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Abstract

The organic metal θ-(BETS)4HgBr4(C6H5Cl) is known to undergo a phase transition as the tem-

perature is lowered down to about 240 K. X-ray data obtained at 200 K indicate a corresponding

modification of the crystal structure, the symmetry of which is lowered from quadratic to mono-

clinic. In addition, two different types of cation layers are observed in the unit cell. The Fermi

surface (FS), which can be regarded as a network of compensated electron and hole orbits accord-

ing to band structure calculations at room temperature, turns to a set of two alternating linear

chains of orbits at low temperature. The field and temperature dependence of the Shubnikov-de

Haas oscillations spectrum have been studied up to 54 T. Eight frequencies are observed which,

in any case, points to a FS much more complex than predicted by band structure calculations

at room temperature, even though some of the observed Fourier components might be ascribed

to magnetic breakdown or frequency mixing. The obtained spectrum could result from either an

interaction between the FS’s linked to each of the two cation layers or to an eventual additional

phase transition in the temperature range below 200 K.

PACS numbers: 71.18.+y Fermi surface: calculations and measurements; effective mass, g factor

71.20.Rv Polymers and organic compounds

72.20.My Galvanomagnetic and other magnetotransport effects
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† Electronic address: audouard@lncmp.org

I. INTRODUCTION

In high enough magnetic fields, the Fermi surface (FS) of many quasi-two-dimensional (q-

2D) organic metals is liable to give rise to networks of orbits coupled by magnetic breakdown

(MB) [1]. Magnetic oscillations spectra of such compounds often contain Fourier components

of which the frequencies are linear combinations of few basic frequencies. Some of these

components correspond to MB-induced closed orbits that are accounted for by the semi-

classical model of Falicov and Stachowiak [2]. In the case of Shubnikov-de Haas (SdH)

oscillations, quantum interference (QI) paths [3] have also been invoked. However, the so

called ”forbidden frequencies” observed in the de Haas-van Alphen spectra of organic metals

that illustrate the linear chain of coupled orbits model by Pippard [4] cannot be interpreted

on these bases. Indeed, they are rather attributed to frequency mixing due to the oscillation

of the chemical potential [5] and (or) to the MB-induced modulation of the density of

states [4, 6] even though the respective influence of these two contributions remains to be

determined.

Another type of network is provided by the family of organic metals (BEDT-

TTF)8Hg4Cl12(C6H5X)2 (X = Cl, Br) whose FS, which originates from two pairs of crossing

q-1D sheets, is composed of one electron and one hole tube with the same area [7]. As it is

the case of the above-mentioned linear chains of coupled orbits, SdH oscillations spectra in

this type of network also reveal frequency mixing [8, 9, 10]. However, in striking contrast

to the data relevant to linear chains of orbits, all the Fourier components observed in the

de Haas-van Alphen oscillations spectra can be consistently interpreted on the basis of the

model of Falicov and Stachowiak [10]. It is thus of primary importance, from the viewpoint

of the quantum oscillation physics, to check whether or not the above mentioned behaviour

is observed in other organic metals whose FS can be regarded as networks of compensated

orbits. Such networks can also be realized in organic metals of which the FS originates from

the overlapping in two (or more) directions of hole tubes with an area equal to that of the

First Brillouin zone (FBZ) and from the resulting gap openings [11]. According to band

structure calculations, this is the case of organic metals such as (BEDO-TTF)4ReO4·H2O

[12] and β ′′-(BEDT-TTF)4(NH4)[M(C2O4)3]·DMF (M = Fe, Cr) [13]. However, SdH oscil-
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lations spectra of these compounds did not yield frequency combinations in a field range

large enough in order to perform a reliable analysis of the relevant data [14, 15, 16].

According to band structure calculations based on room temperature X-ray data [17], the

FS of the q-2D organic metal θ-(BETS)4HgBr4(C6H5Cl) is composed of two hole and one

electron tubes (see Fig. 1). Since the electron- and hole-type tubes are compensated, the

FS should yield the same kind of network as above discussed. However, a phase transition

is observed around 240 K which is liable to modify the FS. As a matter of fact, the SdH

oscillations spectra recorded in the field range below 15 T only exhibit two frequencies at 40 T

and 210 T [17] which is not in agreement with the FS calculations at room temperature. The

aim of this article is therefore twofold. In a first step, crystal and electronic band structures

based on X-ray data collected at a temperature below the phase transition, namely 200 K,

are reported and, in a second step, the SdH oscillations spectrum is explored in the high

field range in order to reveal other possible frequencies.

II. EXPERIMENTAL

The crystals studied were synthesized by the electrocrystallization technique reported in

Ref. [17]. Their approximate dimensions were 0.4 × 0.15 × 0.1 mm3 for X-ray diffraction

experiments and 1.5 × 1.0 × 0.1 mm3 for magnetoresistance measurements.

Diffraction measurements were performed at a temperature of 200 K with a P4 Bruker

AXS diffractometer (λ(Mo Kα) = 0.71073 Å, θ/2θ scanning). The main crystallographic

data are: (C10H8S4Se4)4HgBr4-C6H5Cl, monoclinic, space group Cc, a = 13.678(3) Å, b

= 75.857(16) Å, c = 9.533(2) Å, V = 7128(3) Å3, β = 133.89◦, Z = 4, dcal = 2.723 g

cm−3, F(000) = 5400. The unit cell parameters were determined and refined using 35

reflections in the range 5◦ < θ < 20◦. Within a set of 6531 X-ray reflections taken in

the interval 0◦ < θ < 50◦, 4213 crystallographically independent ones had intensities I>

2σ(I). The structure was solved by a direct method. The positions of non-carbon atoms

were refined in the anisotropic approximation by the full-matrix least square method. The

positions of carbon atoms were refined in the isotropic approximation only. The positions of

the atoms belonging to the C6H5Cl solvent molecule were revealed from difference Fourier

syntheses and refined within the isotropic approximation with restrictions imposed on the

bond lengths. The positions of the hydrogen atoms cannot be revealed by the difference
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Fourier syntheses. The structure was refined from the independent reflections with I >

2σ(I), using the SHELXL-97 program package to R1 = 0.1235. It should be noticed that

as the temperature decreases the above mentioned phase transition yields, at a macroscopic

level, lower quality single crystals. More specifically, the X-ray peaks broadened, some of

them split, i.e. a single crystal become twinned, that prevents reliable X-ray experiments.

For one of the slowly cooled single crystals studied, the contribution of one of the twin

components was higher than that of the other one after the phase transition. It should be

noted that this crystal was far from being an ideal one which justifies the poor R1 value above

mentioned. The obtained experimental massif of reflections was somewhat distorted because

of the low quality that was manifested in the structure refinement parameters and did not

allow for a high resolution of the molecular structure because of significant uncertainties

in the determination of interatomic distances and angles. Nevertheless, we were able to

perform the X-ray experiments in corpore. In addition, as developed in Section IIIB, clear

quantum oscillations are observed.

The tight-binding band structure calculations were based upon the effective one-electron

Hamiltonian of the extended Hückel method [18]. The off-diagonal matrix elements of the

Hamiltonian were calculated according to the modified Wolfsberg-Helmholz formula [19].

All valence electrons were explicitly taken into account in the calculations and the basis set

consisted of double-ζ Slater-type orbitals for C, S and Se and single-ζ Slater-type orbitals

for H. The exponents, contraction coefficients and atomic parameters for C, S, Se and H

were taken from previous works [20, 21].

Two crystals, labelled #1 and #2 in the following, were studied in pulsed magnetic fields

in the temperature range from 1.6 K to 4.2 K. The maximum field and pulse decay duration

were 54 T, 0.32 s and 36 T, 1 s for crystal #1 and #2, respectively. Electrical contacts to the

crystals were made using annealed platinum wires of 20 µm in diameter glued with graphite

paste. A one-axis rotating sample holder allowed to change the direction of the magnetic field

with respect to the crystallographic axes for crystal #2. Alternating current (1µA, 77 Hz

and 5 µA, 20-50 kHz for zero-field and magnetoresistance measurements, respectively) was

injected parallel to the b direction (interlayer configuration). A lock-in amplifier with a time

constant of 100 ms and 100 µs for zero-field resistance and magnetoresistance measurements,

respectively, was used to detect the signal across the potential contacts. In the following,

the absolute value of the amplitude of the magnetoresistance oscillations is obtained through
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discrete Fourier transforms calculated with a Blackman window.

III. RESULTS AND DISCUSSION

A. Crystal and electronic band structures

The independent part of the crystal structure involves four BETS molecules, one HgBr2−
4

ion and one solvent molecule which can occupy two sites with a probability of 50% for each

of them. Fig. 2 displays the projection of the crystal structure on the ab plane. As it

is the case at room temperature, the unit cell contains four radical cation layers, between

which are located the HgBr2−
4

ions and the solvent (C6H5Cl) molecules. In contrast with

the room temperature data [17], two different kinds of cation layers, referred to as A and

B in the following, are evidenced at 200 K (see Figs. 2 and 3). Each of the two cation

layers, which are both of the θ-type, are composed of two different stacks labelled A1 (B1)

and A2 (B2) in layer A (B). The angle between the average planes of cations A1 and A2 is

71.6◦ while the angle between B1 and B2 is 78.0◦. At room temperature, this angle gets an

intermediate value of 73.9◦ [17]. The radical cation layers also differ in the number of S...S,

S...Se and Se...Se contacts shorter than the sum of the van der Waals radii, which is larger

in layer A than in layer B. In summary, the phase transition around 240 K corresponds to

a degradation of the crystallographic order. In addition, the solvent molecules can occupy

two different sites, as above mentioned. As a result, the degree of disorder increases as the

temperature is lowered below the phase transition, as already reported in Ref. [17].

The calculated electronic band structures and FS’s corresponding to layers A and B are

reported in Fig. 4. There are four donors per repeat unit of the layers so that the band

structures contain four bands mainly built from the HOMO (highest occupied molecular

orbital) of the donors. Since the average charge of the donors is +0.5 these bands should

house two holes. The two FS’s are almost identical but turned approximately by 90◦. These

FS’s can be seen as resulting from the superposition (and hybridization) of a closed loop

which, as for usual θ phases [22], may be described either as a rounded rectangle or as an

elongated ellipse. The result is a Fermi surface containing closed and open portions with

very small hybridization gaps. From the viewpoint of the resulting orbits network, both of

them can be regarded as a linear chain of coupled orbits, roughly turned around by 90◦ from
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TABLE I: Frequencies, effective masses (in me units) and apparent Dingle temperatures linked to

the various Fourier components (index i of Eqs. 1 to 5) appearing in Figure 7.

i Fi (T) m∗
i Ta

Di (K)

1 37 ± 1 0.30 ± 0.05 3.0 ± 1.2

2 81.5 ± 1.0 0.45 ± 0.05 11 ± 3

3 198 ± 4 0.85 ± 0.10 1.9 ± 0.8

4 545 ± 2 0.45 ± 0.10 11 ± 4

5 745 ± 10 1.15 ± 0.15 4.5 ± 1.5

6 1270 ± 30 1.2 ± 0.2 11 ± 6

7 2900 ± 100

8 4200 ± 200 ∼ 2 ∼ 20

each other. This picture is strongly different from the FS deduced from calculations at room

temperature which yields a network of compensated electron and holes orbits, as displayed

in Fig. 1. The area of the closed part of the FS at low temperature, which correspond

to the so called α orbit, is equal to 22.9% and 19.6% of the FBZ area for layers A and B,

respectively. The area of the β orbit which can be recovered by MB is equal to that of the

FBZ for both layers.

B. SdH oscillations

Interlayer zero-field resistance and magnetoresistance data of the two studied crystals

yield consistent results. The temperature dependence of the zero-field resistance of crystal

#1 is displayed in Fig. 5. A good agreement with data of Ref. [17] is observed. Remarkably,

the interlayer resistance exhibits a behaviour strongly different from that of the in-plane one.

This behaviour has not received any interpretation up to now. Another salient feature of

these data is the kink (marked by arrows in Fig. 5) which is the signature of the above

discussed phase transition occurring around 240 K.

In magnetic field, the interlayer resistance decreases by about 20 % (see the data of

crystal #1 in Fig. 6). This feature, which was not observed in Ref. [17], could not be due

to disorder as discussed below. Despite the increase of the disorder level as the temperature
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is lowered below the phase transition (see Section IIIA), quantum oscillations are clearly

resolved. The Fourier spectra of the oscillatory part of the magnetoresistance is displayed

in Fig. 7. Numerous components can be identified, as it is observed in many networks of

coupled orbits. More precisely, 8 frequencies are observed, of which the values are reported

in Table I. It can be noticed that, as already reported in Ref. [17], only F1 and F3 can be

observed below 15 T. Roughly speaking, the high frequency oscillations can only be detected

at high field. In particular, the frequencies F7 and F8, which are in few cases poorly resolved,

can only be observed above about 40 T. Data for crystal #2, which was obtained up to 36

T for various directions of the magnetic field, allow to check that the angle dependence of

the frequencies F1 to F5 is consistent with a two-dimensional FS.

As discussed in Ref. [15], whatever the origin of the frequency combinations liable to

be involved in an oscillatory spectrum (MB-induced closed orbits, QI paths or frequency

mixing) they should be linear combinations of the frequencies linked to each of the closed

orbits and of the
⊙

orbit, namely F(e), F(h1) F(h2) and F(
⊙

), in networks of compensated

orbits such as that depicted in Fig. 1. In contrast, oscillatory spectra of linear chains of

orbits only involves linear combinations of the frequencies linked to the closed α and to

the MB-induced β orbit, the latter being the analogue of the above mentioned
⊙

orbit.

However, the topology of the FS displayed in Fig. 4 is more complex and the two FS linked

to layer A and B should contribute to the observed oscillatory spectra.

The only observed frequency that can be attributed to the β, or equivalently to the
⊙

orbit, is F8 which corresponds to an orbit area of 96 ± 5 % of the FBZ area at 200 K. In the

framework of the band structure calculations at room temperature, three basic frequencies

F(e), F(h1) and F(h2) with areas of 6, 4 and 2 % of the FBZ area, respectively, should be

observed, the orbit’s compensation yielding F(e) = F(h1) + F(h2). Such a linear combination

is observed in the present case since F3 + F4 = 743 ± 6 T which is equal to F5 within the

error bars. In the case where this picture is relevant, F6 which is equal to F4 + F5 (1290

± 12 T) could be regarded as a frequency combination. However, such analysis puts aside

frequencies F1 and F2. In addition, F5 corresponds to 17 % of the FBZ area. This value

is much larger than predicted by the band structure calculations above mentioned. These

features confirm that the FS of the compound cannot be interpreted on the basis of band

structure calculations at room temperature.

In the framework of the FS calculations of Fig. 4, only F5 and (or) F6 which correspond
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to orbits areas of 17 % and 29 %, respectively, of the FBZ area could be attributed to

the α orbit. In such a case, F7, which is equal to F8 - F6 could correspond to one of the

two QI path β − α. However, the low frequencies F1 to F4 with areas in the range from

1 % to 12 % cannot be interpreted on the basis of this FS, unless additional orbits can be

considered. For example, MB-like orbits induced by carriers jump from one layer to the other

could account for frequencies lower than Fα. Obviously such an hypothesis requires both

experimental and theoretical confirmation. The possibility of an additional phase transition

at a temperature lower than 200 K, such as density wave or solvent molecules ordering,

could also be considered. For instance, such a modulation could induce a folding of the FS’s

resulting in additional small closed orbits accounting for the observed discrepancy between

the SdH spectra and the present band structure calculations.

Let us consider now the temperature and field dependence of the Fourier components

reported in Fig. 7. In the framework of the Lifshitz-Kosevich model [23], the oscillatory

part of the magnetoresistance of a 2D FS is given by:

R(B)

Rbackground
= 1 +

∑

i

Aicos[2π(
Fi

B cos θ
− γi)] (1)

where γi is a phase factor. The amplitude of the Fourier component with frequency Fi

is given by Ai ∝ RT iRDiRMBiRSi. The thermal, Dingle, MB and spin damping factors are

respectively given by:

RT i =
αTm∗

i

Bcosθ sinh[αTm∗
i /Bcosθ]

(2)

RDi = exp[−αTDim
∗
i /Bcosθ] (3)

RMBi = exp(−
tiB0

2B
)[1 − exp(−

B0

B
)]bi/2 (4)

RSi =| cos(πµi/ cos θ) | (5)

where α = 2π2mekB/e~ (≃ 14.69 T/K), µi = g∗m∗
i /2, g∗ is the effective Landé factor, m∗

i

is the effective mass normalized to the free electron mass me, TDi is the Dingle temperature

and B0 is the MB field which is assumed here to be the same for all the MB junctions (this

point is discussed in Ref. [9]). Integers ti and bi are respectively the number of tunnelling

and Bragg reflections encountered along the path of the quasiparticle.
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As displayed in Fig. 8, the temperature dependence of the various Fourier components

observed in Fig. 7 is in agreement with the LK formalism. The deduced effective masses

are reported in Table I. It has been checked that they remain field-independent within

the error bars in the range where the Fourier components are detectable. Effective masses

can also be derived from the angle dependence of the oscillation amplitude which involves

the spin damping factor (see Eq. 5). Examples are given in Fig. 9: a good agreement is

obtained yielding µi values that are equal to m∗
i within the error bars. This result indicates

that g∗ is close to 2 which is in line with a Fermi liquid picture. The values of the effective

mass for F1 to F6 are in the range from 0.3 to about 1.2 me. Similar rather low values are

also observed in various q-2D organic metals for which the frequencies involved in the SdH

spectra are of the same order of magnitude. This is, in particular, the case of the family

β”-(BEDT-TTF)4(NH4)[M(C2O4)3]·DMF (M = Fe, Cr) of which the FS is rather complex

[15, 24] as it is in the present case.

Additional information on the oscillatory spectrum can be obtained through the field

dependence of the oscillations amplitude. For θ = 0, Eq. 1 can be rewritten as:

Ai

RT i
∝ exp[−

αTDim
∗
i + tiB0/2

B
]

×[1 − exp(−
B0

B
)]

bi

2 (6)

which yields the temperature-independent part of the amplitude, provided the relevant

effective mass has been determined. At low magnetic field or in the case where bi = 0, Eq.

6 simplifies as Ai / RT i ∝ exp[-(αTDim
∗
i + tiB0/2)/B]. In the case where ti = 0, i. e. for

a basic orbit, the field dependence of Ai / RT i yields the Dingle temperature, as usual. In

contrast, in the case where ti 6= 0, only an apparent Dingle temperature, higher than TDi,

can be derived (Ta
Di = TDi + tiB0/2αm∗

i ). The field dependence of Ai / RT i is displayed in

Fig. 10 for various Fourier components. It can be remarked first that, in agreement with

the predictions of Eq. 6, this parameter is actually temperature-independent, at least in

the low field range. Solid lines in this figure are best fits to the data assuming bi = 0 which

actually holds in the low field range as above discussed. The deduced values of Ta
Di (see

Table I) are very disparate. It should be noticed that the set of values obtained for crystal

#2 is in good agreement with the data of Table I. Furthermore, a re-analysis of the low field

data of Ref. [17] yields Ta
D1

≃ 4 K which is close to, and in any case not lower than, the
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present data. This result suggests that the negative magnetoresistance observed in Fig 6

could not be due to disorder. Downward deviations of the data from the fittings of Fig. 10,

that could be due to Bragg reflections (in which case bi 6= 0) are observed at high field for

some of the Fourier components. The very high values of Ta
Di observed for F2, F4, F6 and

F8 could indeed be the signature of MB. This should be in particular the case of F8 in the

case where it actually corresponds to the large orbit from which the FS is built. In line with

this assumption, it is tempting to consider that F1, F3 and F5 correspond to basic orbits.

However, the field dependence of the amplitude of Fourier components corresponding to

MB orbits can be strongly influenced by the frequency mixing phenomenon [8, 9, 10]

which hampers any definite conclusion in the absence of reliable FS determination at low

temperature. Nevertheless, it is plausible that some of the observed Fourier components

correspond to MB and (or) frequency mixing. In addition, the occurrence of a new type of

MB-like quantum oscillation linked to the considered non-trivial FS cannot be excluded,

although this latter hypothesis requires both experimental and theoretical confirmation.

IV. SUMMARY AND CONCLUSION

The crystal and electronic band structures of the organic metal θ-(BETS)4HgBr4(C6H5Cl)

have been determined at a temperature of 200 K, i. e. below the phase transition which

occurs at about 240 K. X-ray data indicate a modification of the crystal structure the

symmetry of which is lowered from quadratic to monoclinic. Strikingly, two different types

of cation layers which alternate in the direction perpendicular to the conducting plane are

observed. The resulting non-trivial Fermi surface (FS), which can be regarded as a network

of compensated electron and hole orbits according to band structure calculations at room

temperature, turns to a set of two alternating linear chain of orbits at low temperature.

The SdH oscillations spectra measured up to 54 T reveal eight Fourier components. Their

temperature and field (both magnitude and orientation) dependence are in good agreement

with the LK formalism. Owing to their field dependence, it is likely that some of the

observed Fourier components correspond to either MB orbits or frequency mixing. In any

case, the oscillatory data suggest a complex FS that is not in agreement with band structure

calculations at room temperature. Band structure calculations at 200 K cannot fully account
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for the data either, unless additional MB-like orbits induced by carriers jump from one layer

to the other can be considered. An additional phase transition below 200 K might also be

considered to be at the origin of the disagreement. More work at low temperature seems to

be mandatory to fully understand the intriguing SdH oscillations spectra of the q-2D organic

metal θ-(BETS)4HgBr4(C6H5Cl).
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FIG. 1: Fermi surface (FS) for a single donor layer of θ-(BETS)4HgBr4(C6H5Cl) at room temper-

ature according to band structure calculations of Ref. [17]. The dashed line corresponds to the
⊙

orbit, from which the FS is built, with an area equal to that of the First Brillouin zone (see text).

Since the tetragonal cell contains four identical donor layers rotated by 90 degrees from each other

around the c-axis, the resulting FS of the system could be more complex.
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FIG. 2: Crystal structure of θ-(BETS)4HgBr4(C6H5Cl) projected along the c axis. The labels A

and B refer to the two different cation layers (see text).
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FIG. 3: Conducting cation layers A and B.
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FIG. 4: Electronic band structure, where the dashed lines refer to the Fermi level, and Fermi

surface of the radical cations layers A and B (see text).
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FIG. 5: Temperature dependence of the relative interlayer resistance of crystal #1 (symbols).

Upper and lower solid lines are the data for the interlayer and the in-plane resistances, respectively,

from Ref. [17]. The arrows mark the first order transition (see text).
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FIG. 6: Field-dependent resistance of crystal #1 for θ = 0. The curves have been shifted down

from each other by 0.02 for clarity.
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FIG. 7: Fourier spectra of the oscillatory part of the magnetoresistance data displayed in Fig. 6.

The field range is 10 - 54 T, 18 - 54 T and 45 - 54 T in (a), (b) and (c), respectively. The curves

have been shifted down from each other for clarity.
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FIG. 8: Temperature dependence of the Fourier components’ amplitude. The inset displays the

data in a semi-logarithmic scale. The mean field value is 14 T, 20 T, 20 T, 25 T, 28 T and 30 T

for F1 to F6, respectively. Solid lines are best fits of Eq. 1 to the data.
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FIG. 9: Angle dependence of the amplitude of the Fourier components F2 (circles) and F4 (squares)

for crystal #2. The mean magnetic field value is 16.8 and 26.6 T, for F2 and F4, respectively. Solid

lines are best fits of Eq. 1 to the data obtained with µ = 0.42 and 0.47, for F2 and F4, respectively

(see text).
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FIG. 10: Field dependence of the Fourier’s components amplitude normalized to the Fermi-Dirac

smearing damping factor (RT ). Solid lines are best fits of Eq. 6 to the data assuming bi = 0 (see

text).
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