2×k/2 and k/2×n/2. Assuming m = n = k, and summing these temporary
allocations for every recursive level, leads to a total extra memory requirement
of

3

logn
∑

i=1

(n

2i

)2

< n2.

We propose in table 3 a new schedule for the same operation αA×B+βC only
requiring two temporary blocks. The price to pay for this improvement is three
pre-additions on the input matrix C. These are partially compensated by the
recursive calls as will be shown in theorem 2. Again, the two temporary blocks
X1 and X2 are of dimension respectively m/2×max(k/2, n/2) and k/2× n/2.
Assuming m = n = k, and summing these temporary allocations for every
recursive level, leads to a total extra memory requirement of

2

logn
∑

i=1

(n

2i

)2

<
2

3
n2.

3.3 Overwriting the input matrices

We now relax some constraints on the previous problem: the input matrices A
and B can be overwritten. In this section we only consider the multiplication

5

operation loc. # operation loc.
1 C22 = C22 − C12 C22 13 P3 = αS4B22 + C12 C12

2 C21 = C21 − C22 C21 14 P1 = αA11B11 X1

3 C12 = C12 − C22 C12 15 U2 = P6 + P1 C21

4 S1 = A21 + A22 X1 16 P2 = αA12B21 + βC11 C11

5 T1 = B12 −B11 X2 17 U1 = P1 + P2 C11

6 P5 = αS1T1 + βC12 C12 18 U5 = U2 + C12 C12

7 S2 = S1 −A11 X1 19 S3 = A11 −A21 X1

8 T2 = B22 − T1 X2 20 T3 = B22 −B12 X2

9 P6 = αS2T2 + βC21 C21 21 U3 = P7 + U2 = αS3T3 + U2 C21

10 S4 = A12 − S2 X1 22 U7 = U3 + C22 C22

11 T4 = T2 −B21 X2 23 U6 = U3 − P4 = −αA12T4 + U3 C21

12 C22 = P5 + βC22 C22

Table 3: Schedule for operation C ← αA×B + βC with 2 temporaries

of square matrices (m = n = k).

3.3.1 Standard product

We propose in table 4 a new schedule that computes the product C ← A × B
without any temporary memory allocation. The point here is to find an ordering
where the recursive calls can be made also in place (i.e. such that the operand
of a multiplication are no longer in use after the multiplication). The exhaustive
search showed that no schedule exists overwriting less than four sub-blocks.

operation loc. # operation loc.
1 S3 = A11 −A21 C11 12 S4 = A12 − S2 C22

2 S1 = A21 + A22 A21 13 P6 = S2T2 C12

3 T1 = B12 −B11 C22 14 U2 = P1 + P6 C12

4 T3 = B22 −B12 B12 15 U3 = U2 + P7 C21

5 P7 = S3T3 C21 16 P3 = S4B22 B11

6 S2 = S1 −A11 B12 17 U7 = U3 + P5 C22

7 P1 = A11B11 C11 18 U6 = U3 − P4 C21

8 T2 = B22 − T1 B11 19 U4 = U2 + P5 C12

9 P5 = S1T1 A11 20 U5 = U4 + P3 C12

10 T4 = T2 −B21 C22 21 P2 = A12B21 B11

11 P4 = A22T4 A21 22 U1 = P1 + P2 C11

Table 4: Schedule for operation C ← A×B in place

Note that this schedule uses only two blocks of A or B as extra temporaries
(namely A11, A21, B11 and B12) but overwrites the whole of A and B. For
instance the recursive computation of P2 requires to also overwrite parts of A12

6

and B21. This schedule can nonetheless overwrite strictly only two blocks of A
and two blocks of B. This is achieved by making a backup of the overwriten parts
into some available extra memory. The schedule is then modified as follows:

operation loc.
10bis Copy A22 into C12 C12

11 P4 = A22T4 A21

11bis Restore A22 from C12 A22

15bis Copy B22 into B12 B12

16 P3 = S4B22 B11

16bis Restore B22 from B12 B22

20bis Copy A12 into A21 A21

20ter Copy B21 into B12 B12

21 P2 = A12B21 B11

21bis Restore B21 from B12 B21

21ter Restore A12 from A21 A12

In the following, we will denote by IP for InPlace, either one of these two
schedules.

We thus also present in tables 5 and 6 two new schedules overwriting only one
of the two input matrices, but requiring an extra temporary space. These two
schedules are denoted IPLeft and IPRight. Here also, the exhaustive search
showed that no schedule exists overwriting only one side and not using extra
temporary.

operation loc. # operation loc.
1 S3 = A11 −A21 C22 13 T4 = T2 −B21 A11

2 S1 = A21 + A22 A21 14 U2 = P1 + P6 C21

3 S2 = S1 −A11 C12 15 U4 = U2 + P5 C12

4 T1 = B12 −B11 C21 16 U3 = U2 + P7 C21

5 P1 = IPLeft(A11B11) C11 17 U7 = U3 + P5 C22

6 T3 = B22 −B12 A11 18 U5 = U4 + P3 C12

7 P7 = IP(S3T3) X1 A21 = Copy(A12) A21

8 T2 = B22 − T1 A11 19 P2 = IPLeft(A12B21) X1

9 P5 = IP(S1T1) C22 A12 = Copy(A21) A12

10 S4 = A12 − S2 C21 20 U1 = P1 + P2 C11

11 P3 = IPLeft(S4B22) A21 21 P4 = IPRight(A22T4) A21

12 P6 = IPLeft(S2T2) C21 22 U6 = U3 − P4 C21

Table 5: IPLeft Schedule for operation C ← A×B using strictly two blocks of
A and one temporary

The exhaustive search showed that no schedule exists overwriting only one
block of A. Remark that if it is allowed to use three blocks of A, the two Copy

operations of table 5 can be avoided. Note also that if three blocks of A can
be overwriten then the last multiplication (P4) can also be made by a strict

7

recursive call to IPLeft. Both behaviors can be simultaneous if four blocks of
A (the whole matrix) are overwritable.

operation loc. # operation loc.
1 S3 = A11 −A21 C22 13 S4 = A12 − S2 B11

2 S1 = A21 + A22 C21 14 U2 = P1 + P6 C21

3 T1 = B12 − B11 C12 15 U4 = U2 + P5 C12

4 P1 = IPRight(A11B11) C11 16 U3 = U2 + P7 C21

5 S2 = S1 −A11 B11 17 U7 = U3 + P5 C22

6 T3 = B22 − B12 B12 18 U6 = U3 − P4 C21

7 P7 = IP(S3T3) X1 19 P3 = IPLeft(S4B22) B12

8 T2 = B22 − T1 B12 20 U5 = U4 + P3 C12

9 P5 = IP(S1T1) C22 B11 = Copy(B21) B11

10 T4 = T2 −B21 C12 21 P2 = IPRight(A12B21) B12

11 P6 = IPRight(S2T2) C21 B21 = Copy(B11) B21

12 P4 = IPRight(A22T4) B12 22 U1 = P1 + P2 C11

Table 6: IPRight Schedule for operation C ← A×B using strictly two block of
B and one temporary

For IPRight also, the copy or the call to IPLeft for P3 can be avoided if
three or four blocks of B are overwritable.

3.3.2 Product with accumulation

We now consider the general operation C ← αA × B + βC, where the input
matrices A and B can be overwritten. We propose in table 7 a schedule that
only requires 2 temporary block matrices, instead of the 3 of table 2. Again,
this is achieved at the price of two additional pre-additions on the matrix C.
Compared to the scheduling of table 3, the possibility to overwrite the input
matrices makes it possible to save one pre-addition.

4 A sub-cubic in-place algorithm

Following the improvements of the previous section, the question was raised
whether extra memory allocation was intrinsic to sub-cubic matrix multiplica-
tion algorithms. More precisely, is there a matrix multiplication algorithm com-
puting C ← A × B in O

(

nlog
2
7
)

arithmetic operations with no extra memory
allocation and with no overwriting of its input arguments. We answer this ques-
tion affirmatively in this section, with a combination of Winograd’s algorithm
and a classic block algorithm. Furthermore this algorithm also improves the ex-
tra memory requirement for the product with accumulation C ← αA×B +βC.

8

operation loc. # operation loc.
1 C21 = C21 − C22 C21 13 P4 = A22T4 + βC21 C21

2 C22 = C22 − C12 C22 14 P2 = A12B21 + βC11 C11

3 S3 = A11 −A21 X 15 P1 = IP(A11B11) B21

4 T3 = B22 −B12 Y 16 U1 = P1 + P2 C11

5 P7 = S3T3 + βC22 C22 17 P6 = IP(S2T2) A12

6 S1 = A21 + A22 A21 18 U2 = P1 + P6 C12

7 T1 = B12 −B11 B12 19 U4 = U2 + P5 C12

8 S2 = S1 −A11 X 20 U3 = U2 + P7 C22

9 T2 = B22 − T1 Y 21 U7 = U3 + P5 C22

10 P5 = S1T1 + βC12 C12 22 U6 = U3 − P4 C21

11 S4 = A12 − S2 A21 23 P3 = IP(S4B22) A12

12 T4 = T2 −B21 B12 24 U5 = U4 + P3 C12

Table 7: Schedule for C ← αA×B + βC with 2 temporaries and overwriting A
and B

4.1 The algorithm

The key idea is to split the result matrix C into four quadrants of dimension
n/2× n/2. The first three quadrants C11, C12 and C21 are computed using fast
rectangular matrix multiplication, i.e. 2k/n standard Winograd multiplications
on blocks of dimension n/2× n/2. The temporary memory for these computa-
tions is stored in C22. Lastly, the block C22 is computed recursively up to a base
case, as shown on algorithm 1. This base case, when the matrix is too small
to take benefit of the fast routine, is then computed with the classical matrix
multiplication.

Theorem 1. The complexity of algorihtm 1 is

G(n, n) = 7.2nlog
2
(7) − 13n2 + 6.8n

when k = n and FastThreshold = 1.

Proof. Recall that the cost of Winograd’s algorithm for square matrices is
W (n) = 6nlog

2
7−5n2 for the operation C ← A×B and Wacc(n) = 6nlog

2
7−4n2

for the operation C ← A×B + C. The cost G(n, k) of algorithm 1 is given by
the relation

G(n, k) = 3W (n/2) + 3(2k/n− 1)Wacc(n/2) + G(n/2, k),

the base case being a classical dot product: G(1, k) = 2k − 1. Thus, G(n, k) =
7.2knlog

2
(7)−1 − 12kn− n2 + 34k/5.

Hence a fully in-place O
(

nlog
2
7
)

algorithm is obtained for matrix multipli-
cation. The overhead of this approach appears in the multiplicative constant of
the leading term of the complexity, growing from 6 to 7.2.

This approach extends naturally to the case of matrices with general dimen-
sions.

9

Algorithm 1 IPMM: In-Place Matrix Multiply

Require: A and B, of dimensions resp. n× k and k × n with k, n powers of 2
and k ≥ n.

Require: An integer FastThreshold ≥ 1.
Ensure: C = A×B
1: if k ≤ FastThreshold then

2: Compute C = A×B by the classical algorithm.
3: else

4: Split A =

[

A1,1 . . . A1,2k/n

A2,1 . . . A2,2k/n

]

, B =











B1,1 B1,2

...
...

B2k/n,1 B2k/n,2











and C =

[

C11 C12

C21 C22

]

, where each Ai,j , Bi,j and Ci,j have dimension n/2× n/2.

5: C11 = A1,1B1,1 with alg. of table 1 using C22 as temporary space.
6: C12 = A1,1B1,2 with alg. of table 1 using C22 as temporary space.
7: C21 = A2,1B1,1 with alg. of table 1 using C22 as temporary space.
8: for i = 2 . . . 2k

n do

9: C11 = A1,iBi,1 +C11 with alg. of table 2 using C22 as temporary space.
10: C12 = A1,iBi,2 +C12 with alg. of table 2 using C22 as temporary space.
11: C21 = A2,iBi,1 +C21 with alg. of table 2 using C22 as temporary space.
12: end for

13: C22 = A2,∗ ×B∗,2 recursively using IPMM.
14: end if

4.2 Reduced memory usage for the product with accumu-

lation

In this case, the matrix C can no longer be used as temporary storage, and extra
memory allocation can not be avoided. Again the idea here is to use the classical
block matrix multiplication at the higher level and call Winograd algorithm for
the block multiplications. As in the previous section, C can be divided into four
blocks and then the product can be made with 8 calls to Winograd algorithm for
the smaller blocks, with only one extra temporary block of dimension n/2×n/2.

More generally, for square n× n matrices, C can be divided in t2 blocks of
dimension n

t ×
n
t . Then one can compute each block with Winograd algorithm

using only one extra memory chunk of size (n/t)2. The complexity is changed
to

Rt(n) = t2tWacc(n/t),

which is
Rt(n) = 6t3−log

2
(7)nlog

2
(7) − 4tn2

for an accumulation product with Winograd’s algorithm. Using the parameter
t, one can then balance the memory usage and the extra arithmetic operations.

10

For example, with t = 2,

R2 = 6.857nlog
2
7 − 8n2 and ExtraMem =

n2

4

and with t = 3,

R3 = 7.414nlog
2
7 − 12n2 and ExtraMem =

n2

9
.

5 Conclusion

With constant input matrices, we reduced the number of extra memory alloca-
tions for the operation C ← αA×B +βC from n2 to 2

3n2, by introducing three
extra pre-additions. As shown below the overhead induced by these supplemen-
tary additions is amortized by the gains in number of memory allocations.

If the input matrices can be overwritten, we proposed a fully in-place sched-
ule for the operation C ← A×B without any extra operation. We also reduced
the extra memory allocations for the operation C ← αA × B + βC from n2 to
2
3n2, by introducing only two extra pre-additions. We also proposed variants
for the operation C ← A × B, where only one of the input matrices is being
overwritten and one temporary is required.

Some algorithms with an even reduced memory usage, but with some in-
crease in arithmetic complexity, are also shown.

Table 8 gives a summary of the features of each schedule that has been
presented. The complexities are given only for m = k = n being a power of 2.

Theorem 2. The arithmetic and memory complexities given in table 8 are

correct.

Proof. For the operation A × B, the arithmetic complexity of the schedule of
table 1 satisfies classically

{

W1(n) = 7W1(
n
2) + 15

(

n
2

)2

W1(1) = 1
,

so that W1(n) = 6nlog
2
(7) − 5n2.

The schedule of table 1 requires

{

M1(n) = 2
(

n
2

)2
+ M1

(

n
2

)

M1(1) = 0

extra memory space, which is M1(n) = 2
3n2. Its total number of allocations

satifies

A1(n) = 2
(n

2

)2

+ 7A1

(n

2

)

which is A1(n) = 2
3 (nlog

2
(7) − n2).

11

Algorithm Input # of extra total extra total # of extra arithmetic

matrices temporaries memory allocations complexity

[5] Constant 2 2
3n2 2

3 (n2.807 − n2) 6n2.807 − 5n2

Table 4 Both Overwritten 0 0 0 6n2.807 − 5n2

Table 5 A Overwritten 1 1
3n2 n2.322 − n2 6n2.807 − 5n2

A
×

B

Table 6 B Overwritten 1 1
3n2 n2.322 − n2 6n2.807 − 5n2

4.1 Constant 0 0 0 7.2n2.807 − 13n2

[9] Constant 3 n2 1
3

(

14n2.807 + 7n2 − 21n2.322
)

6n2.807 − 4n2

Table 3 Constant 2 2
3n2 1

3

(

14n2.807 + 7n2 − 15n2.585
)

6n2.807 − 4n2 + 3
2 (n2.585 − n2)

α
A

×
B

+
β
C

Table 7 Overwritten 2 2
3n2 1

2n2 log2(n) 6n2.807 − 4n2 + 1
2n2 log2(n)

4.2 Constant N/A 1
4n2 1

4n2 6.857n2.807 − 8n2

4.2 Constant N/A 1
9n2 1

9n2 7.414n2.807 − 12n2

Table 8: Complexities of the presented matrix multiplication schedules

1
2

The schedule of table 5 requires

M5(n) =
(n

2

)2

+ M5

(n

2

)

extra memory space, which is M5(n) = 1
3n2. Its total number of allocations

satifies

A5(n) =
(n

2

)2

+ 5A5

(n

2

)

which is A5(n) = nlog
2
(5) − n2.

The schedule of table 6 requires the same amount of arithmetic operations
or memory.

For A×B + βC, the arithmetic complexity of [9] satifies

W2(n) = 5W2

(n

2

)

+ 2W1

(n

2

)

+ 14
(n

2

)2

,

so that W2(n) = 6nlog
2
(7) − 4n2; its number of extra memory satifies

M2(n) = 3
(n

2

)2

+ M2

(n

2

)

,

which is M2(n) = n2; its total number of allocations satifies

A2(n) = 3
(n

2

)2

+ 5A2

(n

2

)

+ 2A1(n),

which is A2(n) = 1
3

(

14nlog
2
(7) + 7n2 − 21nlog

2
(5)

)

.
The arithmetic complexity of the schedule of table 3 satisfies

W3(n) = 6W3

(n

2

)

+ W1

(n

2

)

+ 16
(n

2

)2

,

so that W3(n) = 6nlog
2
(7)− 4n2 + 3

2 (nlog
2
(6)−n2) ; its number of extra memory

satifies

M3(n) = 2
(n

2

)2

+ M3

(n

2

)

,

which is M3(n) = 2
3n2; its total number of allocations satifies

A3(n) = 2
(n

2

)2

+ 6A3

(n

2

)

+ A1(n),

which is A3(n) = 1
3

(

14nlog
2
(7) + 7n2 − 15nlog

2
(6)

)

.
The arithmetic complexity of the schedule of table 7 satifies

W7(n) = 4W7

(n

2

)

+ 3W1

(n

2

)

+ 17
(n

2

)2

,

so that W7(n) = 6nlog
2
(7) − 4n2 + 1

2n2 log2(n) ; its number of extra memory
satifies

M7(n) = 2
(n

2

)2

+ M7

(n

2

)

,

13

which is M7(n) = 2
3n2; its total number of allocations satifies

A7(n) = 2
(n

2

)2

+ 4A7

(n

2

)

,

which is A7(n) = 1
2n2 log2(n).

For instance, by adding up allocations and arithmetic operations in table 8,
one sees that the overhead in arithmetic operations of the schedule of table 3
is somehow amortized by the decrease of memory allocations. Thus it makes it
competitive with the algorithm of [9] as soon as n ≥ 10.

Of course, practical implementations will deal with non power of two dimen-
sions, in general by peeling or padding the matrices. Moreover, some cut-off will
be set in order to stop the recursion and switch to the classical algorithm. The
use of these cut-offs will in general decrease both the extra memory requirements
and the arithmetic complexity overhead.

References

[1] D. H. Bailey. Extra high speed matrix multiplication on the cray-2. SIAM

Journal on Scientific and Statistical Computing, 9(3):603–607, 1988.

[2] D. Bini and V. Pan. Polynomial and Matrix Computations, Volume 1:

Fundamental Algorithms. Birkhauser, Boston, 1994.

[3] M. Clausen, P. Bürgisser, and M. A. Shokrollahi. Algebraic Complexity

Theory. Springer, 1997.

[4] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic
progressions. Journal of Symbolic Computation, 9(3):251–280, 1990.

[5] C. C. Douglas, M. Heroux, G. Slishman, and R. M. Smith. GEMMW:
A portable level 3 BLAS Winograd variant of Strassen’s matrix-matrix
multiply algorithm. Journal of Computational Physics, 110:1–10, 1994.

[6] J.-G. Dumas, T. Gautier, and C. Pernet. Finite field linear algebra sub-
routines. In T. Mora, editor, ISSAC’2002, pages 63–74. ACM Press, New
York, July 2002.

[7] J.-G. Dumas, P. Giorgi, and C. Pernet. FFPACK: Finite field linear algebra
package. In J. Gutierrez, editor, ISSAC’2004, pages 119–126. ACM Press,
New York, July 2004.

[8] S. Huss-Lederman, E. M. Jacobson, J. R. Johnson, A. Tsao, and T. Turn-
bull. Implementation of Strassen’s algorithm for matrix multiplication. In
ACM, editor, Supercomputing ’96 Conference Proceedings: November 17–

22, Pittsburgh, PA. ACM Press and IEEE Computer Society Press, 1996.
www.supercomp.org/sc96/proceedings/SC96PROC/JACOBSON/.

14

[9] S. Huss-Lederman, E. M. Jacobson, J. R. Johnson, A. Tsao, and T. Turn-
bull. Strassen’s algorithm for matrix multiplication : Modeling analysis,
and implementation. Technical report, Center for Computing Sciences,
Nov. 1996. CCS-TR-96-17.

[10] O. H. Ibarra, S. Moran, and R. Hui. A generalization of the fast LUP
matrix decomposition algorithm and applications. Journal of Algorithms,
3(1):45–56, Mar. 1982.

[11] C.-P. Jeannerod, C. Pernet, and A. Storjohann. Rank sensitive, in-place
fast computation of the echelon form. Technical report, 2007.

[12] C. Pernet. Implementation of Winograd’s fast matrix multiplication over
finite fields using ATLAS level 3 BLAS. Technical report, Laboratoire
Informatique et Distribution, July 2001. www-id.imag.fr/Apache/RR/

RR011122FFLAS.ps.gz.

[13] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13:354–356, 1969.

15

