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Abstract

Let R be a real closed field and A = R[x1, . . . , xn]. Let Sper A denote the real spectrum
of A. There are two kinds of points in Sper A: finite points (those for which all of |x1|,. . . ,|xn|
are bounded above by some constant in R) and points at infinity. In this paper we study
the structure of the set of points at infinity of Sper A and their associated valuations. Let
T be a subset of {1, . . . , n}. For j ∈ {1, . . . , n}, let yj = xj if j∈/T and yj = 1

xj
if j ∈ T . Let

BT = R[y1, . . . , yn]. We construct a finite partition Sper A =
∐

T

UT and a homeomorphism

of each of the sets UT with a subspace of the space of finite points of Sper BT . For each
point δ at infinity in UT , we describe the associated valuation νδ∗ of its image δ∗ ∈ Sper BT

in terms of the valuation νδ associated to δ. Among other things we show that the valuation
νδ∗ is composed with νδ (in other words, the valuation ring Rδ is a localization of Rδ∗ at a
suitable prime ideal).

1 Introduction

Let R be a real closed field and z0, . . . , zn independent variables. A basic fact of life in mathemat-
ics is the way the n-dimensional projective space Proj R[z0, . . . , zn] and other rational projective
schemes such as

(

P1
R

)n
are glued together from affine charts of the form Spec R[x1, . . . , xn].

Given two such coordinate charts Spec R[x1, . . . , xn] and Spec R[y1, . . . , yn], it is often easy to
write down formulae describing the coordinate transformation from the x to the y coordinates.
The subject of this paper is a part of the analogous story for real spectra (see Definition 1.1
below), which is more interesting, because the real spectrum Sper R[x1, . . . , xn] already contains
much information “at infinity”.

To explain this in more detail, we first recall the definition of real spectrum and other related
objects, studied in this paper.

Notation and conventions. All the rings in this paper will be commutative with 1. For a
prime ideal p in a ring B, κ(p) will denote the residue field of the local ring Bp: κ(p) =

Bp

pBp
.

Let B be a ring. A point α in the real spectrum of B is, by definition, the data of a prime
ideal p of B, and a total ordering ≤ of the quotient ring B/p, or, equivalently, of the field of
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fractions of B/p. Another way of defining the point α is as a homomorphism from B to a real
closed field, where two homomorphisms are identified if they have the same kernel p and induce
the same total ordering on B/p.

The ideal p is called the support of α and denoted by pα, the quotient ring B/pα by B[α],
its field of fractions by B(α) and the real closure of B(α) by k(α). The total ordering of B(α)
is denoted by ≤α. Sometimes we write α = (pα,≤α).

Definition 1.1 The real spectrum of B, denoted by Sper B, is the collection of all pairs α =
(pα,≤α), where pα is a prime ideal of B and ≤α is a total ordering of B/pα.

Given a point δ ∈ Sper(A) and an element f ∈ A, the notation |f |δ will mean f if f ≥δ 0, −f if
f ≤δ 0. When no confusion is possible, we will write simply |f |, with δ understood.

Two kinds of points occur in Sper B: finite points and points at infinity.

Definition 1.2 Let B be an R-algebra and α a point of Sper B. We say that α is finite if for
each y ∈ B[α] there exists N ∈ R such that |y|α <α N . Otherwise, we say that α is a point at
infinity.

Notation: The subset of Sper B consisting of all the finite points will be denoted by Sper∗B.

It is known, as we explain in detail in §2, that Sper B is closely related to the space
⋃

p∈Spec B

Sp, where Sp denotes the Zariski–Riemann surface of the residue field κ(p). Namely,

one can associate to every point δ ∈ Sper B a valuation νδ of κ(pδ) (where pδ is the support of
δ) with totally ordered residue field kδ. Conversely, given a prime ideal p ⊂ B and a valuation
ν of κ(p) with totally ordered residue field, one can define a point δ ∈ Sper R[x1, . . . , xn] with
pδ = p and νδ = ν by specifying the signs of finitely many elements of κ(p) with respect to the
total ordering ≤δ (see Remark 2.2 below).

The real spectrum Sper B is endowed with the spectral (or Harrison) topology. By
definition, this topology has basic open sets of the form

U(f1, . . . , fk) = {α | f1(α) > 0, . . . , fk(α) > 0}

with f1, ..., fk ∈ B. Here and below, we commit the following standard abuse of notation: for
an element f ∈ B, f(α) stands for the natural image of f in B[α] and the inequality f(α) > 0
really means f(α) >α 0.

Denote by Maxr(A) the set of points α ∈ Sper(A) such that pα is a maximal ideal of A. We
view Maxr(A) as a topological subspace of Sper(A) with the spectral (respectively, constructible)
topology. We may naturally identify Rn with Maxr(A): a point (a1, . . . , an) ∈ Rn corresponds
to the point α = (pα,≤α) ∈ Sper(A), where pα is the maximal ideal

pα = (x1 − a1, . . . , xn − an)

and ≤α is the unique order on R. The spectral topology on Sper(A) induces the euclidean
topology on Rn.

Let A = R[x1, . . . , xn]. Take a point δ ∈ Sper A. In §3 we associate to δ three disjoint
subsets Iδ, Fδ , Gδ ⊂ {1, . . . , n}, as follows. By definition, the set Iδ

∐

Fδ

∐

Gδ is the set of all
j ∈ {1, . . . , n} such that

νδ(xj) = 0. (1)

The set Gδ consists of all j such that |xj |δ is bounded below by all the elements of R, Iδ—of all
j such that (1) holds and |xj |δ is smaller than any strictly positive constant in R and Fδ of all
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j such that |xj |δ is bounded both above and below by strictly positive constants from R. We
show that Iδ = ∅ whenever Gδ = ∅.

Let T be a set such that Gδ ⊂ T ⊂ Gδ ∪ Fδ. For j ∈ {1, . . . , n}, let yj = xj if j∈/T and
yj = 1

xj
if j ∈ T . Let BT = R[y1, . . . , yn]. We associate to δ a point δ∗ in Sper∗BT such that

A(δ) = BT (δ∗). We show that Rδ is a localization of Rδ∗ at a prime ideal.
Let I, F,G be three disjoint subsets of {1, . . . , n}, such that if G = ∅ then I = ∅. Let UI,F,G

denote the set of all points of Sper A such that I = Iδ, F = Fδ and G = Gδ . The main theorem,
Theorem 3.1, describes a homeomorphism between UI,F,G and a certain explicitly described
subspace U∗

I,F,G ⊂ Sper∗(BT ), where T is a set satisfying G ⊂ T ⊂ F ∪G. At the end of section
§3, we describe a partition

Sper(A) =
∐

I,F,G

UI,F,G, (2)

where I, F,G runs over all the triples of disjoint subsets of {1, . . . , n} such that I = ∅ whenever
G = ∅, and each UI,F,G is homeomorphic to a subspace U∗

I,F,G ⊂ Sper∗(BT ), as above.
This paper originally grew out of the authors’ joint work with J.J. Madden [7] on the Pierce–

Birkhoff conjecture. Certain definitions and constructions only worked for finite points of SperA,
so a need naturally arose to cover SperA by subspaces, each of which is homeomorphic to a
subspace of Sper∗B for some other polynomial ring B. Eventually, we found another way of
getting around this difficulty and were able to deal in a uniform way with all the points of
Sper A, whether finite or infinite. However, we hope that the decomposition (2) may some day
come in useful to someone who is faced with finiteness problems similar to ours. Also, since in
[7] we are interested in proving connectedness of certain subsets of Sper A, we gave a variation
of the decomposition (2) into sets which are not disjoint; we derive it as an easy consequence of
(2).

2 The valuation associated to a point in the real spectrum

Let B be a ring and α a point in Sper B. In this section we define the valuation να of B(α),
associated to α. We also give a geometric interpretation of points in the real spectrum as
semi-curvettes.

Terminology: If B is an integral domain, the phrase “valuation of B” will mean “a valuation
of the field of fractions of B, non-negative on B”. Also, we will sometimes commit the following
abuse of notation. Given a ring B, a prime ideal p ⊂ B, a valuation ν of B

p
and an element

x ∈ B, we will write ν(x) instead of ν(x mod p), with the usual convention that ν(0) = ∞,
which is taken to be greater than any element of the value group.

For a point α in Sper B, we define the valuation ring Rα by

Rα = {x ∈ B(α) | ∃z ∈ B[α], |x|α ≤α z}.

That Rα is, in fact, a valuation ring, follows because for any x ∈ B(α), either x ∈ Rα or 1
x
∈ Rα.

The maximal ideal of Rα is Mα =
{

x ∈ B(α)
∣

∣

∣
|x|α <

1
|z|α

, ∀z ∈ B[α] \ {0}
}

; its residue field

kα comes equipped with a total ordering, induced by ≤α. For a ring B let U(B) denote the

multiplicative group of units of B. Recall that Γα
∼=
B(α) \ {0}

U(Rα)
and that the valuation να can

be identified with the natural homomorphism

B(α) \ {0} →
B(α) \ {0}

U(Rα)
.
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By definition, we have a natural ring homomorphism

B → Rα (3)

whose kernel is pα. The valuation να has the following properties:
(1) να(B[α]) ≥ 0
(2) If B is an R-algebra then for any positive elements y, z ∈ B(α),

να(y) < να(z) =⇒ y > Nz, ∀N ∈ R (4)

(an example at the end of the paper shows that the converse implication in (4) is not true in
general).

Remark 2.1 Let B be an R-algebra and take a point α ∈ Sper∗B (see Definition 1.2). Then

Rα = {x ∈ B(α) | ∃N ∈ R, |x| ≤α N } . (5)

Thus for points α ∈ Sper∗B the valuation να of B(α) depends on the ordering ≤α but not on
the ring B[α] (this means that given another R-algebra B̃, a point α̃ ∈ Sper∗B̃ and an order-
preserving isomorphism φ : B(α) ∼= B̃(α̃), we have φ(Rα) = Rα̃).

Remark 2.2 ([1], [6], [2] 10.1.10, p. 217) Conversely, the point α can be reconstructed from
the ring Rα by specifying a certain number of sign conditions (finitely many conditions when B

is noetherian), as we now explain. Take a prime ideal p ⊂ B and a valuation ν of κ(p) :=
Bp

pBp
,

with value group Γ. Let
r = dimF2

(Γ/2Γ)

(if B is not noetherian, it may happen that r = ∞). Let x1, . . . , xr be elements of κ(p) such
that ν(x1), . . . , ν(xr) induce a basis of the F2-vector space Γ/2Γ. Then for every x ∈ κ(p), there
exist f ∈ κ(p) and a unit u of Rν such that x = uxǫ1

1 · · · xǫr
r f

2 with ǫi ∈ {0, 1} (to see this, note
that for a suitable choice of f and ǫj the value of the quotient u of x by the product xǫ1

1 · · · xǫr
r f

2

is 0, hence u is invertible in Rν). Now, specifying a point α ∈ Sper B supported at p amounts
to specifying a valuation ν of B

p
, a total ordering of the residue field kν of Rν, and the sign data

sgn x1, . . . , sgn xr. For x∈/p, the sign of x is given by the product sgn(x1)
ǫ1 · · · sgn(xr)

ǫrsgn(u),
where sgn(u) is determined by the ordering of kν.

Points of Sper B admit the following geometric interpretation (we refer the reader to [3],
[4], [8], p. 89 and [9] for the construction and properties of generalized power series rings and
fields).

Definition 2.1 Let k be a field and Γ an ordered abelian group. The generalized formal power
series ring k

[[

tΓ
]]

is the ring formed by elements of the form
∑

γ
aγt

γ, aγ ∈ k such that the set

{γ | aγ 6= 0} is well ordered.

The ring k
[[

tΓ
]]

is equipped with the natural t-adic valuation v with values in Γ, defined by
v(f) = inf{γ | aγ 6= 0} for f =

∑

γ

aγt
γ ∈ k

[[

tΓ
]]

. Specifying a total ordering on k and

dimF2
(Γ/2Γ) sign conditions defines a total ordering on k

[[

tΓ
]]

. In this ordering |t| is smaller
than any positive element of k. For example, if tγ > 0 for all γ ∈ Γ then f > 0 if and only if
av(f) > 0.

For an ordered field k, let k̄ denote the real closure of k. The following result is a variation
on a theorem of Kaplansky ([4], [5]) for valued fields equipped with a total ordering.
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Theorem 2.1 ([9], p. 62, Satz 21) Let K be a real valued field, with residue field k and value
group Γ. There exists an injection K →֒ k̄

((

tΓ
))

of real valued fields.

Let α ∈ Sper B and let Γα be the value group of να. In view of (3) and the Remark above,
specifying a point α ∈ Sper B is equivalent to specifying a total order of kα, a morphism

B[α] → k̄α

[[

tΓα
]]

and dimF2
(Γα/2Γα) sign conditions as above.

We may pass to usual spectra to obtain morphisms

Spec
(

k̄α

[[

tΓα
]])

→ Spec B[α] → Spec B.

In particular, if Γα = Z, we obtain a formal curve in Spec B (an analytic curve if the series
are convergent). This motivates the following definition:

Definition 2.2 Let k be an ordered field. A k-curvette on Sper(B) is a morphism of the form

α : B → k
[[

tΓ
]]

,

where Γ is an ordered group. A k-semi-curvette is a k-curvette α together with a choice of
the sign data sgn x1,..., sgn xr, where x1, ..., xr are elements of B whose t-adic values induce an
F2-basis of Γ/2Γ.

We have thus explained how to associate to a point α of Sper B a k̄α-semi-curvette. Con-
versely, given an ordered field k, a k-semi-curvette α determines a prime ideal pα (the ideal of
all the elements of B which vanish identically on α) and a total ordering on B/pα induced by
the ordering of the ring k

[[

tΓ
]]

of formal power series. These two operations are inverse to
each other. This establishes a one-to-one correspondence between semi-curvettes and points of
Sper B.

Below, we will sometimes describe points in the real spectrum by specifying the corresponding
semi-curvettes.

Example: Consider the curvette R[x, y] → R[[t]] defined by x 7→ t2, y 7→ t3, and the semi-
curvette given by declaring, in addition, that t is positive. This semi-curvette is nothing but the
upper branch of the cusp.

Later in the paper, we will need, for a certain number p ∈ {0, 1, . . . , n} and two points δ, δ∗

living in different spaces, to compare (n− p)-tuples of elements such as (νδ(xp+1), . . . , νδ(xn)) ∈
Γn−p

δ and (νδ∗(yp+1), . . . , νδ∗(yn)) ∈ Γn−p
δ∗ and to be able to say that they are in some sense

“equivalent”. To do this, we need to embed Γδ in some “universal” ordered group.

Notation and convention: Let us denote by Γ the ordered group Rn
lex. This means that

elements of Γ are compared as words in a dictionary: we say that (a1, . . . , an) < (a′1, . . . , a
′
n) if

and only if there exists j ∈ {1, . . . , n} such that aq = a′q for all q < j and aj < a′j .
The reason for introducing Γ is that by Abhyankar’s inequality we have rank νδ ≤ dimA = n

for all δ ∈ Sper A, so the value group Γδ of νδ can be embedded into Γ as an ordered subgroup
(of course, this embedding is far from being unique). Let Γ+ be the semigroup of non-negative
elements of Γ.

Fix a strictly positive integer ℓ. In order to deal rigourously with ℓ-tuples of elements of Γδ

despite the non-uniqueness of the embedding Γδ ⊂ Γ, we introduce the category OGM(ℓ), as
follows. An object in OGM(ℓ) is an ordered abelian group G together with ℓ fixed generators
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a1, . . . , aℓ (such an object will be denoted by (G, a1, . . . , aℓ)). A morphism from (G, a1, . . . , aℓ)
to (G′, a′1, . . . , a

′
ℓ) is a homomorphism G → G′ of ordered groups which maps aj to a′j for each

j.

Given (G, a1, . . . , aℓ), (G′, a′1, . . . , a
′
ℓ) ∈ Ob(OGM(ℓ)), the notation

(a1, . . . , aℓ) ∼
◦

(a′1, . . . , a
′
ℓ) (6)

will mean that (G, a1, . . . , aℓ) and (G′, a′1, . . . , a
′
ℓ) are isomorphic in OGM(ℓ).

Take an element
a = (a1, . . . , aℓ) ∈ Γℓ

+.

Let G ⊂ Γ be the ordered group generated by a1, . . . , aℓ. Then (G, a1, . . . , aℓ) ∈ Ob(OGM(ℓ)).
For each δ ∈ Sper(A), let Γδ denote the value group of the associated valuation νδ and Γ∗

δ

the subgroup of Γδ generated by νδ(x1), . . . , νδ(xn). In this way, we associate to δ an object
(Γ∗

δ , νδ(x1), . . . , νδ(xn)) ∈ Ob(OGM(n)).

Notation. Let Γ be an ordered group. Consider an ℓ-tuple a = (a1, . . . , aℓ) ∈ Γℓ. We denote
by Rel(a) the set

Rel(a) =







(m1, . . . ,mℓ,mℓ+1, . . . ,m2ℓ) ∈ Z2ℓ

∣

∣

∣

∣

∣

∣

ℓ
∑

j=1

mjaj > 0 and
2ℓ

∑

j=ℓ+1

mjaj−ℓ = 0







.

Remark 2.3 Let Γ and a be as above and let G be the subgroup of Γ generated by a1, . . . , aℓ,
so that (G, a1, . . . , aℓ) ∈ Ob(OGM(ℓ)). The set Rel(a) completely determines the isomorphism
class of (G, a1, . . . , aℓ) in OGM(ℓ) and vice-versa; the set Rel(a) and the isomorphism class of
(G, a1, . . . , aℓ) are equivalent sets of data.

3 Points at infinity of Sper(A)

In this section, we study the structure of the set of points at infinity in Sper(A). Take a
point δ ∈ Sper(A). Renumbering the coordinates if necessary, we may assume there exists p,
0 ≤ p ≤ n, such that

νδ(xj) = 0 for 1 ≤ i ≤ p and νδ(xj) > 0 for j > p. (7)

For a subset T of {1, . . . , p}, let BT = R[y1, . . . , yn] where

yj = xj if j ∈ {1, . . . , n} \ T (8)

= 1/xj if j ∈ T . (9)

For certain subsets T ⊂ {1, . . . , p} we will associate to δ a point δ∗ in Sper∗(BT ) such that
A(δ) = BT (δ∗). We will define a new valuation νδ∗ of A(δ), such that Rδ is a localization of Rδ∗

at a suitable prime ideal. At the end of this section, we will use these results to cover Sper(A)
by sets, each of which is homeomorphic to a certain subspace of Sper∗(BT ) for some T .

First, take any subset T ⊂ {1, . . . , n} whatsoever. Let BT be defined as in (8)–(9).

Notation : The notation Af stands for the localization of A by f , the ring A[1/f ].
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Remark : We have a natural homeomorphism

Sper(A) \ {f = 0}
∼
→ Sper(Af ) (10)

Consider the natural isomorphism A∏

xj ,j∈T
∼= (BT )∏ yj ,j∈T . It induces a homeomorphism

ψ : Sper(A) \
{

∏

j∈T xj = 0
}

→ Sper(BT ) \
{

∏

j∈T yj = 0
}

‖ ‖
Sper(A∏

j∈T xj
) → Sper((BT )∏

j∈T yj
)

(11)

which we describe explicitly for future reference. Take a point δ ∈ Sper(A∏

j∈T xj
). We will now

describe the point δ∗ = ψ(δ) in Sper(BT ), as follows. The ideal pδ∗ is the prime ideal of BT such
that

pδA
∏

xj ,j∈T
∼= pδ∗(BT )∏ yj ,j∈T (12)

Then (12) implies the existence of a canonical isomorphism

φ : κ(pδ) ∼= κ(pδ∗). (13)

The total order ≤δ∗ is the order induced by δ on κ(pδ∗) via the isomorphism (13). This describes
ψ; the inverse map ψ−1 is described in a completely analogous way.

Here and below, R>0 will denote the set of strictly positive elements of R.
Take a δ ∈ Sper(A) and let p be as in (7). We associate to δ a partition

{1, . . . , p} = Iδ
∐

Fδ

∐

Gδ,

as follows:

j ∈ Iδ ⇐⇒ |xj |δ <δ ǫ, ∀ǫ ∈ R>0 (14)

j ∈ Fδ ⇐⇒ ∃c1, c2 ∈ R>0 such that c1 <δ |xj |δ <δ c2 (15)

j ∈ Gδ ⇐⇒ |xj |δ >δ N, ∀N ∈ R. (16)

Remark 3.1 We have δ ∈ Sper∗(A) if and only if Gδ = ∅. Below, we show that in this case
necessarily Iδ = ∅.

Take a set T such that
Gδ ⊂ T ⊂ Gδ ∪ Fδ . (17)

Let BT be the ring defined by (8) and (9). It follows from (15), (16) and (17) that xj∈/pδ for
j ∈ T . Let δ∗ = ψ(δ). It is immediate from the definition that δ∗ is finite in Sper(BT ).

Proposition 3.1 The valuation νδ∗ of BT (δ∗) associated to δ∗ has the following properties:
(1) νδ∗(yj) = 0 for j ∈ Fδ;
(2) νδ∗(yj) > 0 for j ∈ Iδ ∪Gδ;
(3) there exists q ∈ Gδ and a strictly positive integer N such that, for all j ∈ Iδ,

Nνδ∗(yq) > νδ∗(yj). (18)

In particular, if Iδ 6= ∅ then Gδ 6= ∅.
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(4) The valuation ring Rδ is the localization of Rδ∗ at a prime ideal; this gives rise to
a surjective order-preserving group homomorphism φ̃ : Γδ∗ → Γδ whose kernel is an isolated
subgroup.

(5) For all j ∈ {1, . . . , n}, φ̃(νδ∗(yj)) = νδ(xj).
(6) For j ∈ {1, . . . , p}, νδ∗(yj) ∈ ker(φ̃). In particular, given any j ∈ {1, . . . , p}, t ∈

{p + 1, . . . , n} and N ′ ∈ N, we have N ′νδ∗(yj) < νδ∗(yt).
(7) Assume that νδ(xp+1), . . . , νδ(xn) are Q-linearly independent. Then

(νδ∗(yp+1), . . . , νδ∗(yn)) ∼
◦

(νδ(xp+1), . . . , νδ(xn))

in OGM(n − p).

Proof : (1) Take j ∈ Fδ. We have 1/|yj |δ∗ <δ∗ c for some c ∈ R by definition of Fδ (15). Hence
1
yj

∈ Rδ∗ and the result follows.

(2) Take j ∈ Iδ ∪ Gδ . By definition of Iδ (14), Gδ (16) and (17), |yj |δ∗ <δ∗ ǫ for every
ǫ ∈ R>0, so 1/|yj |δ∗ >δ∗ N for every N ∈ R. By the boundedness of δ∗, for each f ∈ BT ,
we have |f(y1, . . . , yn)|δ∗ <δ∗ N

′ for some N ′ ∈ R. Hence 1/|yj |δ∗ >δ∗ f(y1, . . . , yn) for each
f ∈ BT , so 1/yj∈/Rδ∗ . This proves that νδ∗(yj) > 0.

(3) Take a j ∈ Iδ. Since νδ(xj) = 0, we have 1/xj ∈ Rδ. This means that there exists
z ∈ A[δ] such that 1/|xj |δ <δ |z|δ . Now, z is a polynomial in the xk, k = 1, . . . , n, and taking xq,
q ∈ Gδ, such that |xq|δ ≥δ |xk|δ for all k ∈ Gδ (and hence |xq|δ ≥δ |xk|δ for all k ∈ {1, . . . , n}),
there exists N > 0 such that 1/|xj |δ <δ |xq|

N
δ for all j ∈ Iδ, so that |yj|δ∗ >δ∗ |yq|

N
δ∗ . Then

Nνδ∗(yq) ≥ νδ∗(yj) by equation (4). Replacing N by N + 1, we can make the inequality (18)
strict.

(4) It is well known that every homomorphism between two valuation rings having the same
field of fractions is a localization at a prime ideal. Thus it is sufficient to show that Rδ∗ ⊂ Rδ.
Take f ∈ Rδ∗ . By definition, this means that |f |δ∗ is bounded above by a polynomial in the yj

with respect to ≤δ∗ , and hence also by a monomial ω in the yj. Then φ−1(ω) is bounded above
with respect to ≤δ by a monomial in the xj, in which xj with j ∈ T appear with non-positive
exponents. Since each 1

|xj|δ
, j ∈ T , is bounded above by a constant in R, replacing factors of

the form x
−γj

j , j ∈ T , γj ∈ N by a suitable constant in R, we obtain that φ−1(f) is bounded
above with respect to ≤δ∗ by a monomial in y with non-negative exponents. This proves that
φ−1(f) ∈ Rδ as desired.

The last statement of (4) follows immediately by the general theory of composition of val-

uations ([11], Chapter VI, §10, p. 43). Alternatively, recall that Γδ
∼=
A(δ) \ {0}

U(Rδ)
and that the

valuation νδ can be identified with the natural homomorphism

A(δ) \ {0} →
A(δ) \ {0}

U(Rδ)
.

Similarly, νδ∗ can be thought of as

BT (δ∗) \ {0} →
BT (δ∗) \ {0}

U(Rδ∗)
∼= Γδ∗ .

From the isomorphism φ and the inclusion Rδ∗ →֒ Rδ, we obtain a natural surjective homomor-
phism of ordered groups

φ̃ :
BT (δ∗) \ {0}

U(Rδ∗)
→

A(δ) \ {0}

U(Rδ)
. (19)

(5) If j∈/T , the fact that φ(xj) = yj implies that

φ̃(yj mod U(Rδ∗)) = xj mod U(Rδ).
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If j ∈ T , we have φ(xj) = 1/yj , hence

φ̃(νδ∗(yj)) = νδ(1/xj) = 0 = νδ(xj).

(6) is an immediate consequence of (5) and the fact that νδ(x1) = · · · = νδ(xp) = 0.
(7) By Remark 2.3 at the end of the previous section, it suffices to prove that

Rel(νδ∗(yℓ+1), . . . , νδ∗(yn)) = Rel(νδ(xℓ+1), . . . , νδ(xn)). (20)

The fact that νδ(xp+1), . . . , νδ(xn) are Q-linearly independent and (5) of the Proposition
imply that so are νδ∗(yp+1), . . . , νδ∗(yn). Hence, using (5) of the Proposition again, for
any (n − p)-tuple, (mp+1, . . . ,mn) ∈ Zn−p, we have

∑n
i=p+1mjνδ(xj) > 0 if and only if

∑n
j=p+1mjνδ∗(yj) > 0. Together with the linear independence of νδ(xp+1), . . . , νδ(xn) and of

νδ∗(yp+1), . . . , νδ∗(yn), this proves the desired equality (20). �

Let G be an ordered group of rank r and ℓ a positive integer. Take ℓ elements a1, . . . , aℓ ∈ G.
Let (0) = ∆r $ ∆r−1 $ · · · $ ∆0 = G be the isolated subgroups of G. Renumbering the aj if
necessary, we may assume that there exist integers i0, i1, . . . , ir with

ℓ = i0 ≥ i1 ≥ i2 ≥ · · · ≥ ir = 0,

such that aiq+1
, . . . , aiq ∈ ∆q − ∆q+1 for q ∈ {0, . . . , r − 1}.

Definition 3.1 We say that a1, . . . , aℓ are scalewise Q-linearly independent if, for each q ∈

{0, . . . , r − 1}, the images of aiq+1
, . . . , aiq in

∆q

∆q+1
are Q-linearly independent.

Remark 3.2 Let the notation be as above and assume that a1, . . . , aℓ are scalewise Q-linearly
independent. Let λ : G → G′ be a homomorphism of ordered groups. Then λ(a1), . . . , λ(aℓ)
are scalewise Q-linearly independent if and only if they are Q-linearly independent if and only
if all of them are non-zero. This is precisely the form in which we will use scalewise Q-linear
independence in the sequel.

Fix an integer p ∈ {1, . . . , n} and two decompositions

{1, . . . , p} = H
∐

T = I
∐

F
∐

G, (21)

where I = ∅ whenever G = ∅,

I ⊂ H and (22)

G ⊂ T. (23)

Fix an n-tuple (a1, . . . , an) ∈ Γn
+ such that a1 = · · · = ap = 0. Let

UI,F,G =























δ ∈ Sper(A)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∀j ∈ I,∀c ∈ R>0, |xj|δ <δ c
∀j ∈ F∃c1, c2 ∈ R>0, c1 <δ |xj |δ <δ c2
∀j ∈ G,∀N ∈ R, |xj |δ >δ N
νδ(x1) = . . . = νδ(xp) = 0
νδ(xp+1) > 0, . . . , νδ(xn) > 0























, (24)

U∗
I,F,G =























δ∗ ∈ Sper∗(BT )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∀j ∈ F∃c ∈ R>0, |yj |δ∗ >δ∗ c
∃q ∈ G,N ∈ N s.t. ∀j ∈ I, Nνδ∗(yq) > νδ∗(yj)
∀j ∈ {1, . . . , p}, ∀t ∈ {p+ 1, . . . , n},∀N ′ ∈ N,

N ′νδ∗(yj) < νδ∗(yt)
νδ∗(yj) > 0 ∀j ∈ I ∪G























, (25)

9



Ua,I,F,G =
{

δ ∈ UI,F,G

∣

∣

∣
(νδ(x1), . . . , νδ(xn)) ∼

◦
(a1, . . . , an)

}

, (26)

U∗
a,I,F,G =

{

δ∗ ∈ U∗
I,F,G

∣

∣

∣
(νδ∗(yp+1), . . . , νδ∗(yn)) ∼

◦
(ap+1, . . . , an)

}

, (27)

UH,T =















δ ∈ Sper(A)

∣

∣

∣

∣

∣

∣

∣

∣

∃c ∈ R, |xj |δ <δ c,∀j ∈ H
∃ǫ ∈ R>0, |xj |δ >δ ǫ,∀j ∈ T
νδ(x1) = . . . = νδ(xp) = 0
νδ(xp+1) > 0, . . . , νδ(xn) > 0















(28)

and

U∗
H,T =







δ∗ ∈ Sper∗(B)

∣

∣

∣

∣

∣

∣

∃q ∈ T,N ∈ N s.t. ∀j ∈ H, Nνδ∗(yq) > νδ∗(yj)
∀j ∈ {1, . . . , p}, ∀t ∈ {p+ 1, . . . , n},∀N ′ ∈ N,

N ′νδ∗(yj) < νδ∗(yt)







. (29)

We view UI,F,G, Ua,I,F,G and UH,T (resp. U∗
I,F,G, U∗

a,I,F,G and U∗
H,T ) as topological subspaces of

Sper(A) (resp. Sper∗(BT )) with the spectral topology. Clearly, for each I and G satisfying (21)
we have

UI,F,G =
⋃

a ∈ Γn
+

a1 = · · · = ap = 0
ap+1 > 0, . . . , an > 0

Ua,I,F,G

and
U∗

I,F,G =
⋃

a ∈ Γn
+

a1 = · · · = ap = 0
ap+1 > 0, . . . , an > 0

U∗
a,I,F,G

Also, we have

UH,T =
∐

{1, . . . , p} = I
∐

F
∐

G
I ⊂ H,G ⊂ T

UI,F,G, (30)

and
U∗

H,T =
∐

{1, . . . , p} = I
∐

F
∐

G
I ⊂ H,G ⊂ T

U∗
I,F,G. (31)

Theorem 3.1 The map ψ which sends δ to δ∗, defined above, induces homeomorphisms

UI,F,G→̃U∗
I,F,G (32)

and
UH,T →̃U∗

H,T . (33)

If, in addition, ap+1, . . . , an are scalewise Q-linearly independent, we also have a homeomorphism

Ua,I,F,G→̃U∗
a,I,F,G. (34)
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Proof: To show (32) and (34), we have to prove that

ψ(UI,F,G) ⊂ U∗
I,F,G. (35)

ψ(Ua,I,F,G) ⊂ U∗
a,I,F,G, (36)

ψ−1(U∗
I,F,G) ⊂ UI,F,G (37)

and
ψ−1(U∗

a,I,F,G) ⊂ Ua,I,F,G. (38)

First, take a point δ ∈ UI,F,G. By definitions, we have Iδ = I, Fδ = F and Gδ = G. For all
j ∈ F = Fδ there exists c ∈ R>0 such that |yj|δ∗ >δ∗ c by definition of Fδ and BT . The condition

∀j ∈ {1, . . . , p}, ∀t ∈ {p+ 1, . . . , n},∀N ′ ∈ N, N ′νδ∗(yj) < νδ∗(yt) (39)

is nothing but Proposition 3.1 (6).
By Proposition 3.1 (3), there exist q ∈ G and N ∈ N, N > 0 such that for all j ∈ I we have

Nνδ∗(yq) > νδ∗(yj). (40)

By Proposition 3.1 (2), we have νδ∗(yj) > 0 for all j ∈ I ∪ G. This completes the proof of the
inclusion (35).

Next, assume that δ ∈ Ua,I,F,G and that ap+1, . . . , an are Q-linearly independent. The
isomorphism

(νδ∗(yp+1), . . . , νδ∗(yn)) ∼
◦

(ap+1, . . . , an)

is given by Proposition 3.1 (7). This proves the inclusion (36).
To prove the opposite inclusions, take any δ∗ ∈ U∗

I,F,G. The existence of c,N ∈ R>0 such
that |xj |δ <δ c for all j ∈ I and

|xj |δ >δ N, for all j ∈ G (41)

follow from the facts that δ∗ is bounded, xj = yj for j ∈ I and xj = 1/yj for j ∈ G. For j ∈ F we
have either xj = yj or xj = 1

yj
, but in both cases the fact that δ∗ ∈ U∗

I,F,G implies the existence

of c1, c2 ∈ R>0 such that
c1 <δ |xj |δ <δ c2. (42)

To prove the inclusion (37), it remains to prove that

νδ(x1) = . . . = νδ(xp) = 0 (43)

and
νδ(xt) > 0 for all t ∈ {p + 1, . . . , n}. (44)

Equation (43) is equivalent to saying that

1/|xj |δ ∈ Rδ for 1 ≤ j ≤ p. (45)

First, if j ∈ G, |xj |δ = 1
|yj |δ∗

is bounded below by a positive constant by (41), hence (45) holds

for j ∈ G.
If j ∈ I, the assumed existence of q ∈ G and a positive N ∈ N such that for all j ∈ I we have

Nνδ∗(yq) > νδ∗(yj) implies that |yj |δ∗ >δ∗ |yq|
N
δ∗ by equation (4), in other words, |xj |δ >δ 1/|xq|

N
δ

11



or, equivalently, 1/|xj |δ <δ |xq|
N
δ . This proves (45) for j ∈ I. For j ∈ F , (45) follows from (42).

Thus (45) holds for all j ∈ {1, . . . , p}, which proves (43).
Take an index t ∈ {p + 1, . . . , n}. To prove (44), it suffices to show that

1/xt∈/Rδ, (46)

that is, that 1/|xt|δ is not bounded above (with respect to ≤δ) by any polynomial in x1, . . . , xn.
By the triangle inequality, this is equivalent to saying that 1/|xt|δ is not bounded above by any
monomial in x1, . . . , xn, or, equivalently, by any element of the form cxN

j with j ∈ {1, . . . , n},
N ∈ N and c ∈ R. We prove this last statement by contradiction. Suppose there was an
inequality of the form

1/|xt|δ <δ cx
N
j (47)

with N ∈ N, c ∈ R and j ∈ {1, . . . , n}. Since νδ∗(yt) > 0, we have |yt|δ∗ <δ∗ ǫ for all
positive ǫ ∈ R, so |xt|δ <δ ǫ and 1/|xt|δ > 1/ǫ for all positive ǫ ∈ R. On the other hand, if
j ∈ I ∪ {p + 1, . . . , n}, we have νδ∗(yj) > 0, hence |xj |δ = |yj |δ∗ <δ∗ θ for all positive θ ∈ R and
if j ∈ F then |xj |δ is bounded above by a constant from R by (42). This proves that j ∈ G in
(47).

Now, the hypotheses (39) implies that for any constant d ∈ R and any N ′ ∈ N we have
d|yj |

N ′

δ∗ >δ∗ |yt|δ∗ , so d/|xj |
N ′

δ >δ |xt|δ, which contradicts (47). This completes the proof of (46)
and (44). The inclusion (37) is proved.

Assume that δ∗ ∈ U∗
a,I,G. To prove the inclusion (38), it remains to prove the isomorphism

(νδ(x1), . . . , νδ(xn)) ∼
◦

(a1, . . . , an). (48)

By Proposition 3.1 (5), (44), the assumed scalewise Q-linear independence of ap+1, . . ., an and the
Remark following Definition 3.1, νδ(xp+1), . . . , νδ(xn) are also scalewise Q-linearly independent.
Now (48) follows from Proposition 3.1 (7). The inclusion (38) is proved.

Finally, the homeomorphism (33) follows from (32), (30) and (31) by letting I, F,G run over
all the triples of disjoint subsets, satisfying (21), (22) and (23), such that I is empty whenever
G is empty. �

Of course, Theorem 3.1 is true with {1, . . . , p} replaced by any other subset of {1, . . . , n}. In
the next Corollary we drop the assumption (21) and let I, F,G run over all the triples of disjoint
subsets of {1, . . . , n} such that I = ∅ whenever G = ∅. Similarly, H,T will run over all the pairs
of disjoint subsets of {1, . . . , n}.

Corollary 3.1 We have finite coverings

Sper A =
∐

I,F,G

UI,F,G,

and
Sper A =

⋃

H,T

UH,T

For each I, F,G as above, the set UI,F,G is homeomorphic to the subset U∗
I,F,G of the set Sper∗BG

of finite points of Sper BG. For each H,T as above, the set UH,T is homeomorphic to the subset
U∗

H,T of the set Sper∗BT of finite points of Sper BT .

Remark 3.3 The assumption of scalewise Q-linear independence of ap+1, . . . , an, is needed in
Theorem 3.1 only for the inclusion (38). The usual Q-linear independence is needed for the
inclusion (36) and for Proposition 3.1. Although at first glance these assumptions seem rather
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restrictive, we remark that any point δ ∈ Sper A can be transformed into one for which these
assumptions hold by a sequence of blowings up. We refer the reader to Corollary 6.2 of [7] for
details. Corollary 6.2 of [7] shows how to achieve usual Q-linear independence of ap+1, . . . , an,
but it also works for scalewise Q-linear independence after some minor and obvious modifications.

Example. Let n = 5. Let δ ∈ Sper A be the point given by the following semi-curvette. We
let Γ = Z2

lex and kδ = R(z,w), where z and w are independent variables. Let the total order on
kδ be given by the following inequalities:

0 <δ w <δ c <δ z for all c ∈ R>0 (49)

1

wN
<δ z for all N ∈ N. (50)

As usual, we define the total order on kδ

((

tΓ
))

by declaring t to be positive. Define the map
δ : A→ kδ

((

tΓ
))

by

δ(x1) = w (51)

δ(x2) = 1 + t(0,1) (52)

δ(x3) = z (53)

δ(x4) = t(1,0) (54)

δ(x5) = zt(1,0). (55)

We have νδ(x1) = νδ(x2) = νδ(x3) = 0,

νδ(x4) = νδ(x5) = (1, 0) > 0, (56)

so p = 3. Moreover, Iδ = {1}, Fδ = {2}, Gδ = {3}. Let T = Gδ and let δ∗ = ψ(δ) ∈ Sper∗BT .
We have Γδ∗ = Z4

lex and kδ∗ = R. The semi-curvette δ∗ can be defined by the map

δ∗(y1) = t(0,0,0,1) (57)

δ∗(y2) = 1 + t(0,1,0,0) (58)

δ∗(y3) = t(0,0,1,0) (59)

δ∗(y4) = t(1,0,0,0) (60)

δ∗(y5) = t(1,0,1,0). (61)

In this example, νδ(x4) and νδ(x5) are not Q-linearly independent (56), and the conclusion of
Proposition 3.1 does not hold: we do not have the equivalence

(νδ∗(y4), νδ∗(y5)) ∼
◦

(νδ(x4), νδ(x5)).

Let A′ = R[x′1, x
′
2, x

′
3, x

′
4, x

′
5]. Consider the map π : A→ A′ defined by

π(xj) = x′j for j ∈ {1, 2, 3, 4}, (62)

π(x5) = x′4x
′
5. (63)

Let δ′ be the unique preimage of δ under the natural map π∗ : Sper A′ → Sper A of the real
spectra, induced by π (in the terminology of [7], π is an affine monomial blowing up along the
ideal (x4, x5) with respect to δ and δ′ is the transform of δ by π). Explicitly, we have Γδ′ = Z2

lex,
kδ′ = R(z,w), as above, and δ is given by the semi-curvette

δ(x1) = w (64)

δ(x2) = 1 + t(0,1) (65)

δ(x3) = z (66)

δ(x4) = t(1,0) (67)

δ(x5) = z. (68)
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This is an example of the fact that every point δ ∈ Sper A can be transformed, after a sequence
Sper A′ → Sper A of affine monomial blowings up with respect to δ, into a point δ′ ∈ Sper A′

such that the non-zero elements of the set {νδ′(x1), . . . , νδ′(xn)} are (scalewise) Q-linearly inde-
pendent.
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