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Memory e�ient sheduling ofStrassen-Winograd's matrix multipliationalgorithm∗Brie Boyer† Jean-Guillaume Dumas∗ Clément Pernet‡Wei Zhou§May 18, 2009AbstratWe propose several new shedules for Strassen-Winograd's matrix mul-tipliation algorithm, they redue the extra memory alloation require-ments by three di�erent means: by introduing a few pre-additions, byoverwriting the input matries, or by using a �rst reursive level of las-sial multipliation. In partiular, we show two fully in-plae shedules:one having the same number of operations, if the input matries an beoverwritten; the other one, slightly inreasing the onstant of the leadingterm of the omplexity, if the input matries are read-only. Many of theseshedules have been found by an implementation of an exhaustive searhalgorithm based on a pebble game.Keywords: Matrix multipliation, Strassen-Winograd's algorithm, Memoryplaement.1 IntrodutionStrassen's algorithm [16℄ was the �rst sub-ubi algorithm for matrix multipli-ation. Its improvement by Winograd [17℄ led to a highly pratial algorithm.
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The best asymptoti omplexity for this omputation has been suessively im-proved sine then, down to O (

n2.376
) in [5℄ (see [3, 4℄ for a review), but Strassen-Winograd's still remains one of the most pratiable. Former studies on howto turn this algorithm into pratie an be found in [2, 9, 10, 6℄ and referenestherein for numerial omputation and in [15, 7℄ for omputations over a �nite�eld.In this paper, we propose new shedules of the algorithm, that redue the extramemory alloation, by three di�erent means: by introduing a few pre-additions,by overwriting the input matries, or by using a �rst reursive level of lassialmultipliation. These shedules an prove useful for instane for memory e�-ient omputations of the rank, determinant, nullspae basis, system resolution,matrix inversion... Indeed, the matrix multipliation based LQUP fatorizationof [11℄ an be omputed with no other temporary alloations than the onesinvolved in its blok matrix multipliations [12℄. Therefore the improvementson the memory requirements of the matrix multipliation, used together for in-stane with ahe optimization strategies [1℄, will diretly improve these higherlevel omputations.We only onsider here the omputational omplexity and spae omplexity,ounting the number of arithmeti operations and memory alloations. Thefous here is neither on stability issues, nor really on speed improvements. Werather study potential memory spae savings. Further studies have thus to bemade to assess for some gains for in-ore omputations or to use these shed-ules for numerial omputations. They are nonetheless already useful for exatomputations, for instane on integer/rational or �nite �eld appliations [8, 14℄.The remainder of this paper is organized as follows: we review Strassen-Winograd's algorithm and existing memory shedules in setions 2 and 3. Wethen present in setion 4 the dynami program we used to searh for shedules.This allows us to give several shedules overwriting their inputs in setion 5, andthen a new shedule for C ← AB+C using only two extra temporaries in setion6, all of them preserving the leading term of the arithmeti omplexity. Finally,in setion 7, we present a generi way of transforming non in-plae matrixmultipliation algorithms into in-plae ones (i.e. without any extra temporaryspae), with a small onstant fator overhead. Then we reapitulate in table 10the di�erent available shedules and give their respetive features.2 Strassen-Winograd AlgorithmWe �rst review Strassen-Winograd's algorithm, and setup the notations thatwill be used throughout the paper.Let m, n and k be powers of 2. Let A and B be two matries of dimension m×kand k × n and let C = A×B. Consider the natural blok deomposition:

[

C11 C12

C21 C22

]

=

[

A11 A12

A21 A22

] [

B11 B12

B21 B22

]

,2



where A11 and B11 respetively have dimensions m/2 × k/2 and k/2 × n/2.Winograd's algorithm omputes the m×n matrix C = A×B with the following22 blok operations:
• 8 additions:

S1 ← A21 + A22 S2 ← S1 −A11 S3 ← A11 −A21

T1 ← B12 −B11 T2 ← B22 − T1 T3 ← B22 −B12

S4 ← A12 − S2 T4 ← T2 −B21

• 7 reursive multipliations:
P1 ← A11 ×B11 P2 ← A12 ×B21

P3 ← S4 ×B22 P4 ← A22 × T4

P5 ← S1 × T1 P6 ← S2 × T2 P7 ← S3 × T3

• 7 �nal additions:
U1 ← P1 + P2 U2 ← P1 + P6

U3 ← U2 + P7 U4 ← U2 + P5

U5 ← U4 + P3 U6 ← U3 − P4 U7 ← U3 + P5

• The result is the matrix: C =

[

U1 U5

U6 U7

].Figure 1 illustrates the dependenies between these tasks.3 Existing memory plaementsUnlike the lassi multipliation algorithm, Winograd's algorithm requires someextra temporary memory alloations to perform its 22 blok operations.3.1 Standard produtWe �rst onsider the basi operation C ← A × B. The best known shedulefor this ase was given by [6℄. We reprodue a similar shedule in table 1. Itrequires two temporary bloks X and Y whose dimensions are respetively equalto m/2×max(k/2, n/2) and k/2× n/2. Thus the extra memory used is:
E1(m, k, n) =

m

2
max
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k

2
,
n

2
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2
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)

.Summing these temporary alloations over every reursive levels leads to a totalamount of memory, where for brevity M = min {m, k, n}:
E1(m, k, n) =

log
2
(M)

∑
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Figure 1: Winograd's task dependeny graphWe an prove in the same manner the following lemma:Lemma 1. Let m, k and n be powers of two, g(x, y, z) be homogeneous, M =
min {m, k, n} and f(m, k, n) be a funtion suh that

f(m, k, n) =

{

g
(

m
2 , k

2 , n
2

)

+ f
(

m
2 , k

2 , n
2

) if m,n and k > 1

0 otherwise.Then f (m, k, n) = 1
3

(

1− 1
M2

)

g(m, k, n) < 1
3g(m, k, n).In the remainder of the paper, we use Ei to denote the amount of extramemory used in table number i. The amount of extra memory we onsider isalways the sum up to the last reursion level.Finally, assuming m = n = k gives a total extra memory requirement of

E1(n, n, n) < 2/3n2.3.2 Produt with aumulationFor the more general operation C ← αA×B + βC, a �rst naïve method wouldompute the produt αA×B using the sheduling of table 1, into a temporary4



# operation lo. # operation lo.1 S3 = A11 − A21 X 12 P1 = A11B11 X2 T3 = B22 − B12 Y 13 U2 = P1 + P6 C123 P7 = S3T3 C21 14 U3 = U2 + P7 C214 S1 = A21 + A22 X 15 U4 = U2 + P5 C125 T1 = B12 − B11 Y 16 U7 = U3 + P5 C226 P5 = S1T1 C22 17 U5 = U4 + P3 C127 S2 = S1 − A11 X 18 T4 = T2 − B21 Y8 T2 = B22 − T1 Y 19 P4 = A22T4 C119 P6 = S2T2 C12 20 U6 = U3 − P4 C2110 S4 = A12 − S2 X 21 P2 = A12B21 C1111 P3 = S4B22 C11 22 U1 = P1 + P2 C11Table 1: Winograd's algorithm for operation C ← A×B, with two temporariesmatrix C′ and �nally ompute C ← C′+βC. It would require (1+2/3)n2 extramemory alloations in the square ase.Now the shedule of table 2 due to [10, �g. 6℄ only requires 3 temporary bloksfor the same number of operations (7 multipliations and 4+15 additions). The# operation lo. # operation lo.1 S1 = A21 + A22 X 12 S4 = A12 − S2 X2 T1 = B12 − B11 Y 13 T4 = T2 − B21 Y3 P5 = αS1T1 Z 14 C12 = αS4B22 + C12 C124 C22 = P5 + βC22 C22 15 U5 = U2 + C12 C125 C12 = P5 + βC12 C12 16 P4 = αA22T4 − βC21 C216 S2 = S1 − A11 X 17 S3 = A11 − A21 X7 T2 = B22 − T1 Y 18 T3 = B22 − B12 Y8 P1 = αA11B11 Z 19 U3 = αS3T3 + U2 Z9 C11 = P1 + βC11 C11 20 U7 = U3 + C22 C2210 U2 = αS2T2 + P1 Z 21 U6 = U3 − C21 C2111 U1 = αA12B21 + C11 C11 22Table 2: Shedule for operation C ← αA×B + βC with 3 temporariesrequired three temporary bloks X, Y, Z have dimensions m/2× k/2, k/2×n/2and m/2× n/2. Sine the two temporary bloks in shedule 1 are smaller thanthe three ones here, we have E2 > E1. Hene, using lemma 1, we get
E2 (m, k, n) =

1

3

(

1−
1

M2

)

(mk + kn + mn) . (2)With m = n = k, this gives E2(n, n, n) < n2.We propose in table 9 a new shedule for the same operation αA×B +βC onlyrequiring two temporary bloks.Our new shedule is more e�ient if some inner alls overwrite their temporary5



input matries. We now present some overwriting shedules and the dynamiprogram we used to �nd them.4 Exhaustive searh algorithmWe used a brute fore searh algorithm1 to get some of the new shedules thatwill be presented in the following setions. It is very similar to the pebble gameof Huss-Lederman et al. [10℄.A sequene of omputations is represented as a direted graph, just like �gure 1is built from Winograd's algorithm.A node represents a program variable. The nodes an be lassi�ed as initials(when they orrespond to inputs), temporaries (for intermediate omputations)or �nals (results or nodes that we want to keep, suh as ready-only inputs).The edges represent the operations; they point from the operands to the result.A pebble represents an alloated memory. We an put pebbles on any nodes,move or remove them aording to a set of simple rules shown below.When a pebble arrives to a node, the omputation at the assoiated variablestarts, and an be �partially� or �fully� exeuted. If not spei�ed, it is assumedthat the omputation is fully exeuted.Edges an be removed, when the orresponding operation has been omputed.The last two points are espeially useful for aumulation operations: for exam-ple, it is possible to try shedule the multipliation separately from the additionin an otherwise reursive AB + C all; the edges involved in the multipliationoperation would then be removed �rst and the aumulated part later. Theyare also useful if we do not want to �x the way some additions are performed:if U3 = P1 + P6 + P7 the assoiativity allows di�erent ways of omputing thesum and we let the program explore these possibilities. At the beginning ofthe exploration, eah initial node has a pebble and we may have a few extraavailable pebbles. The program then tries to apply the following rules, in order,on eah node. The program stops when every �nal node has a pebble or whenno further moves of pebbles are possible:
• Rule 0. Computing a result/removing edges. If a node has a pebble andparents with pebbles, then the operation an be performed and the orrespond-ing edges removed. The node is then at least partially omputed.
• Rule 1. Freeing some memory/removing a pebble. If a node is isolatedand not �nal, its pebble is freed. This means that we an relaim the memoryhere beause this node has been fully omputed (no edge pointing to it) and isno longer in use as an operand (no edge initiating from it).
• Rule 2. Computing in plae/moving a pebble. If a node P has a fullpebble and a single empty hild node S and if other parents of S have pebbleson them, then the pebble on P may be transferred to S (orresponding edgesare removed). This means an operation has been made in plae in the parent

P 's pebble.1The ode is available at http://ljk.imag.fr/CASYS/LOGICIELS/Galet.6



• Rule 3. Using more memory/adding a pebble. If parents of an empty node
N have pebbles and a free pebble is available, then this pebble an be assignedto N and the orresponding edges are removed. This means that the operationis omputed in a new memory loation.
• Rule 4. Copying some memory/dupliating a pebble. A omputed nodehaving a pebble an be dupliated. The edges pointed to or from the originalnode are then rearranged between them. This means that a temporary resulthas been opied into some free plae to allow more �exibility.5 Overwriting input matriesWe now relax some onstraints on the previous problem: the input matries

A and B an be overwritten, as proposed by [13℄. For the sake of simpliity,we �rst give shedules only working for square matries (i.e. m = n = k andany memory loation is supposed to be able to reeive any result of any size).We nevertheless give the memory requirements of eah shedule as a funtionof m; k and n. Therefore it is easier in the last part of this setion to adapt theproposed shedules partially for the general ase. In the tables, the notation
AijBij (resp. AijBij +Cij) denotes the use of the algorithm from table 1 (resp.table 2) as a subroutine. Otherwise we use the notation Alg(AijBij) to denotea reursive all or the use of one of our new shedules as a subroutine.5.1 Standard produtWe propose in table 3 a new shedule that omputes the produt C ← A × Bwithout any temporary memory alloation. The idea here is to �nd an order-ing where the reursive alls an be made also in plae suh that the operandsof a multipliation are no longer in use after the multipliation has ompletedbeause they are overwritten. An exhaustive searh showed that no sheduleexists overwriting less than four sub-bloks. Note that this shedule uses only# operation lo. # operation lo.1 S3 = A11 − A21 C11 12 S4 = A12 − S2 A222 S1 = A21 + A22 A21 13 P6 = IP(S2T2) C223 T1 = B12 − B11 C22 14 U2 = P1 + P6 C224 T3 = B22 − B12 B12 15 P2 = IP(A12B21) C125 P7 = IP(S3T3) C21 16 U1 = P1 + P2 C116 S2 = S1 − A11 C12 17 U4 = U2 + P5 C127 P1 = IP(A11B11) C11 18 U3 = U2 + P7 C228 T2 = B22 − T1 B11 19 U6 = U3 − P4 C219 P5 = IP(S1T1) A11 20 U7 = U3 + P5 C2210 T4 = T2 − B21 C22 21 P3 = IP(S4B22) A1211 P4 = IP(A22T4) A21 22 U5 = U4 + P3 C12Table 3: IP shedule for operation C ← A×B in plae7



two bloks of B and the whole of A but overwrites all of A and B. For instanethe reursive omputation of P2 requires overwriting parts of A12 and B21 too.Using another shedule as well as bak-ups of overwritten parts into some avail-able memory In the following, we will denote by IP for InPlae, either one ofthese two shedules.We present in tables 4 and 5 two new shedules overwriting only one of the twoinput matries, but requiring an extra temporary spae. These two shedulesare denoted OvL and OvR. The exhaustive searh also showed that no sheduleexists overwriting only one of A and B and using no extra temporary. We note# operation lo. # operation lo.1 S3 = A11 − A21 C22 12 P6 = OvL(S2T2) C212 S1 = A21 + A22 A21 13 T4 = T2 − B21 A113 S2 = S1 − A11 C12 14 U2 = P1 + P6 C214 T1 = B12 − B11 C21 15 U4 = U2 + P5 C125 P1 = OvL(A11B11) C11 16 U3 = U2 + P7 C216 T3 = B22 − B12 A11 17 U7 = U3 + P5 C227 P7 = IP(S3T3) X 18 U5 = U4 + P3 C128 T2 = B22 − T1 A11 19 P2 = OvL(A12B21) X9 P5 = IP(S1T1) C22 20 U1 = P1 + P2 C1110 S4 = A12 − S2 C21 21 P4 = IP(A22T4) A2111 P3 = OvL(S4B22) A21 22 U6 = U3 − P4 C21Table 4: OvL shedule for operation C ← A × B using stritly two bloks of Aand one temporary# operation lo. # operation lo.1 S3 = A11 − A21 C22 12 P4 = OvR(A22T4) B122 S1 = A21 + A22 C21 13 S4 = A12 − S2 B113 T1 = B12 − B11 C12 14 U2 = P1 + P6 C214 P1 = OvR(A11B11) C11 15 U4 = U2 + P5 C125 S2 = S1 − A11 B11 16 U3 = U2 + P7 C216 T3 = B22 − B12 B12 17 U7 = U3 + P5 C227 P7 = IP(S3T3) X 18 U6 = U3 − P4 C218 T2 = B22 − T1 B12 19 P3 = IP(S4B22) B129 P5 = IP(S1T1) C22 20 U5 = U4 + P3 C1210 T4 = T2 − B21 C12 21 P2 = OvR(A12B21) B1211 P6 = OvR(S2T2) C21 22 U1 = P1 + P2 C11Table 5: OvR shedule for operation C ← A × B using stritly two bloks of Band one temporarythat we an overwrite only two bloks of A in OvL when the shedule is modi�edas follows: 8



# operation lo.18bis A21 = Copy(A12) A2119bis A12 = Copy(A21) A1221 P4 = OvR(A22T4) A21Similarly, for OvR, we an overwrite only two bloks of B using opies on lines20 and 21 and OvL on line 19.We now ompute the extra memory needed for the shedule of table 5. The sizeof the temporary blok X is (

n
2

)2, the extra memory required for table 5 henesatis�es: E5(n, n, n) < 1
3n2.5.2 Produt with aumulationWe now onsider the operation C ← αA×B + βC, where the input matries Aand B an be overwritten. We propose in table 6 a shedule that only requires

2 temporary blok matries, instead of the 3 in table 2. This is ahieved byoverwriting the inputs and by using two additional pre-additions (Z1 and Z2)on the matrix C. We also propose in table 7 a shedule similar to table 6# operation lo. # operation lo.1 Z1 = C22 − C12 C22 13 P4 = ALR(αA22T4−βZ2) C212 S1 = A21 + A22 X 14 S4 = A12 − S2 A223 T1 = B12 − B11 Y 15 P6 = αIP(S2T2) X4 Z2 = C21 − Z1 C21 16 P2 = ALR(αA12B21+βC11) C115 T3 = B22 − B12 B12 17 U1 = P1 + P2 C116 S3 = A11 − A21 A21 18 U2 = P1 + P6 X5 P7 = ALR(αS3T3+βZ1) C22 17 U3 = U2 + P7 C228 S2 = S1 − A11 A21 20 U4 = U2 + P5 X9 T2 = B22 − T1 B12 21 U6 = U3 − P4 C2110 P5 = ALR(αS1T1+βC12) C12 22 U7 = U3 + P5 C2211 P1 = αIP(A11B11) Y 23 P3 = αIP(S4B22) C1212 T4 = T2 − B21 X 24 U5 = U4 + P3 C12Table 6: ALR shedule for C ← αA × B + βC overwriting A and B with 2temporaries, 4 reursive allsoverwriting only for instane the right input matrix. It also uses only twotemporaries, but has to all the OvR shedule. The extra memory required by
X and Y in table 6 is 2

(

n
2

)2. Hene, using lemma 1:
E6(n, n, n) <

2

3
n2. (3)The extra memory E7(n, n, n) required for table 7 in the top level of reursionis:

(n

2

)2

+
(n

2

)2

+ max (E7, E5)
(n

2
,
n

2
,
n

2

)

.We learly have E7 > E5 and:
E7(n, n, n) <

2

3
n2.9



# operation lo. # operation lo.1 Z1 = C22 − C12 C22 13 P2 = AR(αA12B21+βC11) C112 T1 = B12 − B11 X 14 S2 = S1 − A11 Y3 Z2 = C21 − Z1 C21 15 P6 = αOvR(S2T2) B214 T3 = B22 − B12 B12 16 S4 = A12 − S2 Y5 S3 = A11 − A21 Y 17 U2 = P1 + P6 B216 P7 = AR(αS3T3+βZ1) C22 18 U3 = U2 + P7 C227 S1 = A21 + A22 Y 19 U4 = U2 + P5 B218 T2 = B22 − T1 B12 20 U6 = U3 − P4 C219 P5 = AR(αS1T1+βC12) C12 21 U1 = P1 + P2 C1110 T4 = T2 − B21 X 22 U7 = U3 + P5 C2211 P4 = AR(αA22T4−βZ2) C21 23 P3 = αIP(S4B22) C1212 P1 = αOvR(A11B11) X 24 U5 = U4 + P3 C12Table 7: AR shedule for C ← αA×B+βC overwriting B with 2 temporaries,4 reursive allsCompared with the shedule of table 2, the possibility to overwrite the inputmatries makes it possible to have further in plae alls and replae reursivealls with aumulation by alls without aumulation. We show in theorem 3that this enables us to almost ompensate for the extra additions performed.5.3 The retangular aseWe now examine the sizes of the temporary loations used, when the matriesinvolved do not have idential sizes. We want to make use of table 3 for thegeneral ase.Firstly, the sizes of A and B must not be bigger than that of C (i.e. we need
k 6 min (m, n)). Indeed, let's play a pebble game that we start with pebbles onthe inputs and 4 extra pebbles that are the size of a Cij . No initial pebble anbe moved sine at least two edges initiate from the initial nodes. If the size of
Aij is larger that the size of the free pebbles, then we annot put a free pebbleon the Si nodes (they are too large). We annot put either a pebble on P1 or
P2 sine their operands would be overwritten. So the size of Aij is smaller orequal than that of Cij . The same reasoning applies for Bij .Then, if we onsider a pebble game that was suessful, we an prove in thesame fashion that either the size of A or the size of B an not be smaller thatof C (so one of them has the same size as C).Finally, table 3 shows that this is indeed possible, with k = n 6 m. It is alsopossible to swith the roles of m and n.Now in tables 4 to 7, we need that A, B and C have the same size. Generalizingtable 3 whenever we do not have a dediated in-plae shedule an then done byutting the larger matries in squares of dimension min (m, k, n) and doing themultipliations / produt with aumulations on these smaller matries usingalgorithm 1 to 7 and free spae from A, B or C.Sine algorithms 1 to 7 requireless than n2 extra memory, we an use them as soon as one small matrix is free.We now propose an example in algorithm 1 for the ase n < min (m, k):Proposition 1. Algorithm 1 omputes the produt C = AB in plae, overwrit-ing A and B. 10



Algorithm 1 IP0vMM: In-Plae Overwrite Matrix MultiplyInput: A and B of resp. sizes m× k and k × nInput: n < min (m, k) and m, k, n powers of 2.Output: C = A×B1: Let k0 = k/n and m0 = m/n.2: Split A =







A1,1 . . . A1,k0... ...
Am0,1 . . .Am0,k0






, B =







B1...
Bk0






and C =







C1...
Ck0






⊲where Ai,j and Bjhave dimension n×n3: C1 ← A1,1B1 ⊲ with alg. of table 1 and memory C2.4: Now we use A1,1 as temporary spae.5: for i = 2 . . . k0 do6: Ci ← Ai,1B1 ⊲ with alg. of table 4.7: end for8: for j = 2 . . . k0 do9: for i = 1 . . .m0 do10: Cj ← Ai,jBj + Cj ⊲ with alg. of table 2.11: end for12: end forFinally, we generalize the aumulation operation from table 7 to the ret-angular ase. We an no longer use dediated square algorithms. This is donein table 8, overwriting only one of the inputs and using only two temporaries,but with 5 reursive aumulation alls:# operation lo. # operation lo.1 Z1 = C22 − C12 C22 13 P2 = AR(αA12B21+βC11) C112 T1 = B12 − B11 X 14 U1 = P1 + P2 C113 Z2 = C21 − Z1 C21 15 S2 = S1 − A11 Y4 T3 = B22 − B12 B12 16 U2 = AR(αS2T2+P1) X5 S3 = A11 − A21 Y 17 U3 = U2 + P7 C226 P7 = AR(αS3T3+βZ1) C22 18 U6 = U3 − P4 C217 S1 = A21 + A22 Y 19 U7 = U3 + P5 C228 T2 = B22 − T1 B12 20 U4 = U2 + P5 X9 P5 = AR(αS1T1+βC12) C12 21 S4 = A12 − S2 Y10 T4 = T2 − B21 X 22 P3 = αS4B22 C1211 P4 = AR(αA22T4−βZ2) C21 23 U5 = U4 + P3 C1212 P1 = αA11B11 X 24Table 8: AR shedule for C ← αA×B+βC with 5 reursive alls, 2 temporariesand overwriting BFor instane, in table 8, the last multipliation (line 22, P3 = αS4B22) ouldhave been made by a all to the in plae algorithm, would C12 be large enough.This is not always the ase in a retangular setting.Now, the size of the extra temporaries required in table 8 is max

(

m
2 , k

2

)

n
2 +11



m
2

k
2 and E8(m, k, n) is equal to:

max

(

m

2
,
k

2

)

n

2
+

m

2

k

2
+ max (E8, E1)

(

m

2
,
k

2
,
n

2

)

.If m < k < n or k < m < n, then E8(m, k, n) < E1(m, k, n):
E8(m, k, n) = max

(

m

2
,
k

2

)

n

2
+

m

2

k

2
+ E1

(

m

2
,
k

2
,
n

2

)

< max

(

m

2
,
k

2

)

n

2
+

m

2

k

2
+

1

3

(

m

2

n

2
+

k

2

n

2

)

.Otherwise E8(m, k, n) > E1(m, k, n) and:
E8(m, k, n) <

1

3
(max (m, k)n + mk) .In the square ase, this simpli�es into E8(n, n, n) 6 2

3n2.In addition, if the size of B is bigger than that of A, then one an store S2, forinstane within B12, and separate the reursive all 16 into a multipliation andan addition, whih redues the arithmeti omplexity. Otherwise, a shedulingwith only 4 reursive alls exists too, but we need for instane to reompute S4at step 21.6 Hybrid shedulingBy ombining tehniques from setions 3 and 5, we now propose in table 9a hybrid algorithm that performs the omputation C ← αA × B + βC withonstant input matries A and B, with a lower extra memory requirement thanthe sheduling of [10℄ (table 2). We have to pay a prie of order n2 log(n) extraoperations, as we need to ompute the temporary variable T2 twie.# operation lo. # operation lo.1 Z1 = C22 − C12 C22 14 P2 = A(αA12B21+βC11) C112 Z3 = C12 − C21 C12 15 U1 = P1 + P2 C113 S1 = A21 + A22 X 16 U5 = U2 + P3 C124 T1 = B12 − B11 Y 17 S3 = A11 − A21 X5 P5 = A(αS1T1+βZ3) C12 18 T3 = B22 − B12 Y6 S2 = S1 − A11 X 19 U3 = P7 + U2 C217 T2 = B22 − T1 Y = αALR(S3T3+U2)8 P6 = A(αS2T2+βC21) C21 20 U7 = U3 + W1 C229 S4 = A12 − S2 X 21 T ′

1
= B12 − B11 Y10 W1 = P5 + βZ1 C22 22 T ′

2
= B22 − T ′

1
Y11 P3 = A(αS4B22+P5) C12 23 T4 = T ′

2
− B21 Y12 P1 = αA11B11 X 24 U6 = U3 − P4 C2113 U2 = P6 + P1 C21 = −αAR(A22T4−U3)Table 9: A shedule for operation C ← αA×B + βC with 2 temporaries12



Again, the two temporary bloks X and Y have dimensions Xs = Ys =
(n/2)2 so that:

E9 = Ys + max {Xs + E9, Xs + E6, E8}

(

m

2
,
k

2
,
n

2

)

.In all ases, E6 + Xs > E8. But Xs + Ys is not as large as the size of the twotemporaries in table 6. We therefore get:
E9(m, k, n) = Ys + Xs + E6

(

m

2
,
k

2
,
n

2

)

< 2
(n

2

)2

+
1

3

(

(n

2

)2

+
(n

2

)2
)

.Assuming m = n = k, one gets E9(n, n, n) < 2
3n2, whih is smaller than theextra memory requirement of table 2.7 A sub-ubi in-plae algorithmFollowing the improvements of the previous setion, the question was raisedwhether extra memory alloation was intrinsi to sub-ubi matrix multiplia-tion algorithms. More preisely, is there a matrix multipliation algorithm om-puting C ← A × B in O (

nlog
2
7
) arithmeti operations without extra memoryalloation and without overwriting its input arguments? We show in this se-tion that a ombination of Winograd's algorithm and a lassi blok algorithmprovides a positive answer. Furthermore this algorithm also improves the extramemory requirement for the produt with aumulation C ← αA×B + βC.7.1 The algorithmThe key idea is to split the result matrix C into four quadrants of dimension

n/2× n/2. The �rst three quadrants C11, C12 and C21 are omputed using fastretangular matrix multipliation, whih aounts for 2k/n standard Winogradmultipliations on bloks of dimension n/2 × n/2. The temporary memoryfor these omputations is stored in C22. Lastly, the blok C22 is omputedreursively up to a base ase, as shown on algorithm 2. This base ase, whenthe matrix is too small to bene�t from the fast routine, is then omputed withthe lassial matrix multipliation.Theorem 1. The omplexity of algorithm 2 is:
G(n, n) = 7.2nlog

2
(7) − 13n2 + 6.8nwhen k = n. 13



Algorithm 2 IPMM: In-Plae Matrix MultiplyInput: A and B, of dimensions resp. n × k and k × n with k, n powers of 2and k > n.Output: C = A×B1: Split C =

[

C11C12

C21C22

], A =

[

A1,1 . . .A1,2k/n

A2,1 . . .A2,2k/n

] and B =







B1,1 B1,2... ...
B2k/n,1B2k/n,2






⊲where eah

Ai,j , Bi,j and Ci,jhave dimension
n/2× n/2.2: do ⊲ with alg. of table 1 using C22 as temp. spae3: C11 = A1,1B1,14: C12 = A1,1B1,25: C21 = A2,1B1,16: end do7: for i = 2 . . . 2k

n
do ⊲ with alg. of table 2 using C22 as temporary spae:8: C11 = A1,iBi,1 + C119: C12 = A1,iBi,2 + C1210: C21 = A2,iBi,1 + C2111: end for12: C22 = A2,∗ ×B∗,2 ⊲ reursively using IPMM.Proof. Reall that the ost of Winograd's algorithm for square matries is

W (n) = 6nlog
2
7−5n2 for the operation C ← A×B and Wa(n) = 6nlog

2
7−4n2for the operation C ← A ×B + C. The ost G(n, k) of algorithm 2 is given bythe relation

G(n, k) = 3W (n/2) + 3(2k/n− 1)Wa(n/2) + G(n/2, k),the base ase being a lassial dot produt: G(1, k) = 2k − 1. Thus, G(n, k) =
7.2knlog

2
(7)−1 − 12kn− n2 + 34k/5.Theorem 2. For any m, n and k, algorithm 2 is in plae.Proof. W.l.o.g, we assume that m > n > 1 (otherwise we ould use the trans-pose). The exat amount of extra memory from algorithms in table 1 and 2 isrespetively given by eq. (1) and (2).If we ut B into pi stripes at reursion level i, then the sizes for the involvedsubmatries of A (resp. B) are m/2i×k/pi (reps. k/pi×n/2i). The lower rightorner submatrix of C that we would like to use as temporary spae has a size

m/2i × n/2i. Thus we need to ensure that the following inequality holds:
max (E1, E2)

(

m

2i
,

k

pi

,
n

2i

)

6
m

2i

n

2i
. (4)14



It is lear that E1 < E2, whih simpli�es the previous inequality. Let us nowwrite K = k/pi, M = m/2i and N = n/2i. We need to �nd, for every i aninteger pi > 1 so that eq. (4) holds. In other words, let us show that there existssome K < k suh that, for any (M, N), the inequality E2(M, K, N) 6 MNholds. Then the fat that E(M, 2, N) < 1
3 (2M +2N +MN) 6

1
3 (4M +MN) 6

MN provides at least one suh K.As the requirements in algorithm 2 ensure that k > N and M = N , there justremains to prove that E(M, N, N) 6 MN . Sine E(M, N, N) < 1
3 (2MN +N2)and again M > N , algorithm 2 is indeed in plae.Hene a fully in-plae O (

nlog
2
7
) algorithm is obtained for matrix multipli-ation. The overhead of this approah appears in the multipliative onstant ofthe leading term of the omplexity, growing from 6 to 7.2.This approah extends to the ase of matries with general dimensions, usingfor instane peeling or padding tehniques.It is also useful if any sub-ubi algorithm is used instead of Winograd's. For in-stane, in the square ase, one an use the produt with aumulation in table 9instead of table 2.7.2 Redued memory usage for the produt with aumu-lationIn the ase of omputing the produt with aumulation, the matrix C an nolonger be used as temporary storage, and extra memory alloation annot beavoided. Again we an use the idea of the lassial blok matrix multipliationat the higher level and all Winograd algorithm for the blok multipliations.As in the previous subsetion, C an be divided into four bloks and then theprodut an be made with 8 alls to Winograd algorithm for the smaller bloks,with only one extra temporary blok of dimension n/2× n/2.More generally, for square n × n matries, C an be divided in t2 bloks ofdimension n

t
× n

t
. Then one an ompute eah blok with Winograd algorithmusing only one extra memory hunk of size (n/t)2. The omplexity is hangedto Rt(n) = t2tWa(n/t), whih is Rt(n) = 6t3−log

2
(7)nlog

2
(7) − 4tn2 for anaumulation produt with Winograd's algorithm. Using the parameter t, onean then balane the memory usage and the extra arithmeti operations. Forexample, with t = 2,

R2 = 6.857nlog
2
7 − 8n2 and ExtraMem =

n2

4and with t = 3,
R3 = 7.414nlog

2
7 − 12n2 and ExtraMem =

n2

9
.Note that one an use the algorithm of table 9 instead of the lassial Wino-grad aumulation as the base ase algorithm. Then the memory overhead dropsdown to 2n2

3t2
and the arithmeti omplexity inreases toRt(n)+t2−log

2
(3)nlog

2
(6)−

tn2. 15



8 ConlusionWith onstant input matries, we redued the number of extra memory alloa-tions for the operation C ← αA×B + βC from n2 to 2
3n2, by introduing twoextra pre-additions. As shown below, the overhead indued by these supple-mentary additions is amortized by the gains in number of memory alloations.If the input matries an be overwritten, we proposed a fully in-plae shed-ule for the operation C ← A×B without any extra operations. We also proposedvariants for the operation C ← A × B, where only one of the input matriesis being overwritten and one temporary is required. These subroutines allowus to redue the extra memory alloations required for the C ← αA ×B + βCoperation without overwrite: the extra required temporary spae drops from n2to only 2

3n2, at a negligible ost.Some algorithms with an even more redued memory usage, but with someinrease in arithmeti omplexity, are also shown. Table 10 gives a summaryof the features of eah shedule that has been presented. The omplexities aregiven only for m = k = n being a power of 2.Theorem 3. The arithmeti and memory omplexities of table 10 are orret.Proof. For the operation A × B, the arithmeti omplexity of the shedule oftable 1 lassially satis�es
{

W1(n)=7W1(
n
2 ) + 15

(

n
2

)2

W1(1)=1
,so that W1(n) = 6nlog

2
(7) − 5n2.The shedule of table 1 requires

{

M1(n)=2
(

n
2

)2
+ M1

(

n
2

)

M1(1)=0extra memory spae, whih is M1(n) = 2
3n2. Its total number of alloationssatis�es A1(n) = 2

(

n
2

)2
+ 7A1

(

n
2

) whih is A1(n) = 2
3 (nlog

2
(7) − n2).The shedule of table 4 requires M4(n) =

(

n
2

)2
+ M4

(

n
2

) extra memoryspae, whih is M4(n) = 1
3n2. Its total number of alloations satis�es A4(n) =

(

n
2

)2
+ 4A4

(

n
2

) whih is A4(n) = 1
4n2 log2(n).The shedule of table 5 requires the same amount of arithmeti operationsor memory.For A×B + βC, the arithmeti omplexity of [10℄ satis�es

W2(n) = 5W2

(n

2

)

+ 2W1

(n

2

)

+ 14
(n

2

)2

,hene W2(n) = 6nlog
2
(7)− 4n2; its memory overhead satis�es M2(n) = 3

(

n
2

)2
+

M2

(

n
2

)

, whih is M2(n) = n2; its total number of alloations satis�es A2(n) =16



Algorithm Input matries # of extratemporaries totalextramem-ory total # of extraalloations arithmeti omplexity
A

×
B

Table 1 [6℄ Constant 2 2
3
n2 2

3
(n2.807

− n2) 6n2.807
− 5n2Table 3 Both Overwritten 0 0 0 6n2.807
− 5n2Table 4 or 5 A or B Overwritten 1 1

3
n2 1

4
n2 log2(n) 6n2.807

− 5n27.1 Constant 0 0 0 7.2n2.807
− 13n2

α
A

×
B

+
β
C

Table 2 [10℄ Constant 3 n2
2
3
nlog2(7) + nlog2(5)

−

5
3
n2 6n2.807

− 4n2Table 6 Both Overwritten 2 2
3
n2 1

2
n2 log2(n) 6n2.807

− 4n2 + 1
2
n2 log2(n)Table 7 B Overwritten 2 2

3
n2 2n2.322

− 2n2 6n2.807
− 4n2 + 1

2
n2 log2(n)Table 9 Constant 2 2

3
n2 2

9
n2.807 +2n2.322

−

22
9

n2 6n2.807
− 4n2 + 4

3
n2 log2(n)7.2 Constant N/A 1

4
n2 1

4
n2 6.857n2.807

− 8n27.2 Constant N/A 1
9
n2 1

9
n2 7.414n2.807

− 12n2Table 10: Complexities of the shedules presented for square matrix multipliation
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3
(

n
2

)2
+ 5A2

(

n
2

)

+ 2A1

(

n
2

)

, whih is
A2(n) =

2

3
nlog

2
(7) + nlog

2
(5) −

5

3
n2.The arithmeti omplexity of the shedule of table 6 satis�es

W6(n) = 4W6

(n

2

)

+ 3W1

(n

2

)

+ 17
(n

2

)2

,so that W6(n) = 6nlog
2
(7)− 4n2 + 1

2n2 log2(n); its number of extra memory sat-is�es M6(n) = 2
(

n
2

)2
+M6

(

n
2

)

, whih is M6(n) = 2
3n2; its total number of allo-ations satis�es A6(n) = 2

(

n
2

)2
+ 4A6

(

n
2

)

, whih is A6(n) = n2 + 1
2n2 log2(n).The arithmeti omplexity of table 7 shedule satis�es

W7(n) = 4W7

(n

2

)

+ W1

(n

2

)

+ 2W5

(n

2

)

+ 16
(n

2

)2

,so that W7(n) = 6nlog
2
(7) − 4n2 + 1

2n2 log2(n); its number of extra memorysatis�es M7(n) = 2
(

n
2

)2
+ M7

(

n
2

)

, whih is M7(n) = 2
3n2; its total numberof alloations satis�es A7(n) = 2

(

n
2

)2
+ 4A7

(

n
2

)

+ 2A5

(

n
2

)

, whih is A7(n) =

2nlog
2
(5) − 2n2.The arithmeti omplexity of the shedule of table 9 satis�es

W9(n) = 4W9

(n

2

)

+ W1

(n

2

)

+ 2W6

(n

2

)

+ 17
(n

2

)2

,so that W9(n) = 6nlog
2
(7) − 4n2 + 4

3n2
(

log2(n)− 10
3

)

+ 4
9 ; its number of extramemory satis�es M9(n) = 2

(

n
2

)2
+ M9

(

n
2

)

, whih is M9(n) = 2
3n2; its totalnumber of alloations satis�es A9(n) = 2

(

n
2

)2
+ 4A9

(

n
2

)

+ A1

(

n
2

)

+ 2A6

(

n
2

)

,whih is A9(n) = 2
9nlog

2
(7) + 2nlog

2
(5) − 22

9 n2 + 2
9 .For instane, by adding up alloations and arithmeti operations in table 10,one sees that the overhead in arithmeti operations of the shedule of table 9is somehow amortized by the derease of memory alloations. Thus it makes ittheoretially ompetitive with the algorithm of [10℄ as soon as n > 44.Also, problems with dimensions that are not powers of two an be handled byombining the uttings of algorithms 1 and 2 with peeling or padding tehniques.Moreover, some ut-o� an be set in order to stop the reursion and swith tothe lassial algorithm. The use of these ut-o�s will in general derease boththe extra memory requirements and the arithmeti omplexity overhead.For instane we show on table 11 the relative speed of di�erent multipliationproedures for some double �oating point retangular matries. We use atlas-3.9.4 for the BLAS and a ut-o� of 1024. We see that pour new shedulesperform quite ompetitively with the previous ones and that the savings inmemory enable larger omputations (MT for memory thrashing).18
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[11℄ O. H. Ibarra, S. Moran, and R. Hui. A generalization of the fast LUPmatrix deomposition algorithm and appliations. Journal of Algorithms,3(1):45�56, Mar. 1982.[12℄ C.-P. Jeannerod, C. Pernet, and A. Storjohann. Fast Gaussian eliminationand the PLUQ deomposition. Tehnial report, 2007.[13℄ A. Krezmar. On memory requirements of Strassen's algorithms. InA. Mazurkiewiz, editor, Proeedings of the 5th Symposium on Mathemati-al Foundations of Computer Siene, volume 45 of LNCS, pages 404�407,Gda«sk, Poland, Sept. 1976. Springer.[14℄ J. Laderman, V. Pan, and X.-H. Sha. On pratial algorithms for ael-erated matrix multipliation. Linear Algebra and its Appliations, 162�164:557�588, 1992.[15℄ C. Pernet. Implementation of Winograd's fast matrix multipliation over�nite �elds using ATLAS level 3 BLAS. Tehnial report, Laboratoire Infor-matique et Distribution, July 2001. ljk.imag.fr/membres/Jean-Guillaume.Dumas/FFLAS[16℄ V. Strassen. Gaussian elimination is not optimal. Numerishe Mathematik,13:354�356, 1969.[17℄ S. Winograd. On multipliation of 2x2 matries. Linear Algebra and Ap-pliation, 4:381�388, 1971.

20


