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Hardy's theorem for the q-Bessel Fourier transform

In this paper we give a q-analogue of the Hardy's theorem for the q-Bessel Fourier transform. The celebrated theorem asserts that if a function f and its Fourier transform

1 The q-Foureir Bessel transform Throughout this paper we consider 0 < q < 1 and we adopt the standard conventional notations of [START_REF] Gasper | Basic hypergeometric series, Encycopedia of mathematics and its applications 35[END_REF]. We put R + q = {q n , n ∈ Z}, and for complex a (a; q) 0 = 1, (a; q) n = n-1 i=0

(1 -aq i ), n = 1...∞.

Jackson's q-integral (see [START_REF] Jackson | On a q-Definite Integrals[END_REF]) in the interval [0, ∞[ is defined by

∞ 0 f (x)d q x = (1 -q) ∞ n=-∞ q n f (q n ).
We introduce the following functional spaces L q,1,ν of even functions f defined on R + q such that

f q,1,v = ∞ 0 |f (x)|x 2v+1 d q x < ∞.
The normalized Hahn-Exton q-Bessel function of order ν > -1 (see [START_REF] Swarttouw | The Hahn-Exton q-Bessel functions[END_REF])is defined by

j ν (z, q) = ∞ n=0 (-1) n q n(n-1) 2 
(q, q) n (q ν+1 , q) n z n .

It's an entire analytic function in z.

Lemma 1 For every p ∈ N, there exist σ p > 0 for which

|z| 2p |j ν (z, q 2 )| < σ p e |z| , ∀z ∈ C.
Proof. In fact

|z| 2p |j ν (z, q 2 )| ≤ 1 (q 2 , q 2 ) ∞ (q 2ν+2 , q 2 ) ∞ ∞ n=0 q n(n-1) |z| 2n+2p ≤ q p(p+1) (q 2 , q 2 ) ∞ (q 2ν+2 , q 2 ) ∞ ∞ n=p q n(n-2p-1) |z| 2n .

Now using the Stirling's formula

n! ∼ √ 2πn n n e n ,
we see that there exist an entire n 0 ≥ p such that

q n(n-2p-1) < 1 (2n)! , ∀n ≥ n 0 , which implies ∞ n=n 0 q n(n-2p-1) |z| 2n < ∞ n=n 0 1 (2n)! |z| 2n < e |z| .
Finally there exist σ p > 0 such that

|z| 2p |j ν (z, q 2 )| e |z| < σ p , ∀z ∈ C.
This finish the proof.

The q-Bessel Fourier transform F q,ν introduced in [START_REF] Dhaouadi | Inequalities in q-Fourier Analysis[END_REF][START_REF] Koornwinder | On q-Analogues of the Hankel and Fourier Transform[END_REF] as follow

F q,ν f (x) = c q,ν ∞ 0 f (t)j ν (xt, q 2 )t 2ν+1 d q t.
where

c q,ν = 1 1 -q (q 2ν+2 , q 2 ) ∞ (q 2 , q 2 ) ∞ .
The following theorem was proved in [START_REF] Dhaouadi | Inequalities in q-Fourier Analysis[END_REF] Theorem 1 Given f ∈ L q,1,ν then we have

F 2 q,ν (f )(x) = f (x), ∀x ∈ R + q .
Proof. See [1] p 3.

Hardy's theorem

The following Lemma from complex analysis is crucial for the proof of our main theorem.

Lemma 2 Let h be an entire function on C such that

|h(z)| ≤ Ce a|z| 2 , z ∈ C, |h(x)| ≤ Ce -ax 2 , x ∈ R,
for some positive constants a and C. Then h(z) = Const.e -ax 2 .

Proof. See [START_REF] Sitaram | An analogue of Hardy's theorem for very rapidly decreasing functions on semi-simple Lie groups[END_REF] p 4. Now we are in a position to state and prove the q-analogue of the Hardy's theorem Theorem 2 Suppose f ∈ L q,1,ν satisfying the following estimates

|f (x)| ≤ Ce -1 2 x 2 , ∀x ∈ R + q , |F q,ν f (x)| ≤ Ce -1 2 x 2 , ∀x ∈ R, where C is a positive constant. Then there exist A ∈ R such that f (z) = A.c q,ν F q,ν e -1 2 x 2 (z), ∀z ∈ C.
Proof. We claim that F q,ν f is an analytic function and there exist C ′ > 0 such that

|F q,ν f (z)| ≤ C ′ e 1 2 |z| 2 , ∀z ∈ C. We have |F q,ν f (z)| ≤ c q,ν ∞ 0 |f (x)||j ν (zx, q 2 )|x 2ν+1 d q x.
From the Lemma 1, if |z| > 1 then there exist σ 1 > 0 such that

x 2ν+1 |j ν (zx, q 2 )| = 1 |z| 2ν+1 (|z| x) 2ν+1 |j ν (zx, q 2 )| < σ 1 1 + |z| 2 x 2 e x|z| , ∀x ∈ R + q .
Then we obtain

|F q,ν f (z)| ≤ Cσ 1 c q,ν ∞ 0 e -1 2 (x-|z|) 2 1 + |z| 2 x 2 d q x e 1 2 |z| 2 < Cσ 1 c q,ν ∞ 0 1 1 + x 2 d q x e 1 2 |z| 2 .
Now, if |z| ≤ 1 then there exist σ 2 > 0 such that

x 2ν+1 |j ν (zx, q 2 )| ≤ σ 2 e x , ∀x ∈ R + q . Therefore |F q,ν f (z)| ≤ Cσ 2 c q,ν ∞ 0 e -1 2 x 2 +x d q x ≤ Cσ 2 c q,ν ∞ 0 e -1 2 x 2 +x d q x e 1 2 |z| 2 .
Which leads to the estimate (1). Using Lemma 2, we obtain

F q,ν f (z) = const.e -1 2 z 2 , ∀z ∈ C,
and by theorem 1, we conclude that

f (z) = const.F q,ν e -1 2 t 2 (z), ∀z ∈ C.
This finish the proof.

Corollary 1 Suppose f ∈ L q,1,ν satisfying the following estimates

|f (x)| ≤ Ce -px 2 , ∀x ∈ R + q , |F q,ν f (x)| ≤ Ce -σx 2 , ∀x ∈ R,
where C, p, σ are a positive constant and pσ = 1 4 . We suppose that there exist a ∈ R + q such that a 2 p = 1 2 . Then there exist A ∈ R such that

f (z) = A.c q,ν F q,ν e -σt 2 (z), ∀z ∈ C.
Proof. Let a ∈ R + q , and put

f a (x) = f (ax), then F q,ν f a (x) = 1 a 2ν+2 F q,ν f (x/a).
In the end, applying Theorem 2 to the function f a .

Remark 1 Using the q-Central limit Theorem (see [START_REF] Dhaouadi | Inequalities in q-Fourier Analysis[END_REF]) we give a probability interpretation of the function c q,ν F q,ν e -σt 2 . In fact if (ξ n ) n≥0 be a sequence of positive probability measures of R + q , satisfying lim n→∞ nσ n = (q 2 , q 2 ) 1 (q 2v+2 , q 2 ) 1 q 2 σ, where

σ n = ∞ 0 t 2 t 2v+1 d q ξ n (t),
and

lim n→∞ n σ n = 0, where σ n = ∞ 0 t 4 1 + t 2 t 2v+1 d q ξ n (t),
then the nth q-convolution product ξ * n n converge strongly toward a measure ξ defined by d q ξ(x) = c q,ν F q,ν e -σt 2 (x)d q x.

Corollary 2 Suppose f ∈ L q,1,ν satisfying the following estimates

|f (x)| ≤ Ce -px 2 , ∀x ∈ R + q , |F q,ν f (x)| ≤ Ce -σx 2 , ∀x ∈ R,
where C, p, σ are a positive constant and pσ > 1 4 .We suppose that there exist a ∈ R + q such that a 2 p = 1 2 . Then f ≡ 0.

Proof. In fact there exist σ ′ < σ such that pσ ′ = 1 4 . Then the function f satisfying the estimates of Corollary 1, if we replacing σ by σ ′ . Which implies

F q,ν f (x) = const.e -σ ′ x 2 , ∀x ∈ R.
On the other hand, f satisfying the estimates of Corollary 2, then |const.e -σ ′ x 2 | ≤ Ce -σx 2 , ∀x ∈ R. This implies F q,ν f ≡ 0, and by Theorem 1 we conclude that f ≡ 0 Remark 2 Hardy's theorem asserts the impossibility of a function and its q-Fourier Bessel transform to be simultaneously "very rapidly decreasing". Hardy's theorem can also be viewed as a sort of "Qualitative uncertainty principles". One such example can be the fact that a function and its q-Bessel Fourier transform cannot both have compact support.