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Abstract 

The main difficulty associated with a collaborative design process is understanding the 
product data exchanged during design. Efficient and effective coordination of design activities 
relies on a thorough understanding of dependencies between shared product specifications 
throughout the entire development cycle. This paper explores the linkages between design 
process features and product specification dependencies, and suggests ways of identifying and 
managing specification dependencies to improve collaborative process performance. Using a 
UML2 specification, we propose a process traceability tool to track the design process in an 
ongoing manner. Based on the information captured, dependencies between specifications 
involved in the tracked process are identified and inserted in a dependency network, 
maintained throughout the design process. A set of mechanisms is then proposed to qualify 
the identified dependencies. Extracting and qualifying specification dependencies could be 
useful in many design situations, for example, during an engineering change management 
process to assess impacts and study change feasibility, or during a conflict management 
process to assist designers in resolving conflicts and maintaining the coherence of the design 
process (knowing that change management is a tool to conduct conflict management). Special 
attention is paid to the conflict management process. By means of a case study, we show how 
the solution we propose can assist designers during the conflict management process. 

Keywords: Collaborative process, Design process traceability, Specification dependencies, Conflict resolution, Change management 

1. Introduction 

Although in most design processes, coordination entails clear communication between 
designers, the real reason for this coordination is not for communication but for resolving 
dependencies between product specifications [1]. Design is constraint oriented, and comprises 
many interdependent parts. A change in one part may have consequences for another part, and 
designers cannot always oversee these interdependencies and consequences. 

Product specifications are not always trivial and explicit. Current PDT (Product Data 
Technology) tools are not able to extract these dependencies from informal and textual 
descriptions and hence the dependencies cannot be revealed by the currently available PDT 
tools. 

Several researchers have investigated specification dependencies, for example: Eppinger et al. 
[2], Kusiak and Wang [3], Dong and Agogino [4], Wang and Jin [1], Browning [5] and 
Yassine and Braha [6]. Most have proposed a representation of specification dependencies 
(with a DSM3 matrix, a network or a set of patterns) but none has shown how to obtain these 
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representations or proposed mechanisms to identify dependencies. Moreover, these studies 
have addressed specifications involved in a design process that has already been carried out, 
whereas the usefulness of specification dependencies knowledge is primarily during the 
design process, to help designers in performing their activities and resolving interdependency 
problems. In addition to this reported work, all studies reported to date have only investigated 
the case of two dependent design activities (an upstream activity feeds specifications to a 
downstream activity) belonging to the same decomposition level of the design process. For a 
complete identification of specification dependencies, it is necessary to consider the 
dependencies between activities carried out at various decomposition levels of a design 
process. 

In terms of dependency qualification, some researchers have provided interesting proposals 
on this issue. We particularly note the framework developed by Krishnan et al. [7] to measure 
dependency based on two dimensions: upstream specification evolution and downstream 
specification sensitivity. We also cite the work of Kusiak and Wang [3] dealing with 
qualitative dependency (the direction of the change of a product specification that is affected 
by another) and quantitative dependency (the rate of change of a product specification that is 
affected by another). However, these dependency qualifications and quantifications do not 
assist in identifying whether the dependency is strong and should be kept or whether it can be 
removed. We should highlight that all of the previous studies have assumed the importance of 
qualifying product specification dependencies but none of them has proposed mechanisms to 
support these dependencies. 

We have therefore developed a solution called DEPNET4, which explicitly captures product 
specification dependencies, inserts them in a dependency network that is maintained 
throughout the design process, and assists designers in resolving dependencies during the 
design process, particularly when design conflicts occur or when engineering changes are 
requested. 

The DEPNET solution differs from the previous studies [1-7] in three major aspects, as 
follows. 

• It proposes a method to identify specification dependencies and defines concepts to qualify 
the discovered dependencies. 

• It takes into account the predefined specifications as well as the emerging specifications 
resulting from non-planned design activities. 

• It considers the design process in a more realistic way and seeks to identify product 
specification dependencies among sets of dependent activities belonging to various 
decomposition levels. 

In addition to the introduction, this paper consists of four more sections. Section 2 illustrates 
the problem definition, using the example of a turbocharger design problem. Section 3 
focuses on the DEPNET solution: it describes the dependency network constructs and shows 
how to build this network. Section 4 illustrates, by means of a case study, the use of the 
DEPNET solution during conflict management, while Section 5 provides conclusions and 
future prospects. 

                                                 

4 DEPNET – product specification DEPendencies NETwork identification and qualification. 



M.Z. Ouertani and L. Gzara 3

2. Example – A turbocharger design process 

The mechanical concept of a turbocharger revolves around three main parts: a turbine wheel, 
driven by the exhaust gas from a pump, most often an internal combustion engine, which 
spins the second part; an impeller, whose function is to force more air into the pump’s intake 
supply; and a centre hub rotating assembly (CHRA), which contains bearings, an oil circuit, a 
cooling system and a shaft that directly connects the turbine and impeller. 

The design process of a turbocharger is composed of four main concurrent sub-processes: the 
turbine wheel design sub-process, the impeller design sub-process, the CHRA design sub-
process, and the centre housing assembly customisation (i.e., matching the impeller housing 
and turbine housing to the vehicle engine). The designers have then to exchange preliminary 
product specifications to enable the process to move forward. 

At the beginning of the turbocharger design process, the concerned parties each have a set of 
data at their disposal as well as a set of requirements to follow, such as: 

• the vehicle/application specifications: vehicle or equipment manufacturer, gearbox type 
and maximum weight of the vehicle, 

• the engine specifications: engine type, configuration, displacement and 3D CAD drawings, 
• the engine performances: power, torque, engine speed and air flow, and 
• the turbocharger specifications: regulation type, actuator type, engine turbocharger 

position, turbocharger weight and specific speed limits. 

According to these specifications, the impeller designer starts the planned activity (to define 
the impeller part). The designer has to define the impeller attributes, which include: wheel 
cast-material, wheel cast-process, expected compressor inlet temperature and compressor 
outlet temperature. Once these attributes are fully defined, the impeller designer defines the 
exducer and inducer diameters of the compressor wheel. The impeller 3D CAD drawing is 
then created. The final task in the impeller design sub-process is defining the impeller housing 
by calculating the parameters ‘trim’5 and A/R6. Once these attributes are calculated, the 
designer is able to complete the 3D CAD drawing of the impeller part. 

Based on the customer specifications, the turbocharger specifications and the impeller-defined 
attributes, the turbine designer commences the planned activity (to define the turbine wheel) 
at the same time as the impeller designer commences the planned activity. First the 
interdependent parameters, namely the wheel, nozzle ring and insert ring materials, the 
maximum limit of the turbine inlet temperature, and the inlet/outlet turbine pressure are 
defined in such a way as to achieve the target turbocharger performance. Once these 
parameters are defined, the turbine designer can begin to define the wheel dimensions, and 
create the 3D CAD drawing of the turbine wheel. Defining the wheel dimensions involves 
calculating the exducer and inducer diameters. The designer concludes this part of the design 
by defining the turbine housing (by calculating the turbine attributes ‘trim’ and A/R). 

Concurrent with the impeller and turbine definition activities, the CHRA designers specify 
their parts based on the impeller and turbine definitions and the turbocharger specifications. 
                                                 

5 The ‘trim’ attribute, which is an area ratio used to describe both turbine and compressor wheels, is calculated 
using the inducer and exducer diameters. 
6 A/R describes a geometric characteristic of all compressor and turbine housings. It is defined as the inlet cross-
sectional area divided by the radius from the turbo centreline to the centroid of that area. 
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The CHRA designers have to define the bearing system, the cooling system, the oil circuit 
and the shaft. Afterwards, and in a collaborative way, the CHRA, impeller and turbine 
designers finalise the centre housing assembly by determining how this part should be 
connected to the vehicle engine. 

The basic principle behind turbocharging is fairly simple, but a turbocharger is a very 
complex piece of machinery. Not only must the components within the turbocharger itself be 
precisely coordinated, but the turbocharger and the engine it services must also be accurately 
matched. If they are not, then the engine is inefficient and it could even be damaged. This is 
why it is important that the concerned parties collaborate closely by coordinating their 
activities as well as their communication of the specifications. The different parts are highly 
interdependent, as modifying one of them impacts significantly on the others. For instance, 
the shaft sub-part defined within the CHRA sub-process directly connects the turbine and 
compressor wheels. 

Fig. 1 illustrates a partial view of the turbocharger design process, highlighting the 
input/output dependencies between the product specifications among the design activities. 

 

Fig. 1. Partial view of the turbocharger design process. 

3. DEPNET 

The main aim of the DEPNET solution is to capture dependencies and to explain them within 
a dependency network. This network is an oriented graph7 composed of nodes corresponding 
to the product specifications handled during the design process and arcs corresponding to the 
dependency relationships between these specifications. In a context of collaborative design, 
dependency between two sets of data could be on forward or feedback direction. Forward-
dependent data are those that require input from other activities, but not from themselves. 
Feedback-dependent data are those that need input from other activities, including from 
themselves. The feedback links are to be considered since they are a source of rework and 
thus are resource consuming and time consuming. Thus, two sets of data are said to be 
                                                 

7 Arcs are directed to indicate whether a piece of data D1 depends on a piece of data D2, or vice-versa.  
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dependent in the case of forward dependency or interdependent in the case of feedback 
dependency. Some parts of the dependency network may therefore be cyclic. 

3.1 Network nodes 

Design work is dependent on a succession of tasks for defining a new product through the use 
and generation of various product specifications. The specifications can be, among many 
others, structural, functional, behavioural and geometrical. They correspond to the various 
product descriptions elaborated by designers during the development process, in terms of 
geometrical parameters, functions, bills of material, CAD drawings, simulation data and 
mechanical calculation results. 

Depending on the flexibility given to the designer for elaborating product specifications, and 
on the values of specification properties, product specifications can evolve through different 
states until the product is finally defined. These different states can indicate whether the 
product specification is already fixed or under negotiation [8]. Grebici et al. [9] identify four 
product specification states: draft, exhibit, enable and deliver. 

3.2 Network arcs 

Among the criteria that characterise links between elements, the dependency link criterion 
remains the most studied in the literature and is the most complicated to treat in collaborative 
design modelling. According to Finger et al. [10], it is not sufficient to satisfy a set of 
constraints; it is important to represent and track dependencies within a set of constraints and 
to evaluate the qualitative and quantitative impacts of one product specification on another. 
Many definitions of dependency links have been proposed in literature. According to Kusiak 
and Wang [3], a dependency between two specifications is the effect of the change in one 
specification’s value on another. According to Wang and Jin [11], two specifications are said 
to have a dependency relationship if any of the pairs can not be complete without the other. 
These definitions reveal the existence of two kinds of dependencies between product 
specifications: dependency at creation and dependency at modification. In addition to these 
dependency relationships, we distinguish two other kinds of dependencies between product 
specifications: redundancy and consistency. Each of these dependency kinds is presented in 
the following sections. 

3.2.1 Redundancy relationship 

In a concurrent design environment, it is important to provide different viewpoints of a 
product for the different task domains. This requires multiple models of a product part 
corresponding to the different domains [12]. Multiple-view modelling could be a good basis 
for an integrated modelling of different views. The approach for integrated modelling can be 
very helpful to an engineer who is solely responsible for the development of a complete 
product. In practice, however, several engineers are usually involved in the development of a 
product. As each has his/her own point of view on a particular product specification, 
redundancy of product specification could occur. Two product specifications are said to be 
redundant when both of them describe the same entity and are expressed differently. This 
could occur when the product specifications belong to different product model views. 
Furthermore, each product part has to be related to one or more parts that, together, 
implement the functionality of the conceptual component to be designed. Hence, several 
product specifications define a common interface (connection between two product parts) and 
describe the same entity; using a different expression for each of them. For example, in Fig. 2, 
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depending on the actor involved in the sub-assembly design, the specification of the ‘shaft 
diameter’ could have three different expressions signifying the same objective: ‘shaft 
diameter’ (for the shaft designer), ‘internal diameter of the turbine wheel’ (for the turbine 
wheel designer) and ‘internal diameter of the impeller wheel’ (for the impeller wheel 
designer). 

 

Fig. 2. Turbine wheel, impeller wheel and shaft sub-assembly. 

Consequently, mechanisms to check these redundancies between product specifications are 
required, such as those mentioned in references [3] and [13], where specification redundancy 
is detected and removed. We note that a redundant specification should be removed without 
changing the design objective. 

3.2.2 Consistency relationship 

According to Nuseibeh et al. [14], we deal with consistency when two product specifications 
do obey some relationship that is prescribed to hold between them. This relationship between 
descriptions can be expressed as a constraint, against which specifications can be checked 
[13] [15]. Constraints can include equations, qualitative constraints and computer-based 
procedures. These constraints have an influence on rules. For example, the turbine wheel 
performance and the A/R specifications obey a qualitative constraint that is prescribed to hold 
between them. The turbine performance is greatly affected if the A/R of the housing is 
changed, since it is used to adjust the flow capacity of the turbine. Using a smaller A/R will 
increase the exhaust gas velocity into the turbine wheel. This provides increased turbine 
power at lower engine speeds, resulting in a quicker boost rise. However, a small A/R also 
causes the flow to enter the wheel more tangentially, which reduces the ultimate flow capacity 
of the turbine wheel. This will tend to increase exhaust backpressure and hence reduce the 
engine’s ability to breathe effectively at high RPM8, adversely affecting peak engine power. 

Several studies deal with the consistency maintenance issue, such as the multiple-view feature 
modelling for the integral product development approach as proposed by Bronsvoort and 
Noort [13]. This approach presents maintenance policies to keep different model views 
consistent, such as consistency definition, the way the consistency can be checked and the 
way the consistency can be recovered if needed. Currently, such consistency rules are 
captured in design project documents, others are embedded in tools and some are not captured 

                                                 

8 Revolutions Per Minute 



M.Z. Ouertani and L. Gzara 7

anywhere [14]. A common constraint repository is then necessary to capture all these 
consistency relationships. 

3.2.3 Dependency at creation 

Two specifications are said to be ‘dependent at creation’ if the creation of one of them 
depends on the creation of the other. Among the attributes proposed by Culley et al. [16] to 
qualify the dependency link, the relevance, usage and completeness attributes are the most 
relevant to qualify dependency at creation. We are particularly interested in the completeness 
attribute that is used to draw the actual product specification variation interval. 

The designer will express how large the variation interval of the consumed product 
specification should be. The higher the completeness attribute value, the smaller the input 
product specification variation interval is. The completeness of a specification is often defined 
by its user with regard to his/her needs to produce other product specifications9. A 
measurement scale is proposed to evaluate this attribute. It comprises verbal descriptions of 
four different levels. A numerical indicator is assigned to each level as shown in Table 1. 

Table 1. 
Constructed attribute for product specification completeness 
Attribute level Description of the attribute level 

0 Weak: the input product specification should be given below a certain maximum value 
1 Not vital: the input product specification should be given within a certain value range 
2 Vital: the input product specification should be given with the smallest value range 
3 Extremely vital: the input specification should be precisely given 

3.2.4 Dependency at modification 

Two specifications are said to be ‘dependent at modification’ if the change in one of them 
implies modifying the second one. Among the attributes proposed in science management and 
engineering design works defining this dependency link, the following are the most relevant 
to qualify the dependency at modification: level number [17], importance ratings [18], 
probability of repetition [19], evolution and sensitivity [7]. We are particularly concerned with 
the estimation of the last two measures of dependency, since gathering input is difficult to 
obtain for simulating a development process that involves iteration. We should note that the 
evolution attribute, proposed to qualify activity dependency, refers to the variation of an 
activity. To express the variation of a product specification value we choose to use the term 
variability instead of the term evolution. 

The variability can then be defined as the likelihood that the output specification provided by 
one task would change after being initially released. A product specification exhibits a high 
variability if its designer is incapable of estimating a value, or range of values, for the 
specification output. On the other hand, a product specification is said to exhibit low 
variability if its designer provides a good estimate of the output value. 

It should be noted that some research works [20] deal with specification stability, which is the 
reverse of variability. It corresponds to the likelihood that a specification no longer changes 
during the remainder of the process. 

                                                 

9 A product specification can be considered as complete in order to be used for a given product specification and 
not for another one. 
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The sensitivity is the degree to which work is changed as the result of absorbing a transferred 
product specification. If a product specification has a major sensitivity to its predecessor 
product specification, then a small change in predecessor product specification has a huge 
impact on the final results. On the other hand, if a product specification is not sensitive to 
preceding design changes, then the predecessor product specification has to change drastically 
before the dependent product specification is affected by this change. 

Tables 2 and 3 describe, respectively, the four subjective levels of a product specification 
variability and sensitivity. This scale was developed using the techniques for constructing 
subjective attributes, as described by Keeney [21] 

Table 2. 
Levels of product specification variability – adapted from [22] 
Attribute level Description of the attribute level 

0 Not variable: the output product specification does not vary 
1 Low variability: the output product specification varies a little 
2 Moderate variability: the output product specification is unstable 
3 High variability: the output product specification is very unstable 

Table 3. 
Levels of product specification sensitivity – adapted from [22] 
Attribute level Description of the attribute level 

0 Not sensitive: output product specification sensitivity is null to most input changes 
1 Minor sensitivity: output product specification sensitivity is low to most input changes 
2 Moderate sensitivity: output product specification sensitivity is medium to most input changes 
3 Major sensitivity: output product specification sensitivity is high to most input changes 

Once we have devised an instrument to measure completeness, sensitivity and variability, the 
next logical question is: how do we assign completeness, sensitivity and variability values to 
product specifications? A questionnaire based on structured expert interviews is compiled to 
support designers during the assessment. For an extensive discussion on subjective 
assessments of uncertain quantities utilising a structured expert interview process, please refer 
to references [23] and [24]. 

3.2.5 Synthesis 

Product specifications can be interrelated by four kinds of dependency relationships, yielding 
an oriented network structure. These kinds of relationships are not disjointed; two existing 
specifications can be dependent at creation and at modification while being related with a 
consistency relationship. To help designers to evaluate dependencies between two existing 
specifications, the dependency measures at creation and at modification that are described in 
§3.2.3 and §3.2.4 are aggregated to form one criterion to express the dependency degree 
between the two product specifications (Eq. 1). As they are complementary attributes, a 
multiplicative utility function is used to aggregate the variability and the sensitivity attributes 
(V*S). Furthermore, the more the completeness is high (from weak to extremely vital) the 
more the required rework is long. Thus, for a given variability and sensitivity values, the more 
the completeness is elevated, the more the iterations are long and the more the dependency 
degree is high. In the case where the variability value is 0 and the completeness value is 
different from 0, the dependency degree value must be different from 0, since a “not null 
completeness” implies a dependency at creation. The dependency degree formula between 
two product specifications is then: 

Dependency Degree = Completeness * (1 + (Variability * Sensitivity)). (Eq. 1) 
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Accordingly, the resulting range value of the dependency degree is an integer between 0 and 
30, where {0, 1, 2, 3 and 4} denotes a null or weak dependency and a low risk of rework, and 
{15, 20, 21 and 30} denotes a very high dependency and a high risk of rework. The values {5, 
6, 7, and 8} and {9, 10, 12 and 14} describe, respectively, a moderate and a high dependency, 
and risk of rework. 

3.3 Approach taken to build the dependency network 

The approach taken to build up the dependency network corresponding to one design situation 
involves, first, keeping trace of the design process progression by recording it in a database 
system and, second, applying a set of SQL queries on the obtained information to extract the 
network (see Fig. 3). 

 

Fig. 3. Specification dependency network identification approach. 

In order to keep track of the design process progression, we consider the questions proposed 
in the Zachman Framework [25]: What are the traceable items (product specifications); 
Where are the traceable items (design actions handling the product specifications); Who are 
the participants playing different roles in the creation, modification and exchange of product 
specifications; Why and How are product specifications created, modified and/or evolved in 
the way they are (the design rationale behind the design actions); and When are the product 
specifications created, modified and/or evolved (chronology of design actions). 

Hence, we should highlight the following. 

• In terms of design actions (Where), two management levels of the design process exist: 
prescribed and emerging. At the prescribed level, the process comprises phases, which in 
turn comprise planned activities. The emerging level corresponds to the non-planned 
activities occurring during the design progress. 

• The key issues for the justification herein adopted (Why) are articulated as questions, with 
each issue followed by one solution, among several alternatives, that respond to the issue. 
Arguments support the adopted solution and could be requirement based, rule based, case 
based, and so on. 

In order to store the various records tracing the design progression in a database system, the 
various elements presented previously are formalised in a UML class diagram. For more 
details about this diagram, please refer to reference [26]. 
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This UML model is then used as a specification for a traceability tool, which can be seen as 
an a posteriori workflow engine to declare the ongoing design. It allows each actor involved 
in the design process to declare various pieces of information when performing his/her design 
action, for example: the phase (planned activity or non-planned activity being executed, name, 
identification), the objective of this design action, the actor domain and competencies, the 
input and the output product specifications used and generated (with the associated 
sensitivity, variability and completeness measures, as well as the state attributes), the various 
constraints between specifications that have to be followed while achieving the required 
design action (a constraint is expressed as a relation between two or more product 
specifications and represents a consistency relationship between these specifications) and, 
finally, the justification of the choices the actor made during the design action. 

We should note that designers assess the completeness, variability and sensitivity attributes 
according to their expertise. However, if they have trouble in assessing these attributes, they 
can be assisted by questionnaires based on structured expert interviews. Examples of the 
questions are given in Table 4. 

Table 4. 
Assessment of variability, sensitivity and completeness attributes 

Attribute Questions 

Variability 
 

-How fixed are the design requirements? 
-What is the estimated date of change? 
-What are the possible causes of changes? For example, the specification has a connection 
with other specifications to be modified; assessing the specification is a complex design 
problem. 

Sensitivity 
 

-What is the design risk when a change occurs? 
-What is the rework risk when a change occurs? 
-What is the iteration duration estimation? 

Completeness 
 

-Are there other equivalent product specifications? 
-What is the level of expertise of the designer? 
-How uncertain is the specification? 

Fig. 4 illustrates the developed traceability tool used to track the design progress. This 
screenshot shows the turbine wheel designer declaring the design process’s related 
information. 

Once the design workflow is declared, the captured elements are stored in a database, the 
tables of which correspond to the various classes of the UML traceability model. A set of 
SQL queries is then applied in the database to extract the specification dependency network. 
Fig. 5 gives a partial view of the network related to the turbocharger design process 
progression. 
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Fig. 4. Traceability tool to track the design process progression. 

 

Fig. 5. Partial specification dependency network for the turbocharger design process progression. 
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4. Application of DEPNET in conflict management 

The interaction of experts in a collaborative design context may give rise to conflict. 
According to Klein [27], conflict can occur when at least two incompatible design 
commitments are made, or when a design party has a negative critique of another design 
party’s action. Hence, the conflict management process is a critical element of collaborative 
design. It can be seen as a succession of mainly five phases: conflict detection, identification 
of the conflict resolution team, negotiation management, solution generation and solution 
impact propagation. The focus of this section is on the conflict resolution team identification 
(prerequisite for conflict resolution) and the solution impact propagation (solution evaluation) 
phases. It illustrates how the dependency network supports designers to conduct these two 
phases. 

4.1 Conflict resolution team identification 

Conflict resolution cannot be achieved by one single actor; it requires the interplay of 
different areas of expertise. To avoid iteration in the conflict resolution process, it is highly 
advisable to do it in a collaborative way that seeks the input of many actors to reach a 
consensus quickly. These actors refer to those designers producing the product specifications 
leading to the source of the conflict. In order to identify these negotiators, the specification 
dependency network is extracted and the product specifications, on which the source of 
conflict depends, are identified through network backtracking (the source of conflict being the 
starting point). SQL queries are then applied in order to identify the negotiators forming the 
conflict resolution team. 

In the case of the turbocharger example, a conflict is detected when the CHRA designers are 
defining their respective parts. The dependency network corresponding to this source of 
conflict is illustrated in the screenshot in Fig. 5. This network refers to the precedence 
relationship existing between the handled product specifications, to define the CHRA parts. 
The dependency degree between the handled specifications is also shown. The parties 
responsible for the realisation of the identified product specifications are then notified about 
the conflict occurring on the product specification ‘CHRA parts’, in order that they must 
participate in the negotiation process to find a solution, thus forming the conflict resolution 
team. 

4.2 Impact assessment 

The technical solution selected through the negotiation phase corresponds to the change of 
one or more product specifications involved in the design process, leading to the elaboration 
of the source of conflict. Hence, evaluating the impact of the chosen solution is carried out 
through the propagation of the product specification changes. This propagation is done 
through a downstream traversal of the dependency network, starting from the product 
specification ‘solution’. In the considered case study, the solution given to resolve the 
detected conflict involves modifying the specification ‘turbocharger speed limits’. A 
dependency network is then identified, the starting data being the ‘turbocharger speed limits’. 
The impact of modifying this product specification is illustrated in Fig. 6, with a forward 
coverage of the identified network. A list of the product specifications to be modified is 
established as well as a list of the activities for applying these modifications. 

The dependency network shown in Fig. 6 is enormous. Identifying the solution-dependent 
nodes and then the design activities to be re-executed may be an ad hoc and costly task. Not 
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all the activities responsible for the identified dependent product specification have to be re-
executed; such an operation is costly and time consuming. Thus, the concept of a critical 
dependency network is introduced in order to reduce the number of solution-dependent nodes 
to be considered for design process re-execution. It involves eliminating product 
specifications with a low dependency degree, and everything stemming from them, among the 
impacted product specifications. Fig. 7 illustrates a critical specification dependency network 
where the selected minimum threshold is equal to 8. 

 

Fig. 6. Partial view of the product specification dependency network. 

 

Fig. 7. Critical dependency network. 

5. Conclusion and future prospects 

Product specification dependencies are not always trivial and explicit, and current PDT tools 
are not able to extract these dependencies from informal and textual descriptions. As a 
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consequence, they cannot be discovered by the current PDT tools. Many studies have focused 
on data dependencies, but none of them has proposed mechanisms to identify these 
dependencies and the methods to manage them. The DEPNET solution presented in this paper 
captures product specification dependencies and structures them in a network. It proposes 
mechanisms to qualify these dependencies and defines ways of using these dependencies 
during the conflict management process, first, to identify the negotiation team, and second, to 
assess the solution impacts. The success of the DEPNET solution depends, like any other 
computerised application, on the involvement of people to populate and update the network. 
Under time pressure, actors may not be willing to record all information consistently. In this 
case, they are asked to capture a minimum of information (the activity name, input data and 
generated data). In some large cases, since the use of the DEPNET solution reduces iteration, 
design actors should adhere to the proposed solution. 

Further points remain to be considered on the issue of specification dependencies 
management. 

First, since the dependency network is dynamic and evolving during the process progress, an 
automated tool for charting and maintaining the coherence of this network would be helpful, 
especially in the case of complex products. Secondly, the DEPNET solution currently 
addresses specifications already generated in the design process. Extending this solution to 
cover all product dependencies, i.e., specifications that are not yet generated, would reduce 
conflict occurrence and assist designers in their work by taking into account the various 
interactions between product specifications. Thirdly, the dependency network proposed in this 
paper can provide a means for representing and for reasoning about the dependencies between 
product specifications. It may be useful to reduce the number of specification dependencies to 
the necessary minimum. For this purpose, mechanisms to check specification consistency 
would be proposed. These mechanisms can also be used as a decision tool to control product 
complexity and test various product configurations by eliminating some dependency arcs and 
analysing the impact of the corresponding alternatives. For this purpose, a set of criteria to 
analyse configurations, a constraints database and a verification mechanism are proposed. In 
both cases, graph theory can be used to achieve this goal. 

On the other hand, in addition to tracing process design and generating a dependency 
network, the DEPNET solution can evolve into a rationale design capitalisation tool. Text 
mining techniques could be applied to the ‘justification’ table to extract new knowledge from 
stored cases. Moreover, specification dependencies can be transferred to other designs. A 
turbocharger for a petrol engine might differ significantly from, but may still feature the same 
specifications dependencies as, a diesel engine turbocharger. Dependency network reuse is 
especially interesting in the case of routine design. In the case of innovative design, transfer 
should be carried out gradually. When a piece of data, generated during a new design project, 
is identified as equivalent to another piece of data previously generated, only immediate 
dependencies should be transferred, i.e., arcs connected to that piece of data. The same 
reasoning applies to the transferred nodes. 

Finally, the DEPNET solution has to be integrated, first with the CO2MED tool [28], already 
developed within the CRAN laboratory, to manage conflict resolution and, second with a 
Product Lifecycle Management (PLM) environment. 
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