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High-Stroke Motion Modelling and Voltage/Frequency
Proportional Control of a Stick-Slip Microsystem

Micky Rakotondrabe, Yassine Haddab and Philippe Lutz

Abstract—A new control type for stick-slip mi-
crosystems is proposed in this paper: the volt-
age/frequency (U/f) proportional control. It gives a
best resolution relatively to the classical control algo-
rithm. It is also an englobalization of three classical
controllers: the sign controller, the classical propor-
tional controller and the frequency proportional con-
troller. A high stroke model of a stick-slip microsys-
tem is first given. Then, we theoretically analyze the
performances of the closed loop process with the U/f
controller. Finally, we give some experimental results
obtained with different values of the proportional
gains.

I. Introduction

Among the stepping principles for micropositioning,
stick-slip [1] is the most used : examples are given in
[2][3][4][5]. Stick-slip actuators, generally based on piezo-
electric materials, are characterized by their simplicity,
rapidity, low cost and possibility of batch fabrication.
Two modes of motion can be obtained with a stick-
slip micropositioner [6] : the stepping mode and the
scanning mode. The stepping mode consists in applying a
sawtooth voltages to the micropositioner and let it move
step by step, in high range and with a high velocity on
the workspace (Fig. 1-a, b and c). The resolution in this
mode is limited to one step. When the difference between
the target position and the current position becomes less
than the value of a step, the legs (piezoelectric actuators)
are bent slowly until the final position is reached (Fig. 1-
d). This is the scanning mode and the obtained resolution
can be very high. It is possible to have a similar resolution
in the stepping mode by reducing the amplitude U of
the sawtooth but the vibrations occuring in each steps
[7] may influence the performances.

Two modes of control for stick-slip micropositioners
are possible: control in stepping mode for high stroke
positioning and control in scanning mode for fine posi-
tioning. Each of them may use an open-loop or a closed-
loop structure. As the fine positioning may be controlled
in closed loop with standard controllers (PID, optimal
controllers, robust controllers, etc.), this paper deals with
the high stroke positioning control.

The first section is a brief presentation of existing
control methods. Then, we present the high stroke char-
acteristics and model our stick-slip microsystem for ex-
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25000 Besançon - France
{mrakoton,yhaddab,plutz}@ens2m.fr

periments. After that, we detail a new type of control
: the voltage/frequency proportional control. It inferes
good resolution of the motion relative to the existing
methods. On the other hand, the vibrations possibilities
are reduced in this approach. Finally, we present the
experimental and simulation results.
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Fig. 1. Stick-slip principle [6]. a, b and c : stepping mode. d :
scanning mode.

II. Existing methods

Open-loop control based on step counting as in stepper
motors are not applicable for stick-slip microsystems
because:
• the steps are never identical along a displacement

due to the nonlinearities phenomena coming from
the friction and the piezoelectric materials,

• the step is very low relative to the distance, then
the number of steps of the displacement is very high.
Thus, small counting error may generate high static
error,

• the step errors (steperrors = stepestimated−stepreal)
accumulate along the motion unlike those of in
stepper motors,

• the external disturbances (adhesion forces, thermal
effect, vibrations of the workspace etc.) influence



the accuracy.

Thus, the classical employed closed-loop controller is the
following algorithm [8] except for a sign:

While |xc − x| ≥ step Do
apply one step

EndWhile
(1)

where xc is the target position and x is the current
position. When the accuracy of the sensor is worse than
the value of a step, the term step in the precedent
algorithm is replaced by n × step which gives the limit
of the sensor accuracy.

Another method based on the hybrid modeling of the
stick-slip systems has been proposed in [9]. The hybrid
model is approximated into a continuous one (called
dehybridization) and a continuous controller is applyed
(PD). This method gives the possibility to reach the
target position without using two separate control modes
(stepping and scanning). However, the dehybridization
requires a hybrid controller in series with the stick-
slip microsystem which makes the whole algorithm more
complex than the precedent algorithms.

Finally, Breguet and Clavel proposed a numerical fre-
quency proportional controller in [10]. In this method,
the frequency is proportional to the error while the
amplitude U of the voltage still stays constant. Thereby,
as the step is constant along the motion, the resolution
is also constant.

III. Characteristics and modelling of the
microsystem

Fig. 2-a shows the stick-slip microsystem [11] used
for experiments in this paper. Fig. 2-b shows how the
microactuators are spread out inside the microsystem. It
has two degrees of freedom (2DoF: linear and angular)
but our test will only be performed in the linear motion.
The maximal step value of the microsystem is about
200nm and the speed can reach 2mm/s. These perfor-
mances are obtained using a sawtooth input voltage with
an amplitude of ±150V and a frequency of 10kHz.

When applying a continuous input voltage U , the mi-
crosystem works in scanning mode. Hypothesizing that
the scanning displacement xsc is dynamically linear
reative to the voltage, we can write the following func-
tion:

Xsc(s) = Gsc(s).U(s) (2)

Where s is the Laplace variable and Gsc is the transfer
function connecting the amplitude U and the scanning
position xsc. When the voltage is abruptly removed, the
resulting step xstep is smaller than the corresponding
amplitude xU

sc so that [12](Fig. 3-a):

xstep = xU
sc −∆back (3)
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Fig. 2. The stick-slip microsystem.

Hypothesizing that the flashback ∆back is dynamically
linear reative to the amplitude U , the step can be written
as follow:

Xstep(s) = Gstep(s).U(s) (4)

When the sequence is repeated (stepping mode) with a
frequency f = 1/T , the dynamic of the continous part
Gstep is not visible and the microsystem works with a
quasi-static manner. Thus, the step can be approximated
by:

xstep = α.U (5)

where α > 0 is the static gain of Gstep.
From the Fig. 3-b and the (Eq. 5), we infer the

bilinearity of the speed:

v = ẋ = α.U.f (6)
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Fig. 3. a: motion of a stick-slip system. b: speed approximation.

When the amplitude U is below a value U0, the torque
is not sufficient and the microsystem can’t move. Thus,



an offset is introduced to the (Eq. 5) and the final model
becomes:{

v = 0 if |U | ≤ U0

v = α.f. (U − sgn(U).U0) if |U | > U0
(7)

Fig. 4 summarize the speed performances of the mi-
crosystem. Until f = 10kHz, the speed is approximately
linear versus f (Fig. 4-a). Above this frequency value,
a saturation and a fluctuation appear. The identified
parameters are: α = 15.652173 × 10−7 and U0 = 35V
(Fig. 4-b).

20 40 60 80 100 120 140 160
U [V]

v [mm/s]

f1k

f5k

f10k

simulation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b)

0 2 4 6 8 10 12 14 16
0

0. 5

1

1. 5

2

2. 5

f [kHz]

v [mm/s]

(a)

simulation

experimental result

experimental

result

U150V U100V
U75V

Fig. 4. Speed performances of the microsystem. a: speed versus
the frequency f . b: speed versus the amplitude U .

IV. U/f proportional control

A. Principle scheme
The principle scheme of U/f proportional control is

shown in Fig. 5. The saturations avoid the overvoltages
and limit the microsystem work inside the linear zone
of the frequency. The proportional gains KU > 0 and
Kf > 0 are to be adjusted like in a classical proportional
controller.

B. Equations and analysis
In this section, we express the speed according

to the values of KU and Kf . Let Us and
fs indicate the saturations respectively used
for the voltage and for the frequency. a)
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Fig. 5. Principle scheme of the U/f proportional control.

if KU . |xc − x| > Us and Kf . |xc − x| > fs

From the Fig. 5 and the bi-afine expression in (Eq. 7),
we obtain:

ẋ = α.fs. (Us − U0) .sgn (xc − x) (8)

This case is equivalent to a sign control (Fig. 6-a).
When the microsystem is at the neighborhood of the
final position, there are oscillations in sign control.
The frequency and the amplitude of these oscillations
depend on the response time Tr of the process, on the
refreshing time Ts (Fig. 6-b) of the controller and on
the frequency saturation fs. It is the way that realtime
feedback systems give the best performances.
b) if U0 > KU . |xc − x| ∀ f = Kf . |xc − x| we
have:

ẋ = 0 (9)
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Fig. 6. a: sign control. b: oscillations in sign control.

c) if Us ≥ KU . |xc − x| ≥ U0 and Kf . |xc − x| > fs

Here, the closed loop process is equivalent to a voltage
proportional control (Fig. 7), also known as proportional
control in the control theory.

The equation of the closed loop is:

ẋ = α.fs. (KU . (xc − x)− sgn (xc − x) .U0) (10)

For simplification but without loss of generality, let us
take a positive target position xc and an initial value



x(t = 0) equal to zero, we obtain the following Laplace
transformation:

X =
1

1 + 1
α.fs.KU

.s
.Xc −

1
KU

1 + 1
α.fs.KU

.s
.U0 (11)

where s is the Laplace variable. The (Eq. 11) means that
the closed loop process is a first order dynamic system
with a static gain equal to unity and a disturbance U0.
We can infer that, the more KU is great, the more
a voltage proportional control of a stick-slip system is
accurate. The voltage proportional control always gives
stability because it is a first order.
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Fig. 7. Voltage proportional control.

d) if KU . |xc − x| > Us and fs ≥ Kf . |xc − x|
This case is equivalent to a frequency proportional con-
trol (Fig. 8).
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Fig. 8. Frequency proportional control.

The following equation is easily obtained:

ẋ = α.Kf . |xc − x| . (Us − U0) .sgn (xc − x) (12)

The expression (Eq. 12) is equivalent to the following
transfer function:

X

Xc
=

1
1 + 1

α.Kf .(Us−U0)
.s

(13)

The (Eq. 13) differently means that in this case,
the closed loop process is a first order system with a
static gain equal to unity. The stability is always ensured.
e) if Us ≥ KU . |xc − x| ≥ U0 and fs ≥ Kf . |xc − x|
The frequency and the voltage are both proportional to

the error ε. From the Fig. 5 and the formula (Eq. 7), we
have the following expression:

ẋ = α.Kf . |xc − x| . (KU . (xc − x)− sgn (xc − x) .U0)
(14)

The expression (Eq. 14) is equivalent to:
dx
dt = (α.Kf .U0 − α.Kf .KU . |xc − x|) .x
+(−α.Kf .U0 + α.Kf .KU . |xc − x|) .xc

(15)

which is in the form of:
dx

dt
= A (xc, x) .x + B (xc, x) .xc (16)

Where A and B are the state and the input coefficients.
Here, the closed loop system has a 1st order pseudo-linear
behavior.

C. Stability

According to the values of KU , Kf and the error
(xc − x), all the above cases may appear during a dis-
placement. Without loss of generality, let us suppose that
xc = 0 and x(t = 0) > 0 for the stability analysis. Let us
divide the displacement into two phases (Fig. 9):
• phase-1; the error (xc − x) is initially high so that

the voltage U and the frequency f are both in their
saturations (case a)). The speed is constant.

• phase-2; the error becomes smaller and the speed
is not yet constant (equivalent to the other cases).
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Fig. 9. The displacement may be divided into two phases.

As the equations are quasi-static, ie. there is no accel-
eration, one case does not influence the succeeding case.
So, the phase-2 may be studied independently from the
phase-1. In the phase-2, two sub-phases happen:
• phase-2.1: either the frequency is in saturation

but not the voltage (case c)) or the voltage is in
saturation but not the frequency (case d)),

• phase-2.2: both the frequency and the voltage are
not in saturation (case e)).

Once again, the phase-2.1 does not influence the phase-
2.2. As the possible two cases inside the phase-2.1 have
a 1st order linear behaviors, the displacement from the
initial position to current position has not yet an over-
shoot. On the other hand, when the voltage becomes



smaller than U0 (case b)), the stick-slip microsystem
stops independently to the precendent phases. Thus, the
stability analysis of the microsystem may be done only
with the phase-2.2 (case e)). For that, we use the direct
method of Lyapunov.

A dynamic system dx
dt = f (x, e, t), where e is the input

vector, is Lyapunov stable if a Lyapunov function V (x)
exists such as:

V (x = 0) = 0 (17)

V (x) > 0 ∀ x 6= 0 (18)

dV (x)
dt ≤ 0 ∀ x 6= 0 (19)

From the (Eq. 15) and the conditions x(t = 0) > 0 and
xc = 0, we obtain:

dx

dt
= −α.Kf .x. (KU .x− U0) (20)

We use the following quadratical functional V (x):

V (x) = γ.x2 (21)

where γ is a positive constant. The conditions (Eq. 17)
and (Eq. 18) are filled.

From (Eq. 20) and (Eq. 21), we have:

dV (x)
dt

= −2.γ.α.Kf .x2. (KU .x− U0) (22)

As (KU .x− U0) > 0, the condition (Eq. 19) is filled and
all the trajectory is asymptotically (Lyapunov) stable.
When (KU .x− U0) < 0, the microsystem stops, the
stability is obvious and the static error is given.

V. Experiments

The experimental setup is composed of a computer, an
amplifier, the microsystem and a laser sensor (0.5nm res-
olution, 10m accuracy). The computer has no real-time
operating system (Windows-XP) and we use LabView
software for the implementation of the U/f controller.

The choice of KU is a compromise. If KU is very low,
the static error is high. If KU is very high, oscillations
may occur (case a) when the refreshing time Ts and
the response time Tr are not negligible. For all the
experiments, the target point xc = 10mm and the initial
point x(0) = 0mm.

The first experiment are done with high values of Ku

and Kf . They have been chosen so that the phase-2 never
happen. It is equivalent to the (case a). The Fig. 10-a
gives the experimental and the simulation curves. Due
to the fact that the computer has a non real-time oper-
ating system, the experimental results have oscillations
(Fig. 10- in solid plot).

Then, we use a low KU and a high Kf . The frequency
stays in saturation while the voltage becomes non satu-
rated when xc−x is inferior to a given value xUS (Fig. 10-
b) such as xUS = Us/KU . In that case, the behavior
is equivalent to (Eq. 11) of the case c), ie. a voltage
proportional control. As shown in the figure, there is a
static error. Its value is equal to εstat = U0/KU .
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Fig. 10. a: high values of KU and Kf : (case a). b: low KU and
high Kf .

After that, we apply a high KU but a low Kf

(Fig. 11-a). The leaving saturation speed is obtained at
(xc − x) = xfS = fs/Kf . From this point, the closed
loop system has the frequenty proportional controller
behavior and there is no static error (case d)).

Finally, we test moderated values of KU and Kf

(Fig. 11-b). First, the frequency leaves the saturation
at xfs = fs/Kf while the voltage stays saturated.
When xUS = Us/KU is reached, the voltage leaves the
satuation. According to the values of KU and Kf , the
inverse circumstance can happen. The static error is
given by εstat = U0/KU .

VI. Discussion

The U/f proportional controller encompasses some
classical controllers: the sign controller (see case a), the
classical proportional controller (see case c) and the
frequency proportional controller (see case d). On the
other hand, in comparison with the classical algorithm of
(Eq. 1) and with the frequantial proportional controller,
the U/f proportional controller seems to have a high
resolution. The resolution obtained with the two formers
is one step (respectively n×step) while the one obtained
with the U/f controller is better than one step, within the
limits of the sensor accuracy. In fact, the diminution of
the applied voltage U = KU .ε reduces the value of a step.
In addition, the diminution of the frequency f = Kf .ε
reduces the number of the steps and then the vibrations.
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A test has been performed with an interferometer sensor
(resolution = 1.24nm) to compare the static precision
obtained with the algotrithm in (Eq. 1) and the U/f
proportional controller. The setup used is composed of
materials with high values of Ts and Tr: the interferom-
eter datagate and a LabView software under Windows-
XP. Thus, we use a low frequency (1Hz) for the classical
controller in order to avoid oscillations.

Fig. 12 shows the results with a setpoint (reference) of
10m. The zoom (Fig. 12-b) indicates that the static error
(accuracy) is about 130nm. As we can see, the resolution
before the stop is the half value of a step instead of a
step because the applied voltage is a peak-to-peak signal
(±150V ), then when stopping it, the half only is cut out
(+150V → 0V ).

Fig. 13 gives the results obtained with the U/f con-
troller when applying a setpoint of 1mm. The zoom
(Fig. 13-b) indicates that the frequency and the step
amplitude become increasingly small. The medium static
error also becomes increasingly small. However, the flash-
back ∆back becomes increasingly important. That is due
to the diminution of the amplitude U so that there will
not be enough torque to move the microsystem during
the slip phase. The proposed method appears to converge
to the reference position much faster than the classical
controller. That is due to the low frequency used for this
latter. Increasing the frequency increases the speed of the
classical controller but oscillations may appear.
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Fig. 12. Classical controller using an interferometer sensor. a: high
stroke motion. b: zoom of the final position.

VII. Conclusion

A new controller type for high stroke displacement of
stick-slip microsystems was proposed: voltage/frequency
proportional controller. Here, the frequency f and an
amplitude U of a sawtooth signal are proportional to
the error. To analyze the performances given by such
controller, we have first modeled the high stroke displace-
ment of the microsystem. Then, we have analysed the
stability according to the value of the proportional gains
KU and Kf . Finally, we have presented experiments
and simulations of different cases. The U/f proportional
control is a globalization of existing some existing con-
trollers, the sign controller, the classical proportional
controller and the frequency proportional controller, and
it gives a better resolution relative to existing controllers
for stick-slip microsystems.
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Fig. 13. U/f controller using an interferometer sensor. a: high
stroke motion. b: zoom of the final position.
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