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1 INTRODUCTION 
Networked Control Systems (NCS) are an extension 
of classical distributed control systems. The main 
difference is the presence of a communication net-
work. It could be considered as a particular compo-
nent interacting with all the other components of the 
system. In this way, the communication network 
takes a central place in control systems. This strate-
gic position is not without consequences for the 
safety point of view. Thus, meticulous studies have 
to be done with a set of appropriate criteria (Juanole 
2002). Mainly, studies have been done on the com-
munication network itself and are part of the per-
formances evaluation of the communication. The 
dependability study is not really taken into account. 

The study of the reliability of an NCS is so a par-
ticularly complex problem and need the use of ap-
propriate evaluation methods. A solution to this 
problem thanks to Monte-Carlo simulations and col-
ored Petri nets is proposed in (Barger et al. 2003). 

The study of reliability is generally achieved un-
der the frame of the probability theory. This formal 
and rigorous frame is mastered when we dispose of 
reliable failure probabilities for the various compo-
nents. More, the reliability index is a probability 
value which does not provide any information on the 
sensitivity or credibility of the index. The possibility 
theory is then a formal frame which is more open 
because it takes into account the uncertainty on the 
initial probability precision and the result credibility. 
These points interest our study. 

In this paper, we describe in the first section the 
NCS application process to which we have imple-

mented the study. In a second section, we recall the 
frame of the study of this NCS thanks to colored 
Petri nets in order to get a probabilistic reliability 
index. In the third section, we propose the formal 
frame of the possibility theory and this frame is used 
for the study of the reliability of the NCS. The last 
section concerns our study of the NCS reliability 
with the possibility theory and we propose some 
analysis. 

2 NETWORKED CONTROL SYSTEM 

In order to show the interest of probabilistic and 
possibilistic methods to study the reliability of 
NCSs, we propose to focus on a simple control loop 
showing all the complexity of the study. 

We define a small NCS which is designed to con-
trol the liquid level in a tank. In order to achieve 
this, the NCS is composed of (Fig. 1): 
- a sensor, 
- a controller, 
- an actuator, 
- a communication network. 
 

The mission of the NCS is to maintain the re-
quired liquid level in the tank. For this reason an 
analogue liquid level value is provided by the sen-
sor. Its measure is communicated via the network to 
the controller which determines the new control 
value and sends it to the actuator which represents a 
pump on the entry of the tank and which conditions 
the input flow of the tank. A small additional pertur-
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bation (a leak or evaporation) affects the controlled 
system. 

In the initial state the tank is empty and has to be 
filled. The required final liquid level is fixed at 500 
height units. 

 
Figure 1. NCS application process 

 
All the components are represented as discrete 

systems with Ts as the sampling period. All through 
this work Ts is considered constant and equal to 10 
time units. The sensor, the controller and the actua-
tor are time triggered. The communication network 
is an event triggered element. In order to combine 
these two different triggers, input and output buffers 
are placed at the junctions between the communica-
tion network and the other components. 

Different failures chosen arbitrarily can occur on 
any of these components. No reparations of compo-
nent failures are considered. A detailed description 
of each component of the NCS follows.  

2.1 Sensor 
In this example a periodic sensor is considered. An 
hypothesis of measuring the true value is done but 
does not affect the scope of the proposed method. 
Every Ts a new measure is obtained and prepared to 
be sent. Two different functionalities can be distin-
guished on the sensor: 
1 measurement, 
2 communication. 

 
The sensor failure does not affect the communi-

cation capacity. The consequence is that the sensor 
is unable to send the measured value and sends in-
stead a frame informing of the sensor failure. The 
probability (uniform distribution) of this failure is 
fixed as a constant equal to 1/100 Ts where Ts is the 
sampling period of the system. This measuring ele-
ment failure is referred to as the Sensor_failure in 
the following. 

2.2 Controller 
The design of a controller for an NCS is a problem 
beyond the scope of this communication. A proposi-
tion can be found in Walsh & Ye (2001). The con-
troller implemented is a Smith predictor with a PI 
algorithm. The supposed pure delay is 2*Ts which 
corresponds to one Ts delay for transmission for 
each information from the sensor to the controller 
and from the controller to the actuator. All over this 
study the communication network respects these de-
lays. 

During the failure of the controller, the communi-
cation functionality is stopped. Thus no message is 
sent to the actuator. The corresponding failure rate is 
constant and placed arbitrarily as 1/100 Ts. The fail-
ure described is referred to as the Controller_failure 
in the following. 

If the controller does not obtain a measure from 
the sensor, either because the later has failed or be-
cause the information is lost during the transmission, 
it continues to determine the control value using the 
last measure obtained. 

2.3 Actuator 
A discrete 1st order system represents the actuator 
inspired by a pump. Two basic states are distin-
guished: idle and acting. The actuator is declared to 
be idle if its input (a value from the controller) and 
its output (actual pumping throughput) are equal. 
Otherwise, its state becomes acting.  

Two different failures are considered with the ac-
tuator: a start failure and a functioning failure both 
of them with constant, uniform probability distribu-
tions. The first one is caused by the blocking of the 
system while initiating an action after the idle state 
of the actuator. The second one is a typical wear-out 
problem for which the occurrence probability is in-
creased by the continuous action. 

The start failure (referred to as Actuator_blocked) 
is an error which is not dependent on the time of run 
but rather on the number of solicitations. The failure 
probability is defined as one blocking over 100 start 
requests. Thus it is dependent on the chosen control 
algorithm. This failure is more important when a bi-
nary control law is applied (pump either on 100% or 
closed) than with a PI algorithm where starts and 
stops are less frequent. 

The functioning failure (or Actuator_wearout) is 
represented with a stochastic failure appearance 
while the pump is functioning. A uniform distribu-
tion of the probability is considered and the failure 
rate is fixed as 1/50 Ts. This failure rate is also a 
function of the control algorithm, but its dependence 
varies from the Actuator_blocked failure function. 

The co-existence of these two different kinds of 
failure rates is rather problematic in traditional 



safety evaluation methods but can be resolved easily 
in a CPN model. 

2.4 Communication network 
The communication network is the only event trig-
gered component in the modeled example. The 
transport delay of a transmission of each communi-
cation frame is considered constant and is fixed as 
1/10 Ts. In each macrocycle two communication 
frames are transmitted: one containing the measured 
value, sent from the sensor to the controller and the 
second one with the control value from the control-
ler to the actuator. In case of need, this model can be 
modified to represent a random delay (such as a jit-
ter). The medium access protocol is of little impor-
tance for this study, as the network bandwidth is 
guaranteed to be highly superior to the bandwidth 
needed. 

The interest of a communication network in this 
example is in the errors appearing during the trans-
mission. Two errors are integrated and studied in 
this case: 
− communication Frame_loss, 
− Frame_alternation. 
 

In this study it consists in erasing the data field in 
the frame.  

The probabilities are constant and identical for 
both errors and fixed at 1 Frame_loss out of 20 
frames transmitted and 1 Frame_alternation out of 
20 frames. Thus statistically every 10th frame trans-
mitted is not received correctly. 

All occurrence rates of previously defined fail-
ures are presented in table 1. 

 
Table 1. Failure and errors review 

Event name Event code  Failure probability 
Sensor_low_failure 1 1/100 Ts 
Sensor_high_failure 2 1/100 Ts 
Sensor_analog_failure 3 1/100 Ts 
Controller_failure 4 1/100 Ts 
Actuator_blocked 5 1/100 requests 
Actuator_wearout 6 1/50 Ts 
Frame_alternation 7 1/20 frames 
Frame_loss 8 1/20 frames 
Alarm_activated 9  
Alarm_applied 10  

2.5 Evaluating failure rate 
The study of the reliability of an NCS from the fail-
ures of its components is a complex problem, which 
can be considered as an hybrid system. Table 1 
shows indeed some failure rates expressed as a func-
tion of time or as a function of events. Moreover, the 
determination of the global reliability of the system 
does not depend only on the time but also on the 

system state, the nature of the network failure, and 
the type of lost information. We want to add that the 
type of information is not taken into account in the 
present study.  

For this study, it is not possible to use the tradi-
tional reliability tools such as functional diagrams or 
failure trees … We consider the failure of the system 
as its inability to accomplish its mission, i.e. to keep 
the level of the liquid close to the set plus or minus 
10% as it is shown in figure 2. Two behaviors are 
considered:  
1 the tank is not filled and the liquid height is not 

closed to the desired value, 
2 the liquid level has approached the desired valued 

but leaves it. 

 
Figure 2. 4 simulation examples 

 
The study is essentially centered on the reliability 

analysis according to an information point of view 
and the mission. So, events like medium interfer-
ences or electrical spikes are not taken into account 
because it overcomes the information point of view 
of the study. 

Now the context is defined, the aim is to find the 
relationship between the elementary failures defined 
in table 1 and the global failure of the system. To 
reach this end, we have used a quantitative approach 
thanks to simulation (Barger et al. 2003). Consider-
ing the system as a hybrid one, we have chosen to 
use colored Petri nets for a functional and malfunc-
tioning model of the NCS. The Petri net-based 
model of the system is built from the models of the 
components with a modular architecture (producer-
consumer type) because of the existence of the com-
munication network. The Petri net models can inte-
grate any network behaviors even for low level pro-
tocols. But the more complex is the behavior, the 
more complex the model is. 

The functional and malfunctioning models of the 
subparts having a stochastic nature, the analysis of 
the complete system can be achieved only through 
Monte-Carlo simulations (Labeau & Zio 2002). It 
consists in repeating a single simulation a certain 
number of times. This number has to be rather high 



in order to be able to consider the results as statisti-
cally reliable and has to be closed to the curse of 
dimensionality expresses by Bellman (1961). So the 
number of simulation increases exponentially with 
the number of events and the time when they oc-
curred. Moreover, as other reliability analysis based 
on models simulations, the complexity of the model 
is linked to the complexity of the system modeled. 
Then, for a reliable analysis, the number of simula-
tion should tend to infinity!! 

As the simulation is the way we choose for reli-
ability analysis and as a simulation is time consum-
ing, our study of the reliability of the NCS is based 
on a finite number of simulations. In Barger et al. 
(2003), we operate 6734 simulations where each 
event code was stored with its occurrence time that 
defines a scenario. Over all simulations, 1114 sce-
narios induce a global system failure. For this study, 
we increase the number of simulations to 10000 and 
obtain 1782 failed scenarios. We note that with 32% 
of more simulations, the malfunctioning states are 
more than 1% up as in the previous study. As a con-
clusion, the number of simulation is too small to ob-
tain a reliable and credible rate of malfunctioning. 
So, analyzing scenarios in the normative framework 
of probability theory becomes difficult due to the 
lack of Monte-Carlo simulations. Then, we choose 
to investigate the normative framework of possibil-
ity theory. 

 
Figure 3. Sensor part of Petri net simulation 

3 SAFETY ANALYSIS AND POSSIBILITY 
THEORY 

Zimmerman (2000) classified the causes of uncer-
tainty as: lack of information, abundance of informa-
tion, measurement and subjective belief. In our case, 
simulations are missing and do not allow a reliable 
analysis of scenarios thanks to the probability the-
ory; it is not possible to take into account the uncer-

tainties of the event occurrences on the evaluation of 
their influence on the global failure. 

Other normative theory can be used as interval 
theory (Moore 1966), certainty theory (Kanal & 
Lemmer 1986), possibility theory (Dubois & Prade 
1988), evidence theory (Shafer 1976) and fuzzy set 
theory (Zimmerman 1985). 

We have chosen to investigate the possibility the-
ory in this context of missing information. Let's re-
call some principles of this theory we want to ex-
ploit here. X is a variable which is not completely 
known, and Ω is the set of all the possible values for 
X. We can then define a distribution of possibilities 
on ω such as πx(ω):Ω→[0,1] that expresses the de-
gree with which it is possible that the current value 
of a poorly known variable X is ω. If A is an event, 
in other words a subset of ω, the possibility measure 
that A be x is: Π(A)=supω∈A πX(ω). The dual measure 
of the possibility is the necessity measure defines 
by: 

N(A)=1-Π(¬A). It allows characterizing the un-
certainty on the decision attached to A in specifying 
with what possibility degree the opposite proposal is 
possible. Possibility distributions are always normal-
ized to 1 in order to always define a possible event 
from two opposite ones. 

These differences are important compared to the 
probability theory where the definition of the prob-
ability of an event defines immediately the value of 
its contrary. However, a certain amount of con-
straints is associated to the measurement of possibil-
ity or necessity: 
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These constraints express the fact that one event 
which is not completely possible is not certain, and 
that an event which is at least a little necessary is 
completely possible. This duality allows associating 
credibility to the decision taken from the couple pos-
sibility - necessity. 

3.1 Composition of measure 
The operators for conjunction and disjunction get 
different properties for the probability theory and the 
possibility theory. In the possibility theory, we 
should respect the duality of possibility and neces-
sity measures. This duality is part of the inference 
rules: 
− Disjunction: Π(A∨B)=max(Π(A), Π(B)) is the 

possibility that at least one of the two hypotheses 
be correct is equal to the greatest possibility. In 
probability theory, the disjunction inference is de-
fined as: p(A∨B)=p(A)+ p(B)- p(A∧(B). 

− Conjunction: Π(A∧B)≤min(Π(A),Π(B)). Two 
events are possible but their intersection is less 
possible than the lowest possibility. 



N(A∧B)=min(N(A),N(B)). The certainty that the 
two hypotheses be correct is equal to the certainty 
of the less certain hypothesis. 

4 NCS RELIABILITY ANALYSIS WITH 
POSSIBILITY THEORY 

There is not a sufficient amount of Monte-Carlo 
simulations to allow us having a frequency view of 
the reliability study of the NCS. Moreover, probabil-
ity theory does not allow us to define if a proposition 
on the system state according to elementary events is 
credible. 

4.1 Analysis of stories: events/time 
During Monte-Carlo simulations of the NCS, ele-
mentary events that define scenarios are time re-
corded. Our first analysis of these scenarios has con-
sisted in searching a relation between event type, 
event occurrence time and the final state of the sys-
tem {Fail, Work}. 

All events with their code in ordinates as defined 
in table 1 and their occurrences time in abscissa are 
shown in figure 4. The system final state is repre-
sented by a ‘*’ for the Work state or by a ‘o’ for Fail 
state. Each event is coded as previously defined in 
order to show if it contributes or not to the Fail state 
of the system. 

The simulation time does not exceed 900uT and 
1st order system reach the steady state after 120uT 
where uT is the simulation quantum time. A first 
analysis of figure 4 is that events 9 and 10 seem to 
conduct to a general system failure when they occur 
after 500uT. The event 4 occurrence did not conduct 
to a malfunctioning when it occurs after 300uT. 
Moreover, we note that events 7 and 8 are the most 
met events and their occurrences include working 
scenarios as well as failed scenarios with similar oc-
currence rate. 

From figure 4, it is difficult to define a credible 
calculus probability structure. But, one can use the 
possibility theory by defining two possibility distri-
butions for each event. These distributions explain 
how much it is possible to an event Ei to induce or 
not a general failure of the NCS.  

Without introducing experts’ knowledge in the 
decision process on the reliability analysis, we have 
proposed a couple of possibility distributions 
πFail(Ei,t), πWork(Ei,t) for each event as shown in fig-
ure 5. Each distribution has been heuristically pro-
posed from event occurrences and by taking account 
the final state of the NCS. Moreover, if no data per-
mits a precise definition of the distribution, no risk is 
made and we consider that all can occur {Fail or 
Work}. 

From proposed possibility distributions, one can 
compute the possibility of a general failure of the 

NCS S or not. For each scenario, one should infer 
the possibility measure of event Ei at its occurred 
time t as defined in equation 2. 
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The two propositions of equation 2 define the de-
gree of possibility that the NCS is in failure or not 
from the conjunction of possibility measures of 
events. 

As defined in the previous paragraph, the possi-
bility theory is a more open frame than the probabil-
ity theory and the calculus of necessity measures by 
equation 3 allows us to evaluate the credibility of 
propositions given by equation 2. 
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The calculus of necessity measures is dual to pos-
sibility measures and allows computing the degree 
of possibility of the opposite proposition in this con-
text of binary states. Then, the necessity measure de-
fines how a proposition is credible by taking into ac-
count how its opposite is possible. 

If the proposition ΠWork(S)≈1 which explains it is 
very possible that the NCS is functioning and if 
ΝWork(S)≈0 then the proposition ΠWork(S)≈1 is not 
credible. 

Let's taking an example with the following sce-
nario: {(E1,50uT), (E7,200uT), (E8,300uT), 
(E7,400uT), (E6,600uT), (E10,700uT)}. If we com-
pute the possibility and necessity measures from the 
distributions shown in figure 5, we obtain: 
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This example shows how it is important to use 
both the possibility and necessity. As one can see 
according to distributions of figure 5, it is fully pos-
sible that the system goes to the Work state but it is 
not credible because the necessity measure is 0. 

This analysis of simulation results in figure 4 re-
mains too general. One can note that each event can 
induce a general failure and that the possibility the-
ory gives complementary information on the credi-
bility of results. But, the chosen representation of 
events doesn't show the elementary contribution of 
each event to the general failure. Moreover, the im-
portance of the contribution depending on the occur-
rence order of events in a story is hidden. The im-



portance of an elementary is context dependant and 
it induces a more complex analysis. 

4.2 Analysis of the scenarios: scheduled events vs. 
time 

To make a better analysis and begin to answer to the 
previous note, we choose to represent events accord-
ing to their occurrence time and their order positions 
in a story. The goal of this new representation is to 
show that events positions in a scenario according to 
the occurrence time have a great influence on the 
general failure. Moreover, one can observe in figure 
6 that the event code ‘1’ (Sensor_low_failure) does-
n't induce a general system failure if it is the first 
event and if it occurs after the beginning of the 
story. When it occurs in the second position (see 
Fig.7), the mission failure is possible if its occur-
rence time is less than 50uT. The same analysis can 
be done for event code ‘2’ (Sensor_high_failure). 

 

 
Figure 6.  First events 

 

 
Figure 7. Second events 

 
One can note that this analysis is more precise 

than the one of the previous paragraph. It is clear 

that the type of events, the events order and the oc-
currences times play an important role in the general 
failure. Computing the system failure possibility 
ΠFail(S) is conditioned by the schedule of events. So, 
we should define possibility distributions with the 
following procedure but by taking into account the 
event order in the story. Figures 8 and 9 show the 
possibility distributions for the two first events. 

 
Figure 8. First events possibility distributions 

 
Figure 9. Second events possibility distributions 

 
The possibility measure of system failing or 

working is defined by equation 5.  
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where i is the event code and j is the index of the 
event in the story. 

5 CONCLUSION 

In this paper, we have investigated a NCS reliability 
analysis by the possibility theory with Monte-Carlo 



simulations and an information point of view. By us-
ing Monte-Carlo simulations we eliminate the for-
mal definition of a structure function which is diffi-
cult to obtain with this kind of NCS. We have 
analyzed simulations story by the possibility theory 
which find here a good application because there is 
not a sufficient amount of simulations for a probabil-
istic point of view. 

The proposed analysis remains imperfect. Stories 
are made of a large number of events and it is im-
possible to condition possibilities when this number 
tends to infinity. Moreover, some sequences can be 
identified in many stories and our analysis does not 
show neither them nor their relation to the possibil-
ity of failure. To take into account this information, 
we should analyze stories with the new equation 6 
where a possibility distribution of an event is condi-
tioned by the previous event as in Bayesian net-
works (Weber & Jouffe 2003) or Markov chains. 

( ) ( )
( ) ( )tEES

tEES

iiWorkstoryEWork

iiFailstoryEFail

i

i

,

,

1

1

−∈

−∈

∧=Π

∧=Π

π

π
 (6) 

For this kind of analysis, we should take a more 
comfortable tool like possibilistic graphs (Borgelt & 
Kruse 2003) where conditional possibilities are well 
manipulated. Moreover, we are interested in cycles 
of events that seem to be classical in our simula-
tions. 

We should also integrate in our analysis the sys-
tem dynamic, its robustness and its state. In this 
work the system dynamic is characterized by time 
because all the simulations are step responses of a 1st 
order (low time value → high dynamic; large time 
value → low dynamic). 

Finally, we should integrate in our analysis the 
nature of the corrupted information because the kind 
of corruption plays a role in maintaining or not the 
NCS in function.  
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Figure 4. Unsequenced event representation 

 
Figure 5. Possibility distributions 


